
CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

CS 2427 - Algorithms in Molecular Biology

Lecture #6b: 27 January 2006

Lecturer: Michael Brudno

Scribe Notes by: Graham Taylor

1 Sequence comparison

Consider the following problem. Someone gives you two arbitrary sequences (genomic or protein).
They differ not just in evolutionary mutations, but also could have insertions/deletions. Biologists
are often interested in comparing these sequences. Defining a method to measure similarity between
sequences is a first step towards more complex tasks such as sequence alignment (discussed below).
Before we describe some methods of comparison, it is essential to distinguish between what is a
subsequence and what is a substring.

Definition A string v is a substring of a string u if u = u′vu′′ for some prefix u′ and suffix u′′.

Definition A subsequence is any string that be obtained by deleting zero or more symbols from
a given string.

The difference between the two is that a substring is contiguous while a subsequence need not
be. The latter allows us to account for insertions and deletions in the string.

Example Consider the string ACTATTAC.

• ACT, CTAT, and ATTAC are substrings (and subsequences)

• ATA, CAAC, and ATTT are subsequences but not substrings

If we are given two strings of different length, say ACTAAGT & ACACGT, how might they be
compared?

Two approaches to consider are:

1. Compare substrings. We have methods of finding the longest common substring (typically
done by using suffix trees) but this method will overlook insertions and deletions.

2. Compare subsequences. But how do we find the longest common subsequence?

1

CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

1.1 Finding the longest common subsequence (LCS)

One method of comparing two strings is by first identifying their longest common subsequence.
Fist we will see how to solve the LCS problem, and then this approach will be extended to the
more general sequence alignment problem. To find a LCS, we employ a technique called “dynamic
programming”. This is a method for reducing the runtime of algorithms exhibiting the properties
of overlapping subproblems and optimal substructure. What this means is that we can break a
larger problem into subproblems, find the optimal solution to these subproblems, and then assemble
these solutions into a solution for the overall problem.

Dynamic programming stores its work in a matrix, M(i, j) which is defined by a recursion and
a set of initial values. The value of M(i, j) is the length of the longest common subsequence that
uses the first i letters of sequence 1 and first j letters of sequence 2. M(i, j) can be computed
iteratively, as follows

M(i, j) = max (M(i− 1, j),M(i, j − 1),M(i − 1, j − 1) + (Ai == Bj)) .

The last term means we increase the value of the longest common subsequence by 1 if the
sequences have the same letter at position i and j, respectively. If we wish to reassemble the actual
LCS, and not just track length, we must also store pointers to the matrix element from which each
matrix element was computed.

Example Find the LCS of the strings ACACGT and ACTAAGT.
We define M(i, k) = 0∀k < 1andM(k, j) = 0∀k < 1. We then begin applying the recursion.

M(1, 1) = max
(

M(0, 1),M(1, 0),M(0, 0) + (1)
)

= 1 (A(1) = B(1))

M(1, 2) = max
(

M(0, 2),M(1, 1),M(0, 1) + (0)
)

= 1 (A(1) 6= B(2))

M(2, 1) = max
(

M(1, 1),M(2, 0),M(1, 0) + (0)
)

= 1 (A(2) 6= B(1))

M(2, 2) = max
(

M(1, 2),M(2, 1),M(1, 1) + (1)
)

= 2 (A(2) = B(2))

and so on. Once we have the values of cell M(i, j)’s “up”, “right”, and “up-right” neighbours, we
can fill in its value. We continue recursively until the matrix is filled:

0 A C T A A G T

A ↖1 1 1 1 1 1 1

C 1 ↖2 ←2 2 2 2 2

A 1 2 2 ↖3 3 3 3

C 1 2 2 3 ↖3 3 3

G 1 2 2 3 3 ↖4 4

T 1 2 3 3 3 4 ↖5
Note that the elements corresponding to the max above have been underlined. These can be

stored as pointers to step back through the matrix and reconstruct the LCS. The length of the LCS
is given by the bottom-left element, M(m,n). In this example, the LCS has length 5. It can be
reconstructed by following the pointers backward, from M(m,n). These are indicated by arrows
in the figure above. From this reconstruction, we see that the LCS is ACAGT.

Note that the diagonal movements to cells i, j where A(i) = B(j) correspond to elements in the
LCS. Diagonal movements to cells i, j where A(i) 6= B(j) are not included in the LCS. Horizontal
or vertical movements correspond to skipping over elements (we will refer to these later as gaps).

2

CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

These gaps are necessary for us to process strings of different length. Note that in some cases,
there may be multiple options for the pointers (when two or three neighbouring elements have the
same value). In this case, an alternative LCS may be identified, but it will have the same length.

So far, we have ignored the value of mismatches, insertions and deletions. How can we account
for these?

1.2 Sequence alignment

Note that there are three ways of arriving at a value for M(i, j) (through the three terms in the
maximum, above). We may take the final term, M(i − 1, j − 1) + (Ai == Bj), which corresponds
to N(Ai, Bj) matches. The other two correspond to “gaps”, when an element in sequence A is not
matched to an element in sequence B (or vice-versa). If the term M(i − 1, j) is maximum, this
corresponds to a gap in sequence A and if the term M(i, j − 1) is maximum, this corresponds to a
gap in sequence B.

An alignment of two sequences A and B is an arrangement by position where both can be
padded by gap symbols, and the length of both, counting the gap symbols is the same.

Example Given the sequence AGCACACA and ACACACTA, two possible alignments (out of
many) are:

AGCACAC-A or AG-CACACA

A-CACACTA ACACACT-A

The sequence alignment specifies a way of transforming sequence A into B and vice-versa
through insertions, deletions and replacements. The optimal global alignment is one which mini-
mizes the total cost of transforming A into B, where each operation has some cost associated with
it. While there are many ways to define the cost assignment, one simple approach is to consider
the Jukes-Cantor model (discussed in Lecture 3).

1.3 Scoring matrices

Our task is to assign a score to

• matches,

• mismatches,

• and gaps.

Let us consider first the case of scoring matches and mismatches for genomic sequences. A
scoring matrix for an alphabet Σ with elements S(i, j) can be built such that a high score is
assigned if i = j (corresponding to a match) and low score if i 6= j. The construction of S is
statistically motivated. Given a gap-free alignment, we have two potential hypotheses for the
alignment: Homologous (alignment because the sequences are alike because of shared ancestry)
and Random.

The score is defined as the log-odds of the alignment (data) given the Homologous hypothesis
and the alignment (data) given the Random hypothesis. Assuming independent sites and the

3

CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

Jukes-Cantor model for the former hypothesis, and independent sites and equal frequencies for all
base pairs in the latter hypothesis, the log-odds has the form

log
P (data|H)

P (data|R)
= a log

1− p

1/4
+ d log

p

3/4
,

where a is the number of agreements (matches), d is the number of disagreements (mismatches),
and p = 3

4
(1− e−8αt) is the probability, from the Jukes-Cantor model, that an observed nucleotide

has changed after some time t. The parameter αt is the Jukes-Cantor distance. (For the derivation
and more details, see Speed’s lecture notes on the course webpage).

Since p < 3

4
, log(p

3/4
), and log(1−p

1/4
) > 0, we can rewrite the score as

S = a × σ + d × (−µ), where σ is the score for a match and −µ is the score (penalty) for
a mismatch. Since sites are treated independently, we can look at each pair of elements in the
alignment one at a time, and consider its score, which can be expressed in matrix form, S(i, j), and
dependent on the parameters αt (Fig. 1). The off-diagonal elements have identical scores since the
Jukes-Cantor model assumes that every nucleotide can mutate into another with equal probability
(a similar argument is made for the diagonals). If we had used a more complex (and realistic)
model, then each element could be different.

A C G T

A 4 -2 -2 -2

C -2 4 -2 -2

G -2 -2 4 -2

T -2 -2 -2 4

Figure 1: Similarity matrix example

The elements of the log-odds score matrix are usually positive on the diagonal and negative off
the diagonal. This is not always the case. We note that in the Jukes-Cantor model, the parameter
αt is a distance, whereas the score S(i, j) is a similarity. S(i, j) is also known as a similarity matrix.
While we have presented one way of generating a similarity matrix, many other matrices, based on
other principles, do exist.

For simplicity, we will assign a constant penalty of G = −5 to a gap. So we can see that
longer gaps will be penalized more (by a constant amount per gapped element), but we do not
distinguish, in terms of penalty, between opening a new gap and extending an existing gap. We may
want to break down the penalty such that opening a gap is penalized more than simply extending
an existing gap. This will be explored in a future lecture.

To implement this simple scoring assignment, we can update our equation for M(i, j) as follows:

M(i, j) = max (M(i− 1, j) + G,M(i, j − 1) + G,M(i − 1, j − 1) + S(Ai, Bj)) .

While dynamic programming is used for many problems in computer science, Needleman and
Wunsch in 1970 were the first to apply this technique to sequence alignment and thus the above
recurrence is known as the Needleman-Wunsch algorithm. The first term in the max expression
above corresponds to aligning sequence A to a gap while the second term corresponds aligning
sequence B to a gap. The constant gap penalty, G, is given to each gap in the alignment. The

4

CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

third term corresponds to a match (or mismatch) which is scored according to the similarity matrix,
S. Note the difference between the LCS dynamic programming algorithm when we added 1 only
when we had a match. Now we can choose to mismatch, applying the mismatch score for two
elements when it is more cost-effective than “gapping”.

Example Consider the alignment :
AG-CACACA

ACACACT-A

The first, fourth, fifth, sixth and ninth pairs in the alignment correspond to choosing the third
term in the max expression above (a match).
The second, and seventh pairs in the alignment correspond to choosing the third term (a mis-
match).
The third pair corresponds to choosing the second term (a gap in sequence A).
The eighth pair corresponds to choosing the first term (a gap in sequence B).

1.4 Computational concerns

Consider the pseudo-code (Matlab notation!), below, for filling the matrix M . Assume M is
initialized to zeros and S is in memory.

for i=1:m

for j=1:n

%Returns both the maximum value and the index (1,2,3) of the maximum element

[M(i,j),ind] = max (M(i-1,j)+G, M(i,j-1)+G, M(i-1,j-1) + S(A_i,B_j))

if ind == 1

Pointer(i,j) = (i-1,j)

elseif ind == 2

Pointer(i,j) = (i,j-1)

else

Pointer(i,j) = (i-1,j-1)

end

end

end

Here we see that the matrix is filled in row-by-row. It could also be computed column-by-
column. However, there is an alternative which is advantageous in the case of aligning very long
sequences. If we fill the matrix along the diagonal, note that the computation of an element in
the diagonal does not rely on any elements in that same diagonal – only elements from previous
diagonals (Fig 2). This allows for parallelization of the algorithm, since diagonal elements can
be computed simultaneously (assuming that the previous diagonals have already been computed).
This is not possible in a row-by-row filling, since elements in the row rely on other elements in the
same row.

The order is shown in Figure 3. Diagonal 1 is filled, then diagonal 2, and so on . . . Each element
of the same number can be passed to a different cluster to be computed.

The time and space complexity of computing M is O(mn) where m and n are the lengths of
sequence 1 and 2, respectively. If we do not care about what the LCS actually looks like, but just
its length, then our complexity is reduced to O(min(m,n)).

5

CS 2427 - Algorithms in Molecular Biology Lecture #6b: 27 January 2006

Figure 2: Diagonals only rely on previously computed diagonals

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

Figure 3: Order of diagonal processing

References

These lecture notes contain some material from the course readings,

• Huson’s notes on HMMs & CpGs

• Speed: Lecture Notes on Sequence Alignment

6

