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ProbCons: Probabilistic consistency-based multiple
sequence alignment
Chuong B. Do,1 Mahathi S.P. Mahabhashyam,1 Michael Brudno,1 and
Serafim Batzoglou1,2

1Department of Computer Science, Stanford University, Stanford, California 94305, USA

To study gene evolution across a wide range of organisms, biologists need accurate tools for multiple sequence
alignment of protein families. Obtaining accurate alignments, however, is a difficult computational problem because
of not only the high computational cost but also the lack of proper objective functions for measuring alignment
quality. In this paper, we introduce probabilistic consistency, a novel scoring function for multiple sequence
comparisons. We present ProbCons, a practical tool for progressive protein multiple sequence alignment based on
probabilistic consistency, and evaluate its performance on several standard alignment benchmark data sets. On the
BAliBASE, SABmark, and PREFAB benchmark alignment databases, ProbCons achieves statistically significant
improvement over other leading methods while maintaining practical speed. ProbCons is publicly available as a Web
resource.

[Supplemental material is available online at www.genome.org. Source code and executables are available as public
domain software at http://probcons.stanford.edu.]

Given a set of biological sequences, a multiple alignment pro-
vides a way of identifying and visualizing patterns of sequence
conservation by organizing homologous positions across differ-
ent sequences in columns. As sequence similarity often implies
divergence from a common ancestor or functional similarity, se-
quence comparisons facilitate evolutionary and phylogenetic
studies (Phillips et al. 2000; Castillo-Davis et al. 2004) and isola-
tion of the most relevant regions (Attwood 2002) for a variety of
biological analyses. In particular, conserved amino acid stretches
in proteins are strong indicators of preserved three-dimensional
structural domains, so protein alignments have been widely used
in aiding structure prediction (Rost and Sander 1994; Jones 1999)
and characterization of protein families (Sonnhammer et al.
1998; Johnson and Church 1999; Bateman et al. 2004). However,
when sequence identity falls below 30%, called the “twilight
zone” of protein alignments, the accuracies of most automatic
sequence alignment methods drop considerably (Rost 1999;
Thompson et al. 1999b). As a result, alignment quality is often
the limiting factor in biological analyses of amino acid sequences
(Jaroszewski et al. 2002).

The problem of alignment construction consists of defining
either explicitly or implicitly an objective function for assessing
alignment quality and employing an efficient algorithm to find
the optimal, or a near optimal, alignment according to the ob-
jective function. Two-sequence alignments are usually evaluated
by addition of match/mismatch scores for aligned pairs of positions
and affine gap penalties for unaligned amino acids (Needleman and
Wunsch 1970; Smith and Waterman 1981). Quantitatively, scores
for aligned residues are given by log-odds (Altschul 1991) substitu-
tion matrices such as PAM (Dayhoff et al. 1978), GONNET (Gonnet
et al. 1992), or BLOSUM (Henikoff and Henikoff 1992). Estimation
of appropriate gap penalties, however, is often regarded as a “black
art” based on trial and error (Vingron and Waterman

1994). For two sequences of length L, an optimal alignment ac-
cording to this metric may be computed in O(L2) time (Gotoh
1982) and O(L) space (Myers and Miller 1988) via dynamic pro-
gramming.

Pair-hidden Markov models (HMMs) provide an alternative
formulation of the sequence alignment problem in which align-
ment generation is directly modeled as a first-order Markov pro-
cess involving state emissions and transitions. In this approach,
model parameters obtain an intuitive probabilistic interpretation
and can be trained on real data using standard supervised or
unsupervised likelihood-based methods. The Viterbi (1967)
algorithm computes the highest probability alignment of two
input sequences according to an alignment pair-HMM. In the
standard three-state pair-HMM for alignment, the Viterbi algo-
rithm may be viewed as an instantiation of the Needleman–
Wunsch algorithm in which alignment parameters are deter-
mined by a log-odds transformation of the HMM scoring scheme
(Durbin et al. 1998).

Since they specify a conditional probability distribution
over the space of all suboptimal alignments, pair-HMMs also al-
low the computation of the posterior probability, P(xi ∼ yj ∈ a* | x,
y), that particular positions xi and yj of two sequences x and y,
respectively, will be matched in an alignment a* generated by the
model. Running the Needleman–Wunsch algorithm with these
posterior probabilities as substitution scores and no gap penalties
gives rise to the maximum expected accuracy alignment method
(see Methods), also known as optimal accuracy alignment (Holmes
and Durbin 1998).

In the general case of multiple sequence comparisons, theo-
retically sound and biologically motivated scoring methods are
not straightforward to devise. In practice, ad hoc sum-of-pairs
schemes (Carrillo and Lipman 1988), which combine the pro-
jected pairwise log-odds scores for all pairs of sequences in the
alignment, and their weighted variants (Altschul et al. 1989) are
commonly used. Unfortunately, direct application of dynamic
programming is too inefficient for alignment of more than a few
sequences. Instead, a variety of heuristic strategies have been

2Corresponding author.
E-mail serafim@cs.stanford.edu; fax (650) 725-1449.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2821705.

Resource

330 Genome Research
www.genome.org

15:330–340 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org

 on October 24, 2006 www.genome.orgDownloaded from 

http://www.genome.org


proposed, including genetic algorithms (Notredame and Higgins
1996), simulated annealing (Kim et al. 1994), alignment to a
profile HMM (Krogh et al. 1994; Eddy 1995), or greedy assem-
blage of multiple segment-to-segment comparisons (Morgen-
stern et al. 1996). By far, the most popular heuristic strategies
involve tree-based progressive alignment (Feng and Doolittle 1987)
in which groups of sequences are assembled into a complete mul-
tiple alignment via several pairwise alignment steps. As with any
hierarchical approach, however, errors at early stages in the
alignment not only propagate to the final alignment but also
may increase the likelihood of misalignment due to incorrect
conservation signals. Post-processing steps such as iterative re-
finement (Gotoh 1996) alleviate some of the errors made during
progressive alignment.

Consistency-based schemes take the alternative view that
“prevention is the best medicine.” Note that for any multiple
alignment, the induced pairwise alignments are necessarily con-
sistent—that is, given a multiple alignment containing three se-
quences x, y, and z, if position xi aligns with position zk and
position zk aligns with yj in the projected x–z and z–y alignments,
then xi must align with yj in the projected x–y alignment. Con-
sistency-based techniques apply this principle in reverse, using
evidence from intermediate sequences to guide the pairwise
alignment of x and y, such as needed during the steps of a pro-
gressive alignment. By adjusting the score for an xi ∼ yj residue
pairing according to support from some position zk that aligns to
both xi and yj in the respective x–z and y–z pairwise comparisons,
consistency-based objective functions incorporate multiple se-
quence information in scoring pairwise alignments.

Gotoh (1990) first introduced consistency to identify an-
chor points for reducing the search space of a multiple align-
ment. A mathematically elegant reformulation of consistency in
terms of boolean matrix multiplication was later given by Vin-
gron and Argos (1991) and implemented in the program MALI,
which builds multiple alignments from dot matrices (Vingron
and Argos 1989). An alternative formulation of consistency was
employed in the DIALIGN tool, which finds ungapped local
alignments via segment-to-segment comparisons, determines
new weights for these alignments using consistency, and as-
sembles them into a multiple alignment by a greedy selection
procedure (Morgenstern et al. 1996).

More recently, Notredame et al. (1998) introduced COFFEE,
a new consistency-based objective function for scoring residue
pairs in a pairwise alignment. In this approach, an alignment
library is computed by merging consistent CLUSTALW (Thomp-
son et al. 1994) global and LALIGN (Huang and Miller 1991) local
pairwise alignments to form three-way alignments, which are
assigned percent identity weights. Then, the score for aligning xi

to yj is defined to be the sum of the weights of all alignments in
the library containing that aligned residue pair. The program
T-Coffee (Notredame et al. 2000), which implements multiple
sequence alignment under this objective function using progres-
sive maximum weight trace computations (Kececioglu 1993), has
demonstrated superior accuracy on the BAliBASE test suite
(Thompson et al. 1999a) over competing methods, including
CLUSTALW, DIALIGN, and PRRP (Gotoh 1996).

In this article, we introduce probabilistic consistency, a novel
modification of the traditional sum-of-pairs scoring system that
incorporates HMM-derived posterior probabilities and three-way
alignment consistency. We discuss the theoretical motivations
behind the probabilistic consistency scoring system and demon-
strate its applicability with ProbCons, a protein progressive mul-

tiple alignment tool based on this technique. To assess the utility
of our methods, we compared ProbCons to several current lead-
ing alignment tools including Align-m (Van Walle et al. 2004),
CLUSTALW, DIALIGN, MAFFT (Katoh et al. 2002), MUSCLE
(Edgar 2004), and T-Coffee on the BAliBASE, SABmark (Van
Walle et al. 2004), and PREFAB (Edgar 2004) benchmark align-
ment databases, using commonly accepted accuracy measures for
validating alignment quality. In this comparison, ProbCons
shows a clear statistically significant improvement in accuracy
over all other alignment tools in every benchmark test, while
maintaining practical running times. Moreover, all parameters
for the program are derived through unsupervised training meth-
ods without making any manual adjustments. ProbCons is pub-
licly available as a Web resource. Source code and executables are
available as public domain software at http://probcons.stanford.
edu.

Results

Algorithm overview

Fundamentally, ProbCons is a pair-hidden Markov model-based
progressive alignment algorithm that primarily differs from most
typical approaches in its use of maximum expected accuracy rather
than Viterbi alignment, and of the probabilistic consistency trans-
formation to incorporate multiple sequence conservation infor-
mation during pairwise alignment. ProbCons uses the HMM
shown in Figure 1 to specify the probability distribution over all
alignments between a pair of sequences. Emission probabilities,
which correspond to traditional substitution scores, are based on
the BLOSUM62 matrix (Henikoff and Henikoff 1992). Transition
probabilities, which correspond to gap penalties, are trained with
unsupervised expectation maximization (EM).

ProbCons algorithm

Given m sequences, S = {s(1), …, s(m)}:

Step 1: Computation of posterior-probability matrices
For every pair of sequences x, y ∈ S and all i ∈ {1, …, |x|}, j ∈ {1, …,
|y|}, compute the matrix Pxy, where Pxy(i, j) = P(xi ∼ yj ∈ a* | x, y) is
the probability that letters xi and yj are paired in a*, an alignment
of x and y generated by the model.

Figure 1. Basic pair-HMM for sequence alignment between two se-
quences, x and y. State M emits two letters, one from each sequence, and
corresponds to the two letters being aligned together. State Ix emits a
letter in sequence x that is aligned to a gap, and similarly state Iy emits a
letter in sequence y that is aligned to a gap. Finding the most likely
alignment according to this model by using the Viterbi algorithm corre-
sponds to applying Needleman–Wunsch with appropriate parameters.
The logarithm of the emission probability function p(.,.) at M corresponds
to a substitution scoring matrix, while affine gap penalty parameters can
be derived from the transition probabilities � and � (Durbin et al. 1998).
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Step 2: Computation of expected accuracies
Define the expected accuracy of a pairwise alignment a between
x and y to be the expected number of correctly aligned pairs of
letters, divided by the length of the shorter sequence:

Ea*�accuracy�a,a*��x,y� =
1

min��x�,�y�� �
xi∼yj∈a

P�xi ∼ yj ∈a*�x,y�.

For each pair of sequences x, y ∈ S, compute the alignment a that
maximizes expected accuracy by dynamic programming, and set
E(x, y) = Ea*(accuracy(a, a*) | x, y).

Step 3: Probabilistic consistency transformation
Reestimate the match quality scores P(xi ∼ yj ∈ a* | x, y) by apply-
ing the probabilistic consistency transformation, which incorporates
similarity of x and y to other sequences from S into the x–y pair-
wise comparison:

P��xi ∼ yj ∈ a*�x,y� ←
1
�S� �z∈S

�
zk

P�xi ∼ zk ∈ a*�x,z�P�zk ∼ yj ∈ a*�z,y�.

In matrix form, the transformation may be written as

P�xy ←
1
�S� �z∈S

PxzPzy.

Since most values in the Pxz and Pzy matrices will be near zero, the
transformation is computed efficiently using sparse matrix mul-
tiplication by ignoring all entries smaller than a threshold �. This
step may be repeated as many times as desired.

Step 4: Computation of guide tree
Construct a guide tree for S through hierarchical clustering. As a
measure of similarity between two sequences x and y use E(x, y)
as computed in Step 2. Define the similarity of two clusters by a
weighted average of the pairwise similarities between sequences
of the clusters.

Step 5: Progressive alignment
Align sequence groups hierarchically according to the order
specified in the guide tree. Alignments are scored using a sum-
of-pairs scoring function in which aligned residues are assigned
the transformed match quality scores P�(xi ∼ yj ∈ a* | x, y) and
gap penalties are set to zero.

Post-processing step: Iterative refinement
Randomly partition alignment into two groups of sequences and
realign. This step may be repeated as many times as desired.

In addition to the steps shown, we also experimented with
the generation of automatic column reliability annotations for
the alignment based on the posterior matrix formulation above
(see Methods).

Testing methodology

To test the empirical performance of ProbCons, we used three
different multiple alignment benchmarking suites, including
BAliBASE 2.01 (Thompson et al. 1999a), PREFAB 3.0 (Edgar
2004), and SABmark 1.63 (Van Walle et al. 2004). Tests were
performed on a 3.3-GHz Pentium IV with 2 GB RAM.

The BAliBASE 2.01 benchmark alignment database is a col-
lection of 141 reference protein alignments, consisting of struc-
tural alignments from the FSSP (Holm and Sander 1994) and
HOMSTRAD (Mizuguchi et al. 1998) databases and hand-
constructed alignments from the literature. The database is orga-

nized into five reference sets: Reference 1 consists of a few equi-
distant sequences of similar length; Reference 2, families of
closely related sequences with up to three distant “orphan” se-
quences; Reference 3, equidistant divergent families; Reference 4,
sequences with large N/C-terminal extensions; and Reference 5,
sequences with large internal insertions. Test alignments are
scored with respect to BAliBASE core blocks, regions for which
reliable alignments are known to exist.

The PREFAB 3.0 database is an automatically generated da-
tabase consisting of 1932 alignments averaging 49 sequences of
length 240. Each test consists of a pair of protein sequences
supplemented with homologs found through PSI-BLAST
(Altschul et al. 1997) queries over the NCBI nonredundant pro-
tein sequence database (Pruitt et al. 2003). The accuracy of a
multiple sequence alignment is then evaluated with respect to
the pairwise structural alignments of the original two protein
sequences using the consensus of FSSP and CE alignments. Note
that the pairwise structural alignments in PREFAB only cover
some regions of the sequences; we treated these like BAliBASE
core blocks.

The SABmark 1.63 database consists of two sets of consensus
regions based on SOFI (Boutonnet et al. 1995) and CE (Shindya-
lov and Bourne 1998) structural alignments of sequences from
the ASTRAL (Brenner et al. 2000) database. The “Twilight Zone”
set contains 1994 domains sorted into 236 subsets representing
SCOP folds (Murzin et al. 1995), where each subset contains se-
quences within no more than 25% identity. The “Superfamily”
set contains 3645 domains sorted into 462 subsets representing
SCOP superfamilies, where each subset contains sequences
within no more than 50% identity. Unlike BAliBASE, SABmark
uses all-pairs pairwise reference structural alignments for evalu-
ating multiple alignment quality.

While no universally accepted accuracy measure exists for
protein alignments, we chose to score each alignment according
to the original benchmarking measures proposed for its respec-
tive database. In the BAliBASE data set, we scored alignments
according to the sum-of-pairs score (SP), defined as the number of
correctly aligned residue pairs found in the test alignment di-
vided by the total number of aligned residue pairs in core blocks
of the reference alignment (Thompson et al. 1999b). Addition-
ally, we measured the column score (CS), defined as the number of
correctly aligned columns found in the test alignment divided by
the total number of aligned columns in core blocks of the refer-
ence alignment. On the PREFAB alignments, we measured the
quality (Q) score (Edgar 2004), which is equivalent to the SP
score. Finally, for SABmark, we used the developer (fD) score,
which is also equivalent to the SP score (where all residues in the
reference alignment are treated as being in core blocks), and the
modeler (fM) score, defined as the number of correctly aligned
residue pairs found in the test alignment divided by the total
number of aligned residue pairs in the test alignment (Sauder et
al. 2000). For each type of scoring metric used, we averaged the
scores per multiple alignment (or average score per subset in the
case of SABmark) over all multiple alignment tests in the data-
base.

Comparison to other aligners

We compared the results of ProbCons on the above databases to
those of six leading multiple alignment systems: (1) CLUSTALW
1.83 (Thompson et al. 1994), currently the most popular progres-
sive alignment method; (2) DIALIGN 2.2.1 (Morgenstern et al.
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1998), a local aligner using segment-based homology; (3) T-
Coffee 1.37 (Notredame et al. 2000), a heuristic consistency-
based aligner that combines global and local alignments; (4)
MAFFT 3.88 (Katoh et al. 2002), a set of six scripts for performing
multiple alignment with a variety of iterative refinement tech-
niques; (5) MUSCLE 3.3 (Edgar 2004), a new aligner reporting the
best published results on BAliBASE to date; and (6) Align-m 1.0
(Van Walle et al. 2004), a consistency-based method for comput-
ing all-pairs pairwise alignments of multiple sequences. Of the six
scripts comprising the MAFFT alignment utilities, we chose to
test nw-ns-i, the most accurate script. For Align-m 1.0, we used
the parameter settings picked for testing the program in Van
Walle et al. (2004). All other programs were run with default
parameters.

Emission probabilities for the ProbCons HMM were adapted
from the BLOSUM62 scoring matrix (Henikoff and Henikoff
1992). The default transition parameters of ProbCons were
trained via unsupervised Expectation-Maximization (EM) on un-
aligned sequences from the BAliBASE benchmark database; thus,
the tests on the PREFAB and SABmark databases provide external
validation of the results shown on BAliBASE. The default options
for the ProbCons program included applying two iterations of
the consistency transformation and 100 rounds of iterative re-

finement for every alignment. We also experimented with a
modified version of ProbCons (ProbCons-ext) in which the HMM
model was extended to include an extra pair of insertion states (I�x
and I�y) to model long or terminal insertions.

The results of testing on the BAliBASE benchmark align-
ments database are shown in Table 1. To assess the significance of
the differences in overall SP and CS scores, we performed a Fried-
man rank test for all pairs of programs; these results are summa-
rized in Table 2. A typical BAliBASE alignment and its corre-
sponding plot of column reliability are shown in Figure 2. The
correlation between predicted and actual column reliability
scores as shown in the diagram demonstrates the ability of pair-
wise posterior matrices to predict the expected proportion of cor-
rectly aligned residue pairs per column.

With the exception of Reference 4, ProbCons achieves the
strongest performance in both SP and CS scores in all references.
Reference 4 sequences are marked by long N/C-terminal exten-
sions in which local alignment methods tend to be more success-
ful, suggesting that incorporation of a local alignment probabi-
listic model into ProbCons might improve its performance on
such sequences. Alternatively, we found that extending the
HMM model with an extra pair of insertion states (ProbCons-ext)
did improve BAliBASE performance in Reference 4; however, this

Table 1. Performance of aligners on the BAliBASE benchmark alignments database

Aligner

Ref 1 (82) Ref 2 (23) Ref 3 (12) Ref 4 (12) Ref 5 (12) Overall (141)
Time

(mm:ss)SP CS SP CS SP CS SP CS SP CS SP CS

Align-m 76.6 n/a 88.4 n/a 68.4 n/a 91.1 n/a 91.7 n/a 80.4 n/a 19:25
DIALIGN 81.1 70.9 89.3 35.9 68.4 34.4 89.7 76.2 94.0 84.3 83.2 63.7 2:53
CLUSTALW 86.1 77.3 93.2 56.8 75.3 46.0 83.4 52.2 85.9 63.8 86.1 68.0 1:07
MAFFT 86.7 78.1 92.4 50.2 78.8 50.4 91.6 72.7 96.3 85.9 88.2 71.4 1:18
T-Coffee 86.6 77.4 93.4 56.1 78.5 48.7 91.8 73.0 95.8 90.3 88.3 72.2 21:31
MUSCLE 88.7 80.8 93.5 56.3 82.5 56.4 87.6 60.9 96.8 90.2 89.6 73.9 1:05
ProbCons 90.1 82.6 94.4 61.3 84.1 61.3 90.1 72.3 97.9 91.9 91.0 77.2 5:32
ProbCons-ext 90.0 82.5 94.2 59.1 84.3 61.1 93.8 81.0 98.1 92.2 91.2 77.6 8:02

Columns show the average sum-of-pairs (SP) and column scores (CS) achieved by each aligner for each of the five BAliBASE references. All scores have
been multiplied by 100. The number of sequences in each reference is given in parentheses. Overall numbers for the entire database are reported in
addition to the total running time of each aligner for all 141 alignments. The best results in each column are shown in bold.

Table 2. Significance test for differences in BAliBASE performance

Align-M DIALIGN CLUSTALW MAFFT T-Coffee MUSCLE ProbCons ProbCons-ext

Align-M �(0.61) �8.2 � 10�6 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

DIALIGN �1.9 � 10�5 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

CLUSTALW +2.4 � 10�3 �1.0 � 10�3 �3.0 � 10�5 �4.9 � 10�8 �6.1 � 10�10 �<10�10

MAFFT +1.2 � 10�9 +1.0 � 10�3 �(0.65) �1.7 � 10�5 �2.6 � 10�9 �4.9 � 10�8

T-Coffee +<10�10 +8.4 � 10�6 �(0.92) �7.0 � 10�3 �1.5 � 10�6 �8.4 � 10�6

MUSCLE +<10�10 +1.9 � 10�8 +9.6 � 10�6 +1.7 � 10�3 �3.0 � 10�3 �6.6 � 10�3

ProbCons +<10�10 +<10�10 +1.6 � 10�7 +1.9 � 10�6 +0.012 +0.043

ProbCons-ext +<10�10 +<10�10 +8.3 � 10�6 +3.2 � 10�5 +(0.092) �(0.088)

Entries show the p-value indicating the significance of a difference in performance between two alignment methods as measured using a Friedman rank
test. Nonitalicized values above the diagonal were calculated using SP scores on all alignments, whereas italicized values were computed using CS scores.
(+) Method on the left had lower average rank (better performance); (�) Method on the left had higher average rank (worse performance); parentheses
denote (nonsignificant) p-values >0.05.
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addition roughly doubled the running time, with variable per-
formance benefit in the other databases.3

The results of testing six of the methods on the PREFAB
database are shown in Table 3. Results for the Align-m program
are omitted, since the program failed to complete all alignments

in the PREFAB database. Again, ProbCons and ProbCons-ext
demonstrate a strong lead in SP score although their running
times are longer than those of the other aligners except for T-
Coffee. This is due to the computation of all-pairs pairwise pos-
terior probability matrices in the first step of the algorithm; other
schemes for formulating probabilistic consistency that avoid this
need for a quadratic number of initial alignments may be pos-
sible. The significance results for these values are given in Ta-
ble 4.4

The results of testing of the SABmark benchmark alignment
database are shown in Table 5. Many of the same trends as found
in the BAliBASE alignments are seen in SABmark, with the dif-
ference between ProbCons and the next best aligner in terms of
fD (SP) scores even more exaggerated. It should be noted, how-
ever, that while the Align-m aligner lags far behind in SP score5

(which may be thought of as a measure of sensitivity), its fM
scores, which are the proportion of correctly predicted amino
acid matches among all predicted matches (and which may be
regarded as a measure of specificity) are the highest. Due to this
disparity, it is difficult to make a precise quantitative statement
regarding the relative performance of Align-m compared to the
other methods without characterizing the sensitivity/specificity
trade-off of each method, such as performed in a ROC analysis
(Metz 1978).6 Nevertheless, compared to all other aligners, Prob-
Cons demonstrates significantly higher fD and fM scores overall,
as seen in Table 6.

Comparison of ProbCons variants

To understand the features of ProbCons that give it a strong
increase in performance, we compared several ProbCons variants
on the “Twilight Zone” set from the SABmark alignment data-
base. In particular, we examined the effects of four main algo-
rithmic changes: (1) using the Viterbi algorithm to compute the
highest probability alignment, instead of the highest expected
accuracy alignment that is computed by ProbCons; (2) using the
posterior probability matrices generated by ProbCons to produce
all-pairs pairwise alignments instead of full multiple alignments;
(3) varying the number of applications of consistency transfor-
mation applied before alignment; and (4) omitting the applica-
tion of iterative refinement to optimize the alignment with re-
spect to the sum-of-pairs probabilistic consistency metric. In this
article, we have omitted a full comparison of expected accuracy3Previous results on the BAliBASE 2.01 benchmark alignments database re-

ported in an abstract (Do et al. 2004), which correspond to the ProbCons-ext
program, differ slightly from those shown in the text. These small differences
are attributable to (1) a change in the methods used for extracting BAliBASE
core blocks as suggested by Robert C. Edgar (pers. comm.), and (2) minor
changes in the HMM model and training procedure for the current version of
ProbCons. 4The results for the nw-ns-i script from MAFFT on the PREFAB database given

in Edgar (2004) contain an editing error (R.C. Edgar, pers. comm.); the values
shown here are correct. Interestingly, although MAFFT achieves a slightly
higher overall average SP score than MUSCLE, a Friedman rank test indi-
cates that MUSCLE consistently produces better alignments than MAFFT (see
Table 4).
5The numbers reported for the Align-m aligner are similar to those given in
Edgar (2004), but differ from the results reported in Van Walle et al. (2004).
The primary reason for this difference is that the averages in the latter study
were computed across all SABmark pairwise alignments; this fails to account
for dependencies within each subset, so the weight of each subset scales
quadratically with the number of sequences present. We avoid this by aver-
aging pairwise alignment scores within each subset before averaging all subset
scores.
6While a ROC analysis would better characterize aligner performance, properly
defining sensitivity and specificity measures for alignment accuracy involves
subtle issues regarding the alignability of particular positions in sequences.
Furthermore, the appropriate manner for adjusting program parameters so as
to observe the sensitivity/specificity trade-off for the expected accuracy align-
ment algorithm is also an open problem. We leave these questions for future
work.

Table 3. Performance of aligners on the PREFAB protein
reference alignment benchmark

Aligner Overall (1927) Time

DIALIGN 57.2 12 h, 25 min
CLUSTALW 58.9 2 h, 57 min
T-Coffee 63.6 144 h, 51 min
MUSCLE 64.8 3 h, 11 min
MAFFT 64.8 2 h, 36 min
ProbCons 66.9 19 h, 41 min
ProbCons-ext 68.0 37 h, 46 min

Entries show the average Q (equivalent to SP) score achieved by each aligner
on all 1927 alignments of the PREFAB database. All scores have been
multiplied by 100. Running times for programs over the entire database
are given for each program in hours and minutes. The best results in each
column are shown in bold.

Figure 2. Column reliability plot for 1csy_ref1 from BAliBASE, Refer-
ence 1. The red line and solid regions indicate the predicted and actual
proportion of correct pairwise matches at each alignment position, re-
spectively. All column reliability values have been multiplied by 100. Be-
low, the actual ProbCons alignment is shown with core block residues
highlighted in green. Note that only pairwise matches in core block
regions of the BAliBASE alignment are considered correct when comput-
ing the “actual” proportion of correct pairwise matches; however, some
residues outside of the core block regions may also be alignable. Thus,
regions in which predicted homology exceeds actual homology do not
necessarily indicate overprediction of homology by the aligner.
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guide tree construction to more popular methods such as
neighbor-joining or UPGMA, though preliminary results indicate
ProbCons to be relatively insensitive to tree topology (R.C. Edgar,
pers. comm.).

The results for each of these tests are shown in Table 7. Note
that we tested the Viterbi algorithm only on pairwise alignments,
as the HMM used in the ProbCons algorithm is strictly for pair-
wise comparisons; properly extending it to handle progressive
profile alignment is beyond the scope of this study. As seen by a
comparison of the first two rows of the table, alignments that
optimize expected accuracy were significantly more accurate
than Viterbi alignments.

The numbers also show that pairwise methods (rows 2–4)
tend to generate alignments with slightly higher fD (SP) scores
and slightly lower fM scores than their multiple alignment coun-
terparts (rows 5–7). However, a stronger trend is that in both the
pairwise and multiple alignment cases, iterated applications of
consistency lead to simultaneous improvements in fD and fM,
thus showing that the consistency does help incorporate mul-
tiple sequence information into pairwise alignments. Using 100
rounds of iterative refinement helps optimize the alignment, as
reflected in the difference between rows 5 and 8 of the table.
Employing both iterated consistency and iterative refinement
thus gives the default parameter settings for the ProbCons pro-
gram (row 9).

Interestingly, computing multiple alignments using the ex-
pected accuracy criterion alone generates significantly more ac-

curate alignments in terms of both fD and fM scores than those
produced by current leading alignment methods. To check the
validity of this claim, we applied the expected accuracy criterion
for multiple alignment to the entire SABmark database, achiev-
ing an fD score of 0.479 and an fM score of 0.355, again signifi-
cantly better than all other methods except for the full ProbCons
method itself. Therefore expected accuracy alignments give bet-
ter sensitivity in terms of predicting true matches and better speci-
ficity in terms of predicting a higher proportion of true matches.
This observation suggests that posterior-based approaches are a
powerful general approach for improving alignment accuracy.
Additionally, among the added features, using the probabilistic
consistency transformation provided the largest accuracy im-
provement.

Discussion
Though the problem of protein multiple sequence alignment is
hardly new, the computation of high accuracy multiple sequence
alignments is still an open problem. In this article, we presented
ProbCons, a practical tool for protein multiple sequence align-
ment, which has demonstrated dramatic improvements in align-
ment accuracy over several leading methods on the BAliBASE,
PREFAB, and SABmark benchmark alignment databases while
maintaining competitive running times.

Despite its strong performance on empirical tests, the Prob-
Cons algorithm uses an extremely simple model of sequence
similarity (a three-state pair-HMM) and makes no attempt to in-
corporate biological knowledge such as position-specific gap
scoring, rigorous evolutionary tree construction, and other fea-
tures used by aligners such as CLUSTALW. ProbCons does
not use protein-specific alignment information other than the
amino acid alphabet and the BLOSUM emission probability ma-
trices. Replacing these with equivalent values for nucleotides
may give a DNA alignment procedure with improved accuracy
over standard Needleman–Wunsch-based aligners. In addition,
the parameters used in the model are transparent, and include
the probability � of transition from the match/mismatch state to
the insertion states (corresponding to a gap-open penalty) the
probability � of self-transition in an insertion state (correspond-
ing to a gap-extend penalty), and the initial probability �insert of
starting with an insertion. Since all training for the program was
done automatically on unaligned sequences using Expectation–
Maximization without human guidance, it is thus possible to
retrain ProbCons on specific sequence types to obtain parameters
that would be more appropriate for particular alignment tasks.

Our results in comparing different variations of ProbCons
indicate that the two main features that contribute to its accu-

Table 5. Performance of aligners on the SABmark sequence and
structure alignment benchmark

Aligner

Superfamily
(462)

Twilight
zone (236)

Overall
(698)

Time
(mm:ss)fD fM fD fM fD fM

Align-m 44.4 58.9 17.1 43.0 35.2 53.5 56:44
DIALIGN 50.3 42.5 22.5 19.2 41.0 34.6 8:28
CLUSTALW 53.7 38.7 24.8 15.2 43.9 30.8 2:16
MAFFT 54.1 40.0 24.8 16.0 44.2 31.9 7:33
T-Coffee 55.4 41.8 26.4 18.0 45.6 33.7 59:10
MUSCLE 55.9 40.1 27.6 17.5 46.4 33.0 20:42
ProbCons 59.9 45.0 32.1 21.7 50.5 37.1 17:20
ProbCons-ext 59.9 45.3 32.0 22.1 50.5 37.5 23:10

Columns show the average developer (fD) score (equivalent to sum-of-
pairs [SP] score) and modeler (fM) score achieved by each aligner for the
“Superfamily” and “Twilight Zone” sets in the SABmark database. All
scores have been multiplied by 100. The number of sequences in each set
is given in parentheses. Overall numbers for the entire database are re-
ported in addition to the total running time of each aligner for all 698
alignments. The best results in each column are shown in bold.

Table 4. Significance test for differences in PREFAB performance

DIALIGN CLUSTALW T-Coffee MUSCLE MAFFT ProbCons ProbCons-ext

DIALIGN �1.06 � 10�9 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

CLUSTALW �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

T-Coffee �<10�10 �<10�10 �<10�10 �<10�10

MUSCLE +2.3 � 10�9 �<10�10 �<10�10

MAFFT �<10�10 �<10�10

ProbCons �0.031

Entries show the p-value indicating the significance of a difference in performence between two alignment methods as measured using a Friedman rank
test. Values were calculated using Q (SP) scores on all alignments. (+) Method on the left had lower average rank (better performance); (�) Method
on the left had higher average rank (worse performance); parentheses denote (nonsignificant) p-values >0.05.
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racy are the use of maximum expected accuracy as an objective
function and the application of the probabilistic consistency
transformation. The methodology employed in developing the
ProbCons algorithm is straightforward and widely applicable: (1)
specify an appropriate quality measure and (2) maximize its ex-
pected value according to the probability distribution given by
the model. For example, the accuracy measure used in this article
maximizes the expected number of correct matches in an align-
ment; if one is concerned about overprediction of matches, one
may use an alternative objective function that penalizes overpre-
diction of matches and, provided it is easily decomposable, de-
rive the corresponding optimization algorithm. Exploring this
framework provides a novel and exciting direction for future
work in pursuing even higher accuracy alignment approaches.

The principles employed, however, are not unique to se-
quence alignment alone. As an example, consider the related
problem of motif finding among a set of divergent sequences.
Consistency-based approaches have previously been applied to

motif-finding tasks with strong empirical results (Heger et al.
2003). A more principled algorithm based on probabilistic con-
sistency may further increase the sensitivity of motif detection
methods. Comparative gene finding and RNA or protein struc-
tural prediction methods may also benefit from a probabilistic
consistency-based approach.

Methods

The ProbCons algorithm works by (1) computing posterior-
probability matrices, (2) computing expected accuracies for each
pairwise comparison, (3) applying the probabilistic consistency
transformation, (4) computing an expected accuracy guide tree,
and (5) performing progressive alignment. As a default, we also
perform iterative refinement as a post-processing step. In the
subsections that follow, we consider each of these steps in greater
detail, describe the EM training procedure used to obtain param-
eters for the ProbCons HMM, and present a novel technique for
estimating column reliability scores based on the alignment scor-
ing matrices.

1. Posterior probability matrices
Let x and y be two proteins represented as character strings in
which xi is the ith amino acid of x. Consider the pair-HMM given
in Figure 1, where A is the space of all possible x–y alignments. An
alignment a corresponds uniquely to a sequence of state-
emission pairs, 〈s1, o1〉, …, 〈sn, on〉. The probability of a is given by

P�a�x,y� = ��s1���
i=1

n−1

��si → si+1����
i=1

n

��oi�si��,

where �(s) is the initial probability of starting in state s, �(si → si+1)
is the transition probability from si to si+1, and �(oi | si) is the emis-
sion probability for either a single letter or aligner residue pair oi in
the state si.

In the derivation which follows, let a* be the (unknown)
alignment from A that most nearly represents the “true” biologi-
cal alignment of x and y. Ideally, we wish to determine a* based
on the sequence information in x and y alone. To do this we use
the distribution P(A | x, y) to represent our beliefs regarding a*,
i.e., we assume that P(a | x, y) is the probability that an alignment
a is equal to a*.

Let the notation xi ∼ yj ∈ a denote the event that two posi-

Table 6. Significance test for differences in SABmark performance

Align-M DIALIGN CLUSTALW MAFFT T-Coffee MUSCLE ProbCons ProbCons-ext

Align-M �<10�10 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

DIALIGN �<10�10 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10 �<10�10

CLUSTALW �<10�10 �<10�10 �0.02 �0.01 �7.5 � 10�6 �<10�10 �<10�10

MAFFT �<10�10 �<10�10 +(0.083) �1.5 � 10�5 �<10�10 �<10�10 �<10�10

T-Coffee �<10�10 �2.5 � 10�3 +<10�10 +<10�10 �0.052 �<10�10 �<10�10

MUSCLE �<10�10 �1.2 � 10�7 +<10
�10

+1.2 � 10�4 �1.5 � 10�5 �<10�10 �<10�10

ProbCons �<10�10 +<10�10 +<10�10 +<10�10 +<10�10 +<10�10 +6.4 � 10�4

ProbCons-ext �<10�10 +<10�10 +<10�10 +<10�10 +<10�10 +<10�10 +(0.31)

Entries show the p-value indicating the significance of a difference in performance between two alignment methods as measured using a Friedman rank
test. Nonitalicized values above the diagonal were calculated using fD (SP) scores on all alignments, whereas italicized values were computed using fM
scores. (+) Method on the left had lower average rank (better performance); (�) Method on the left had higher average rank (worse performance);
parentheses denote (nonsignificant) p-values >0.05.

Table 7. Performance of ProbCons Variants on SABmark
“Twilight Zone” set

Algorithm c lr Output fD fM
Time

(mm:ss)

1. Viterbi 0 0 Pairwise 27.5 17.2 0:42
2. Posterior 0 0 Pairwise 29.6 18.5 2:54
3. Posterior 1 0 Pairwise 32.5 20.4 3:15
4. Posterior 2 0 Pairwise 33.2 21.0 3:47
5. Posterior 0 0 Multiple 29.1 19.8 2:57
6. Posterior 1 0 Multiple 30.9 20.8 3:17
7. Posterior 2 0 Multiple 31.5 21.3 3:50
8. Posterior 0 100 Multiple 30.6 20.8 4:14
9. Posterior 2 100 Multiple 32.1 21.7 5:50

The first column indicates whether the Viterbi algorithm (highest prob-
ability alignment) or posterior decoding (maximal expected accuracy
alignment) was used. The next two columns indicate c, the number of
iterations of the consistency transformation used, and ir, the number of
rounds of iterative refinement used as post-processing. The fourth col-
umn indicates whether the ProbCons was set to generate all-pairs pair-
wise alignments or consistent multiple alignments. The next two columns
show the average developer (fD) score (equivalent to sum-of-pairs [SP]
score) and modeler (fM) score achieved by each aligner for the “Twilight
Zone” set in the SABmark database. The last column gives the total
running time for each method over all 236 alignments. All scores have
been multiplied by 100. Note that the last row corresponds to the pa-
rameter settings that are the default in the ProbCons program. The best
results in each column are shown in bold.
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tions xi and yj are matched in an alignment a. Formally, the
posterior probability of xi ∼ yj ∈ a* is

P�xi ∼ yj ∈ a*�x,y� = �
a∈A

P�a�x,y�1�xi ∼ yj ∈ a�

where the common indicator notation 1{condition} is used to de-
fine a function that evaluates to 1 whenever condition is true and
0 otherwise. Then, the posterior probability matrix Pxy for the
alignment of x and y is a table of P(xi ∼ yj ∈ a* | x, y) values for
1 � i � |x|, 1 � j � |y|. The ProbCons algorithm begins by calcu-
lating these posterior probability matrices using a modification
of the Forward and Backward algorithms for computing posterior
probabilities in pair-HMMs as described in Durbin et al. (1998).
This computation step takes time O(m2L2), where m is the num-
ber of sequences and L is the length of each sequence.

2. Maximal expected accuracy alignment
Most alignment schemes build an “optimal” pairwise alignment
by finding the highest probability alignment using the Viterbi
algorithm. In this approach, one computes arg maxa P(a | x, y),
which may be alternatively written as arg maxa Ea*[1{a = a*} | x,
y]; that is, the Viterbi algorithm finds the alignment whose prob-
ability of being exactly equal to a* is optimal. When the odds of
recovering the exact correct alignment is low but partially correct
alignments are still useful, this is not necessarily the best choice.

In this work, we explore an alternative strategy that finds
the alignment a that does not maximize the probability of a = a*
but rather tries to guarantee high accuracy for a, which we define
with respect to the alignment a* as

accuracy�a,a*� =
1

min��x�,�y�� �
xi∼yj∈a

1�xi ∼ yj ∈a*�.

During the alignment process, however, a* is not known, so we
instead maximize the expected accuracy of the reported alignment.
Computing this quantity is straightforward since

Ea*�accuracy�a,a*� | x,y� =
�
ã∈A

P�ã�x,y� �
xi∼yj∈a

1�xi ∼ yj ∈ã�

min��x�,�y��

=

�
xi∼yj∈a��ã∈A

P�ã�x,y�1�xi ∼ yj ∈ã��
min��x�,�y��

=
1

min��x�,�y�� �
xi∼yj∈a

P�xi ∼ yj ∈ a*�x,y�.

Using this decomposition, we compute the maximal expected
accuracy alignment by a simple variant of the Needleman–
Wunsch algorithm, where all match/mismatch scores are given
by the posterior probability terms for corresponding letters and
gap penalties are set to zero. This form of alignment bears strong
resemblance to the problem of finding the maximum weight
trace of a matrix (Kececioglu 1993), and a similar scheme is used
to compute final progressive alignments in the T-Coffee program.

3. Probabilistic consistency transformation
In the previous section, we described a method for performing
pairwise sequence alignment of two sequences x and y based on
computing P(xi ∼ yj ∈ a* | x,y) values for all positions in x and y,
and subsequently using these posterior probabilities as match/
mismatch scores in a Needleman–Wunsch-like alignment proce-
dure. In this section we introduce probabilistic consistency, a
method for obtaining more accurate substitution scores when a
third homologous sequence z is available.

One way to use sequence z is to generalize the pair-HMM
given in Figure 1 to a triple-HMM that parameterizes a condi-
tional distribution over three-sequence alignments of x, y, and z,
and similarly generalize the previous formulas for expected ac-
curacy to handle three-way alignments. Such an approach, how-
ever, leads to impractical O(L3) algorithms for computing poste-
rior matrices of sequences of length L. Here, we follow a heuristic
approach that allows us to derive an algorithm with an approxi-
mately O(L2) running time.

For a sequence z, let z(k,k+1) denote the interletter regions (or
gaps) between amino acids k and k + 1 of z for 0 � k � |z| (where
z(0,1) and z(|z|,|z|+1) denote the gaps at the beginning and ends of z).
Generalizing our notation for posterior probabilities of matches,
an alternative estimate for the quality of an xi ∼ yj match is given
by marginalized probability,

P�xi ∼ yj ∈a*�x,y,z� =

�
zk

P�xi ∼ yj ∼ zk ∈ a*�x,y,z� + �
z�k,k+1�

P�xi ∼ yj ∼ z�k,k+1� ∈ a*�x,y,z�,

where a* now refers to a three-sequence alignment of x, y, and z.
We refer to the concept of re-estimating pairwise alignment
match quality scores based on three-sequence information as
probabilistic consistency.

As stated, computing P(xi ∼ yj ∈ a* | x, y, z) values for each
xi–yj pair requires O(L3) time for the Forward and Backward algo-
rithms (given an appropriate three-sequence HMM); to avoid
this, we simplify the computation as follows. First, we heuristi-
cally ignore the second summation over gaps in z to get

�
zk

P�xi ∼ yj ∼ zk ∈ a*�x,y,z�.

Second, we change the inner condition to an equivalent expression,

�
zk

P��xi ∼ zk ∈ a*� ∧ �zk ∼ yj ∈ a*��x,y,z�

Then, we use the chain rule to factorize each inner term of the
summation to obtain

�
zk

P�xi ∼ zk ∈ a*�x,y,z�P�zk ∼ yj ∈ a*�x,y,z,xi ∼ zk ∈ a*�

Finally, we make heuristic independence assumptions to get

�
zk

P�xi ∼ zk ∈ a*�x,z�P�zk ∼ yj ∈ a*�z,y�.

This latter expression still requires O(L3) time to be computed.
Now, however, we transform the Pxz and Pzy matrices into sparse
matrices by discarding all values smaller than a threshold � (by
default, � = 0.01). For alignable sequences, posterior probability
alignment matrices tend to be sparse, with most entries near
zero, so this step is justified. This effectively reduces the proba-
bilistic consistency re-estimation step to sparse matrix multipli-
cation; therefore, Pxy is re-estimated in time O(c2L), where c is the
average number of nonzero elements per row (typically 1 � c � 5
in practice).

With the procedure described above, we can align two se-
quences given information from a third sequence. To align two
sequences x and y given a set of sequences, S, we would ideally
like to estimate P(xi ∼ yj ∈ a* | S). In practice, we use the follow-
ing heuristic decomposition:

1
�S� �z∈S

�
zk

P�xi ∼ zk ∈ a*�x,z�P�zk ∼ yj ∈ a*�z,y�

where we set P(xi ∼ xj | x) to 1 if i = j and 0 otherwise.
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In this sense, the approximate probabilistic consistency cal-
culation may be viewed as a transformation that, given a set of
all-pairs pairwise match quality scores, produces a new set of
all-pairs pairwise match quality scores that have been adjusted to
account for a single intermediate sequence. By iterated applica-
tions of the transformation, then, we can informally approximate
the effect of accounting for more than one intermediate se-
quence at a time. As a default, ProbCons uses two iterated appli-
cations, which works well in practice (see Results).

In the derivations above, it is clear that several unjustified
assumptions were needed in order to obtain an efficiently com-
putable form for probabilistic consistency. In the first step, the
simplification of not considering gapped positions in a sequence
z is problematic. In the fourth step, the independence assump-
tions required for the transformation clearly do not hold for sets
of related sequences. Furthermore, the decomposition of
P(xi ∼ yj ∈ a* | S) into an average over the different intermediate
sequences in S is also not well grounded. Nevertheless, these
methods work well in practice.

As a sanity check, ignoring gapped positions in the first
simplification hurts only when xi is aligned to yj through a gap in
z; for reliably alignable regions in which all sequences are pre-
sent, this has little effect. Averaging P(xi ∼ yj ∈ a* | z) values in
the final step can be interpreted as a linear regression-like
method for predicting P(xi ∼ yj ∈ a* | S) where all inputs are given
identical weight. Finally, to assess the reasonableness of the in-
dependence assumptions used in deriving the factorized form of
probabilistic consistency, we implemented a version of ProbCons
using the full O(L3) consistency algorithm. Because this algo-
rithm is slow, we tested it only on a set of 74 alignments with
at most five sequences and length at most 100 residues from the
Twilight Zone subset of SABmark. The full O(L3) consistency al-
gorithm achieved an average fD score of 0.431 compared to 0.403
when no iterations of approximate probabilistic consistency were
used, 0.422 when one iteration was used, and 0.427 when two
iterations were used. In contrast to the other methods that com-
pleted all tests in under 2 sec, however, the O(L3) method took
nearly 10 min to finish. We decided not to support the O(L3)
version because it is inherently much slower even in the smallest
examples, while it provides only modest improvements on the
Twilight Zone alignments where we tested it.

4. Guide tree computation

Most progressive multiple sequence alignment programs use evo-
lutionary distances estimated from pairwise alignments or k-mer
statistics to build an approximate evolutionary tree via neighbor
joining (Saitou and Nei 1987) or UPGMA (Sneath and Sokal
1973). In contrast, ProbCons does not attempt to build an evo-
lutionarily correct tree but rather uses a greedy heuristic method
reminiscent of UPGMA to construct a tree with high expected
alignment reliability.

Given a set S of sequences to be aligned, denote the expected
accuracy for aligning any two sequences x and y as E(x, y). Ini-
tially, each sequence is placed in its own cluster. Then, the two
clusters x and y with the highest expected accuracy are merged to
form a new cluster xy; we then define the expected accuracy of
aligning xy with any other cluster z as E(x, y)(E(x, z) + E(y, z))/2.
This process is repeated until only a single cluster remains.

Like UPGMA, the guide-tree computation procedure used
here relies on modified arithmetic averaging to estimate the “dis-
tance” of newly created clusters to other clusters. However, the
important distinction is that the computation here has the goal
of finding clusters that can be reliably aligned, i.e., have high

expected accuracy, rather than ones that may appear evolution-
arily closer.

5. Progressive alignment
The final progressive alignment step in ProbCons is a routine
extension of maximal expected accuracy alignment to an un-
weighted sum-of-pairs model. Since the alignments within each
group are fixed, we may ignore matches between sequences in
each group. Thus, for each progressive alignment step, we run a
profile–profile Needleman–Wunsch alignment procedure in
which the score for matching a column containing n1 non-gap
letters to one with n2 non-gap letters is computed by summing
n1n2 values from the corresponding pairwise posterior matrices.
Note that no gap penalties are used in this final step, thus greatly
simplifying the task of profile–profile alignment.

Post-processing: Iterative refinement
While incorporating consistency helps to reduce the chances of
errors during the hierarchical merging of groups of sequences,
the progressive alignment procedure still does not produce opti-
mal alignments with respect to the sum-of-pairs probabilistic
consistency objective function. To improve the alignment, we
employ a randomized iterative improvement strategy (Berger and
Munson 1991).

In this approach, the sequences of the existing multiple
alignment are randomly partitioned into two groups of possibly
unequal size by randomly assigning each sequence to one of the
two groups to be realigned. Subsequently, the same dynamic pro-
gramming procedure used for progressive alignment is employed
to realign the two projected alignments. This refinement proce-
dure can be iterated either for a fixed number of iterations or
until convergence; for simplicity, only the former of these op-
tions is implemented in ProbCons, where 100 rounds of iterative
refinement are applied in the default setting. Because gap penal-
ties are not used during each realignment step, the sum-of-pairs
alignment score is guaranteed to increase monotonically.

Unsupervised EM training
The ProbCons approach to alignment is simple in that the only
parameters in the program are the ones specific to the HMM used
to model the distribution over alignments. If one keeps the emis-
sion probabilities fixed, the HMM in Figure 1 is completely speci-
fied by three parameters, which fully determine the initial state
and transition probabilities: the initial insertion probability �insert,
the insertion start probability �, and the insertion extension prob-
ability �. To train ProbCons via Expectation–Maximization (EM),
then, we applied 20 iterations of the Baum–Welch algorithm on
unaligned BAliBASE sequences, starting from random initial pa-
rameters. The resulting parameters (� = 0.019931, � = 0.79433,
�insert = 0.19598) were used as the default for the program. The
low number of parameters for the probabilistic model here dis-
tinguishes ProbCons from profile-HMM approaches (Durbin et
al. 1998), which have a much richer alignment model but con-
sequently face a tougher training task.

Estimating column reliability
Many applications that make use of protein sequence alignments
need the ability to assess which parts of an alignment are likely to
be correct. Previous approaches to quantifying alignment quality
have included using suboptimal alignments to locate reliable re-
gions of alignments (Vingron and Argos 1990; Chao et al. 1993)
or using a fuzzy “winner-takes-most” version of Needleman–
Wunsch dynamic programming in order to “predict” the prob-
ability that a pair of residues are correctly aligned (Schlosshauer
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and Ohlsson 2002). It is clear that both of these approaches deal
with many of the questions answered by match posterior prob-
abilities (Miyazawa 1995, Kschischo and Lässing 2000), which
represent the likelihood that specific pairs of residues are aligned.

In the multiple alignment case, one possible generalization
is to estimate the expected proportion of correct pairwise
matches in each column of the alignment. Given a set C of the
aligned residues in a particular column, this expected proportion
of correct pairwise matches �(C) is given by

��C� = ��C�

2 �−1

�
xi,yj∈C

x	y

P�xi ∼ yj ∈ a*�S�

which we approximate using the pairwise posterior matrices cal-
culated in Step 1. Though this is certainly not the only possible
measure of column reliability based on posterior probabilities, we
leave extensions of this method as future work.
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