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Microarrays Revisited

In the last lecture, the guest lecturer, Tim Hughes, talked about microar-
rays and gene expression. Microarray is basically a two dimensional array,
in which each gene or a set of genes are attached to. Using a microarray,
we can measure the expression of a certain gene under various circumstances.

Note that a gene is not always expressed. It is sometimes on and some-
times off, depending on various circumstances such as the type of a cell, the
external conditions, or the division of a cell. The exception is a housekeeping
gene, which is always on under any circumstance, since it is needed for the
maintenance of the cell.

After doing a series of microarray experiments, we get the result of two
dimensional array, where each row represents a gene and each column repre-
sents each experiment. For example, we can measure the gene expressions of
various types of cells. In these experiments, each column represents the type
of a cell: for example, brain cell, liver cell, or cancer cell. We could also mea-
sure the gene expressions over time line. For example, the gene expressions
of an embryo are changing over time as the embryo develops. In this case,
the column of the array represents time line, so we can see in which period
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each gene is expressed.

Each entry of the array shows the expression of a gene for each experi-
ment. When a gene is expressed, mRNA of a cell binds to the DNA of the
microarray. In a microarray, many copies of the same DNAs are attached to
each location. So, if there are many mRNAs that bind to the gene, then the
microarray shows high level of expression.

There are two main types of microarrays: 1-channel microarray (e.g.
Affymetrix) and 2-channel microarray (e.g. cDNA microarray). In 1-channel
microarray, we only prepare the test cell. The result shows how much each
gene is expressed by the test cell. Usually, greener image shows higher level
of gene expression.

In 2-channel microarray, we prepare both the control cell and the test cell.
The control cell is usually a mix of all kinds of cell tissues. Then, mRNA
of the control sample is dyed green, and the mRNA of the test cell is dyed
red. If a gene is more expressed in the control sample than the test cell,
then the microarray result shows green. If the gene is more expressed in the
test cell than in the control sample, then the microarray shows read. If the
gene is equally expressed, then the result is yellow. After getting the result
of microarray experiment, we normalize the result to make it comparable.

Using the normalized microarray data, we can make a cluster of genes
that have a similar expression pattern or similar gene functions. In another
words, we investigate which genes work together. There are many techniques
for clustering such as principal component analysis (PCA), independent com-
ponent analysis (ICA), and Bayesian networks. One way to measure the
correlation of two genes is Pearson correlation, which is∑n

i=1(Xi − X̄)(Yi − Ȳ )

(n− 1)SXSY

, where X and Y are the microarray data distribution of two genes, and SX

and SY are variations of X and Y , respectively.
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Gibbs sampling for motif finding

In the promoter of a gene, there is a transcription factor binding site (TFBS),
which binds the transcription factors when the gene is expressed. A tran-
scription factor is a protein, and without its binding, RNA polymerase does
not transcribe DNA. Since a specific transcription factor binds a specific
binding site, it is very useful to find the binding sites in the promoter.

One way to find the binding site is phylogenetic footprinting. Since func-
tional sequences are usually well conserved than nonfunctional sequences, we
could predict the binding site using footprinting. (This will be covered in the
next lecture.) In this lecture, we focus on finding regulatory motifs.

Since many genes usually participate in the same process at the same
time, many genes tend to be co-expressed. Hence, it is believed that a short
motif, which is widespread among many genes, may have an important role
to bind the transcription factors.

Regulatory motifs usually have short fixed length. They are repetitive
even in a single gene, but very variable. Thus, we want find a pattern rather
than a fixed sequence. For example, our target motif would be like

G C *
T
A

T
A

G
T C.

One solution to find a motif is Gibbs sampling. Gibbs sampling is basi-
cally a special case of Monte-Carlo Markov Chain method. Suppose we want
to find a motif of length K given t DNA sequences, X1, X2, . . . , Xt. Then,
the Gibbs sampling algorithm is an iterative algorithm described as follows:

1. After each iteration, we are given t locations a1, . . . , at for X1, . . . , Xt,
respectively. Let xj be the substring of Xi starting at ai.

2. We randomly choose one gene Xi from X1, . . . , Xt.

3. We calculate a 4×K position weight matrix (PWM) from the remain-
ing t − 1 sequences, X1, . . . , Xi−1, Xi+1, . . . , Xt. The each entry Ma,b of the
PWM indicates the frequency of the nucleotide a at the bth position of xj’s.

4. We also calculate the background probability for each nucleotide. Let
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Xj − xj be the subsequence of Xi after removing xi. The background prob-
ability, Ba, is the proportion of the occurrences of nucleotide a in all t sub-
sequences X1 − x1, . . . , Xt − xt.

5. Now, we are ready to pick a new K long substring from Xi based on
the PWM and the background probability. For each K long substring, yj,
starting at j of Xi, we calculate two probabilities, the probability from the
PWM and the probability from the background probability. For example,
if yj = ACGT , then we calculate P (yj|motif) = MA,1MC,2MG,3MT,4 and

P (yj|Background) = BABCBGBT . Then, we calculate
P (yj |motif)

P (yj |Background)
for

each yj.

6. We select a position k in Xi based on the odds ratio of
P (yj |motif)

P (yj |Background)
.

Hence, if a position p has a higher value of
P (yj |motif)

P (yj |Background)
, then p is more

likely to be chosen as k. We will use a1, . . . , ai−1, k, ai+1, . . . , at for the next
iteration.

The Gibbs sampling algorithm is very similar to the expectation maxi-
mization (EM) algorithm. If we run the Gibbs sampling algorithm infinitely,
then it guarantees that we will find the best motif. We normally runs the
Gibbs sampling algorithm for a certain number of steps.

In the Gibbs sampling algorithm, we choose a new motif based on the
PWM and the background probability. So, if one entry of the PWM is
zero, then we never choose a motif that includes the entry. For example, if
MA,1 = 0, then any motif starting with A is never chosen. We do not want
this kind of situation, since even though the motif never occurs according to
the current PWM, it may still have a chance for next PWM. Thus, we give a
very small probability rather than zero when some entry of the PWM is zero.
This is called pseudocounts, which is used in the Gibbs sampling algorithm
by Lawrence et al [1]. GibbsMotifSampler is a tool using the Gibbs sampling
algorithm currently available on the web, and MEME(Multiple EM for Motif
Elicitation) [3] is a tool using the EM algorithm.

One common problem of the Gibbs sampling algorithm is that we of-
ten encounter the poly-A stretch (AAA. . .AAA), which is common in genes.
To avoid this problem, we employ multi-order Markov model for the back-
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ground probability. BioProspector [4] uses zero to third-order Markov back-
ground models, and BioProspector II uses 7th order Markov background
models. CompareProspector [5] uses comparative genomic information and
does the Gibbs sampling search with biases towards sequences conserved
across species.
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