
CSC2427 (Winter 2006)

Algorithms in Molecular Biology (Prof. M. Brudno)

Lecture Notes — January 18, 2006

Part I: Sequence Alignment

Scribe: Ulrich Germann

c© 2006 Ulrich Germann

1 Introduction

Current DNA sequencing methods can accurately determine only a few hundred ‘letters’ (bases)
off each end of a contiguous stretch of DNA.1 It is therefore impossible to read a complete
genome all at once. The human genome, for example, consists of about 3 billion base pairs —
in contrast to about 500 that can be read at a time. The Whole Genome Shotgun Sequencing

Method addresses this problem by randomly cutting multiple samples of identical DNA into small
chunks, each of which is sequenced separately.

If we were to cut up only a single DNA sample into many pieces, there would be no way of
reconstructing the original sequence from the individual pieces. By cutting up multiple copies
of the sequence in different ways, we can reconstruct the original sequence by aligning segments
with overlapping reads, as illustrated in Fig. 1.

Reads are asymmetric: They have an ‘outside’ end (where the DNA has been cut) and an
‘inside’ end (where the chunk of DNA continues but can’t be read).2 Reads can overlap in three
ways (‘· · · ’ indicates the inside end of a read):

1. The outside end of one read overlaps with the inside end of the other:

GTACCCATTGAACGGTAG · · ·

ACGGTAGTAAAGTT · · ·

· · · GTACCCATTGAACGGTAG

· · · ACGGTAGTAAAGTT

1More precisely, DNA sequencing always proceeds from the 5′ (“five prime”) end of a single strain of DNA
a to its 3′ end. Since genome information is chemically encoded in two complementary strands of DNA that
are arranged ‘head to toe’ in the double helix, we can simplify our language by assuming a single sequence of
letters (bases) that is read from both ends. Reading a sequence in reverse order technically means forming the
complement (substitute A for T and vice versa, and C for G and vice versa) and reading that complement in
reverse order. The limitation on the number of letters that can be read at a time results from the decreasing
relative distance between adjacent positions as the DNA chain gets longer: 501

500
≪

51

50
(comment by Prof. Steipe

in class; see also Wikipedia:DNA sequencing).
2Another way to look at it is to say that since we always read from the outside in, but we don’t know which

end we are reading from, we have to consider each sequence of letters in both read directions, from left to right
and from right to left.

1

http://en.wikipedia.org/wiki/DNA_sequencing
http://en.wikipedia.org/wiki/Shotgun_sequencing
http://en.wikipedia.org/wiki/5%27_end
http://en.wikipedia.org/wiki/DNA_sequencing#Large-scale_sequencing_strategies

Figure 1: The Whole Genome Shotgun Method: Multiple identical DNA samples are randomly
cut into small pieces (I), which are sequenced individually, resulting in a set of reads (II). By
looking for overlaps between reads, we can reconstruct the originial DNA sequence (III).

2. The two ‘outside’ ends of the reads overlap.

· · · GTACCCATTGAACGGTAG

ACGGTAGTAAAGTTTCC · · ·

3. The two ‘inside’ ends of the reads overlap:

GTACCCATTGAACGGTAG · · ·

· · · ACGGTAGTAAAGTT

2 Sequence assembly as a Hamiltonian Path Problem

2.1 The Shortest Common Superstring Problem

DNA sequence assembly can be expressed as a variant of the problem of finding the shortest

common superstring (SCS) for a set of strings (Kececioglu & Myers, 1995). By casting the
problem this way, we assume that the shortest sequence hypothesis is the correct one, which is
not guaranteed but generally works well as a rule of thumb in practice. Given a set S of strings
(the reads), we try to find the shortest string that contains all the strings in S. For example
given the set S = { AABBA, BABAA, BAAAA, AAABA, ABBAB }, the SCS is AABBABAAAABA with
12 letters (in contrast to 25 letters if we simply concatenate all strings). We can reduce the SCS
problem to a Hamiltonian path problem in a directed graph as follows.

Each string si in S is represented by a vertex vi. Each vertex is connected with all the
other vertices by weighted, directed edges eij , whose weight wij is given by the formula wij =
length(si) + length(sj) − length(overlap(si, sj)). For example, the cost of going from the vertex
representing BABAA to the vertex representing BAAAA is 5 + 5 − 3 = 7 — the shortest string that
contains both BABAA and BAAAA is 7 characters long (BABAAAA). The entire search space looks

2

http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK5/NODE209.HTM
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Graph_(mathematics)

like this:

AABBA

ABBAB BABAA

AAABA BAAAA

8

8

7

10

7

8

9
10

10

6

7

9

8

8

9

9

8
888

Figure 2: Search graph for the Shortest common superstring problem. Edge weights are given by
the length of simple concatenation minus the number of letters saved by overlap. The shortest
path through the graph that visits each vertex exactly once (Hamiltonian Path) represents the
shortest common superstring.

The walk through the graph that visits every node at least once while accumulating the
smallest number of points along the edges corresponds to the shortest superstring of the set of
strings.

2.2 Necessary adaptations for sequence assembly

For DNA sequence assembly, we have to make a few modifications. The first is that we allow
edges only between vertices denoting segments with sufficient overlap. Small overlaps should be
ignored, because there’s a good chance that they are accidental — with a vocabulary of only
four letters, there’s at least3 a 25% chance of accidental overlap of one letter, a chance of 1

16
for

an overlap of two letters, and so forth. At the same time, we want to allow small differences
between overlapping segments, because the methods with which we obtain those reads are not
perfect and sequencing errors do occur. With some knowledge of how often these errors occur,
we can develop probabilistic models that determine the probability that two sequences overlap.
For the remainder of this presentation we assume that all sequencing errors have been accounted
for and corrected, so that we are dealing with error-free reads.

Secondly, because real-life DNA contains repetitions of often considerable length, we cannot
require that each node be visited exactly once. A valid solution may require us to pass through
a node multiple times.

Thirdly, we have to represent the problem as a bidirected graph instead of a directed one. The
reason is that we don’t know the spatial orientation of the reads. They may represent a stretch
of DNA in order (left–to–right), or in reverse order (right–to–left), leading to the three forms
of overlaps mentioned earlier. Unlike the case of the shortest common superstring, the overlap
relation for reads is symmetrical. If A overlaps with B, then B overlaps with A when both are
read in reverse order. It might be tempting to use directed edges to indicate read direction,
but this does not work (nor do undirected edges). Imagine the following situation involving five
reads A, B, C, D, E: A overlaps with B, B with C and E, and C with D (all in the same read
direction only), and D overlaps with the reverse (only) of B, as shown below on the left. If we
use directed edges to indicate read direction, the corresponding graph looks like like the one on
the right.

3This is the case if letter occurrences are uniformly distributed.

3

A B E
C

D

A B

E

C

D

This graph correctly allows the sequence A–B–C–D–B. This sequence is valid because the re-
verse of B may indeed occur independently of the B somewhere in the underlying DNA sequence.
Unfortunately, the graph fails to rule out the sequence A–B–C–D–B–E, which is invalid because
it uses the same end of B to connect D and E, which would be equivalent to a fork in the DNA
sequence.

Bidirected graphs address this dilemma by enforcing directionality through instead of between

nodes. They are easiest to understand by imagining that each node has two ends, say, left (L) and
right (R). Edges can be traveled in either direction but always connect two specific ends. Thus,
we have three types of edges: L–L, R–R, and L–R/R–L. Valid paths are only those that enter
each node on one end and leave it on the other. If we use outward–pointing arrows (/)
to indicate connection at the left end of the node and inward–pointing arrows (/) for
attachment to the right end, we obtain the following graph.

A B

E

C

D

Since the path from D through B enters B on a connection, it has to leave B on a
connection, which rules out the sequence A–B–C–D–B–E.

2.3 Graph simplifications

Since the Hamiltonian path problem is NP-complete, it is highly desirable to simplify the graph
as much as possible. Myers (1995) lists three ways of simplifying overlap graphs:

1. Removal of vertices representing reads that are fully contained in other reads.

2. Transitive edge reduction. Consider the following situation.

•
x

•
y

•
z

The path x → y → z and the edge x → z encode exactly the same information. We can
therefore remove the edge x → z without losing the ability to represent the underlying
overlap.

4

AAA

BBA

ABA

AAB

BBB

BAA

BAB

ABB

Figure 3: A 3-dimensional de Bruijn graph over the vocabulary {A, B}.

3. Collapsing vertex chains. A vertex chain is a sequence of vertices with ‘in’ and ‘out’
degree of 1. → x → y → z →. We can replace such chains by single edges labeled with the
concatenation of the individual edge labels. Since the original vertex chain was the only
way to reach the ‘internal’ vertices, we also know that this new edge must be contained in
the final solution at least once.

3 Sequence assembly as an Eulerian Path Problem

Pevzner et al. (2001) cast the problem of sequence assembly as that of finding an Eulerian

Superpath through a k-dimensional de Bruijn graph (Fig. 3). A k–dimensional de Bruijn Graph
over a vocabulary V consists of a set of |V |k vertices representing distinct k–tuples over V , and
directed edges between them representing (k + 1)–tuples. That is, two vertices are connected
by a directed graph if the last k − 1 elements of the tuple represented by the first vertex are
identical to the first k − 1 elements of the second vertex.

An Eulerian path of a graph is a path (sequence of adjacent edges) that contains every
edge exactly once. Such a path does not exist for all graphs. However, any connected graph
can be transformed into an Eulerian graph (i.e., a graph for which an Eulerian path exits)
by allowing multiple parallel edges wherever an edge is visited multiple times by a respective
Chinese Postman Path (CPP). A CPP through a graph is a minimal path that visits each edge
at least once.

A superpath for a set of paths P is a path that contains all elements of P as subpaths. An
Eulerian superpath is a superpath that contains each edge exactly once.

Pevzner et al.’s sequence alignment method proceeds as follows. First, a de Bruijn-like graph
G0 is constructed that contains an edge for each (k + 1)–tuple that occurs at least once in any
of the reads. Every read in the original data set then corresponds to a path pi ∈ P0 through G0.
P is the set of all paths corresponding observed reads. An Eulerian superpath for (G0,P0) gives
us the best hypothesis of the original DNA sequence. (To be precise, what we are looking for is
a Chinese Postman superpath, because some edges may have to be used multiple times to cover
all edges in the graph.)

To simplify the problem, G0 and P0 are subject to a series of simplifying equivalent transfor-

mations

(G0,P0) → (G1,P1) → · · · → (Gk,Pk)
In this context a transformation is equivalent if there is a one-to-one mapping between the el-
ements of Pi and Pi+1 and between superpaths for (G0,P0) and superpaths for (Gi+1,Pi+1).
Graph and path set simplification is accomplished by two means.

x, y–detachment Let x and y be adjacent, directed edges such that x leads from vertex vs to
vertex vm, and y from vm and to vertex ve. We introduce a new edge z connecting vs with

5

http://en.wikipedia.org/wiki/De_Bruijn_graph
http://mathworld.wolfram.com/ConnectedGraph.html
http://en.wikipedia.org/wiki/Chinese_postman_problem

ve and replace all occurrences of x, y with z in all paths ∈ P . If the vm has ‘in’ degree 1,
i.e., x is the only edge leading to it, we also replace all occurrences of initial y in all paths
∈ P starting with y. Analogously, if vm has ‘out’ degree 1, i.e., y is the only edge starting
at vm, we also replace all occurrences of final x in all paths ∈ P that end with x. If x and
y are not contained in any path any more, we remove them. (Note that if vm has ‘in’ or
‘out’ degree > 1, some instances of initial y or final x may be left.) Since we reduce the
number of edges in the respective paths with each detachment, this procedure converges in
the ideal case to a graph where each path (representing a read) is represented by a single
edge, and the Chinese Postman superpath problem has been reduced to a regular Chinese
Postman path problem.

x-cut In cases that cannot be resolved by the procedure described above, path–initial or –final
occurrences of an edge x can be ‘cut’ from the paths in P if the respective source vertex
v→x has ‘out’ degree 1 and the destination vertex vx→ ‘in’ degree 1. In other words, x

is the only edge starting at v→x and the only edge ending in vx→. In this case, the all
path–initial or –final occurrences of x are removed from the paths in P .

There are no guarantees that this approach actually works under all circumstances, although it
seems to work in practice. Two questions in particular remain open.

1. What about read direction?

2. Is the detour via the de Bruijn graph with subsequent simplification really necessary?
Can’t we build the final graph directly?

As for the first issue, the description in Pevzner et al. (2001:9751) mentions it only in passing:
The authors simply assume that the set of reads “S contains a complement of every read and
that the de Bruijn graph can be partitioned into two subgraphs (the “canonical” one and its
reverse complement)” but do not provide any procedure for accomplishing this subdivision.

As for second question, string graphs (Myers, 2005) provide a more direct implementation of
the central idea of the Eulerian approach, which is to represent reads as paths in the graphs, not
vertices.

4 String graphs

String graphs are constructed as follows. First, all reads that are completely contained in other
reads (in practice about 40%) are filtered out. They are ignored in graph construction because
they do not represent any information that is not contained in the longer reads that contain
them.

For each of the remaining reads ri, two vertices vri.B and vri.E are established in the graph,
corresponding to the two ends of the read. Which end corresponds to which vertex is an arbitrary
decision. Each overlap between reads is represented by two labeled, directed edges. These edges
reach from the overlap–adjacent end of each read to the ‘far’ end of the respective other read
and are labeled with the non-overlapping part of the underlying read. Figure 4 illustrates the
procedure.

Every path in the resulting graph now represents a partial DNA sequence hypothesis that is
consistent with the observed reads. Any path that visits at least one of the two nodes correspond-
ing to each read at least once constitutes a valid DNA sequence hypothesis. Every hypothesis is
encoded twice: once in forward direction, and once in the reverse direction.

4.1 Graph simplification

We now simplify the graph by transitive edge reduction and by collapsing chains of vertices with
‘in’ and ‘out’ degree 1 into single edges, as described earlier in Sec. 2.3.

6

•
vf.B

•
vf.E

•
vg.B

• vg.E
f[o.f.b, : 0]

g[o.g.e : g.len]|
0

|
o.f.b

|
o.f.e

=f.len

|
0=o.g.b

|
o.g.e

|
g.len

•
vf.B

•
vf.E

•vg.B •
vg.E

g[o.g.b, : 0]

f[o.f.e : f.len]

|
0=o.f.b

|
o.f.e

|
f.len

|
0

|
o.g.b

|
o.g.e

=g.len

•
vf.B

•
vf.E

•
vg.E

• vg.B
f[o.f.b, : 0]

g[o.g.e : 0]|
o.f.b

|
o.f.e

=f.len

|
0

|
o.g.b

=g.len

|
o.g.e

|
0

•
vf.B

•
vf.E

•vg.E •
vg.B

g[g.len, : o.g.b]

f[o.f.e : f.len]

|
0=o.f.b

|
o.f.e

|
f.len

|
g.len

|
o.g.b

|
0=o.g.e

Figure 4: String graph construction. Each read f is represented by a vertex pair (vf.B, vf.E).
The index notation f [i : k] indicates substrings running from index position i up to (or down
to, if k < i) and including k. f.len is the length of the read f . o.f.b marks the position where
the overlap starts in f , o.f.e its end. For each overlap, two edges are added, going from the
overlap–adjacent end of each read to the ‘far’ end of the respective other. There figure shows
how edges are added for each of the four ways in which reads can overlap; the first two scenarios
are equivalent. Dashed arrows show read direction, and solid arrows represent directed edges.
The overlapping region of the reads is represented by the gray area.

4.2 Recasting into a Hamiltonian Path Problem

We cannot use the resulting graph directly for sequence assembly. Each read is represented by
two vertices, at least one of which must be visited at least once by the resulting path. We can
transform the problem into a Hamiltonian problem by collapsing the two vertices corresponding
to the beginning and the end of each read into one and using bidirected edges (as described
in Sec. 2.2) to keep track of which vertex the edge lead to or originated from in the original
graph. The advantage of Myers’s method graph construction over the original formulation of
the sequence alignment problem as a Hamiltonian path problem is that the resulting graphs are
much simpler and leaner (“two to three orders of magnitude fewer vertices and edges”, according
to Myers, 2005), and therefore computationally much less expensive to search.

7

4.3 Sequence alignment as a network flow problem

We said earlier that if an edge is the result of collapsing a vertex chain into a single edge, we know
that it must be use at least once in the final solution. We can also establish probabilistic upper
bounds on the number of times we expect to traverse each edge. For this purpose, we model the
‘arrival’ of reads as a Poisson process. In other words, we determine the average density (arrival
rate) or reads per DNA segment length. Since we don’t know the length of the genome, we use
bootstrapping procedure to estimate this quantity (for details see Sec. 4 in Myers, 2005). Given
an edge with a certain length ∆ and the number of reads n that are contained in the edge label,
we can compare the probability having as many reads as we have observed under the hypothesis
that the underlying sequence occurs only once with the probability of our observation under the
hypothesis that the underlying sequence is a repeat. Suppose, for example, that we encounter a
new read every 200 base pairs. Then, if we have 3 reads matching an edge of label length 1000,
the respective sequence is most likely unique. If we observe, on the other hand, 10 matching
reads, the respective sequence most likely occurs more than once. Myers (2005) distinguishes
only singletons from multiply occurring sequences but does not estimate how often individual
repeats occur.

The sequence alignment problem can then be cast as a generalized Eulerian tour problem
(visit every edge at least m ≥ 0 and at most n ≥ 1 times, where m and n are edge-specific) and
solved via Integer Programming techniques, in particular network flow analysis.

References

Kececioglu, J. D. & E. W. Myers. 1995. “Combinatorial algorithms for dna sequence assembly.”
Algorithmica, 13:7–51.

Myers, Eugene W. 1995. “Toward simplifying and accurately formulating fragment assembly.”
Journal of Computational Biology, 2(2):275–290.

Myers, Eugene W. 2005. “The fragment assembly string graph.” Bioinformatics, 21(2):ii79–ii85.

Pevzner, Pavel A., Haixu Tang, & Michael S. Waterman. 2001. “An eulerian path approach to
dna fragment assembly.” Proceedings of the National Academy of Sciences of the United States

of America, 98(17):9748–9753.

8

http://en.wikipedia.org/wiki/Integer_programming.html
http://en.wikipedia.org/wiki/Network_flow.html

	Introduction
	Sequence assembly as a Hamiltonian Path Problem
	The Shortest Common Superstring Problem
	Necessary adaptations for sequence assembly
	Graph simplifications

	Sequence assembly as an Eulerian Path Problem
	String graphs
	Graph simplification
	Recasting into a Hamiltonian Path Problem
	Sequence alignment as a network flow problem

