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CSC 2427 - Algorithms in Molecular Biology 
Lecture 8: February 3 2006 

Lecturer: Michael Brudno 
Scribe Notes by: Clement Chung 

 

Background 
Recall from previous lecture we can find the alignment between two DNA sequences by 
either performing global alignment using Needleman-Wunsch algorithm or local 
alignment using Smith-Waterman algorithm.   The method the two algorithms used to 
handle gaps is of particular interest. Thus far the strategy is to add a fixed gap penalty 
when a gap occurs regardless what the alignment was for the previous nucleotide residue 
(see Figure 1).  Below is the algorithm for calculating the alignment score based on linear 
gap penalty.  This algorithm has both running time and space usage that is linear O(nm) . 
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Figure 1:  Linear gap penalty curve. 
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Ideal Gap Penalty 
It is known that when gaps occur in an alignment they occur in bunches. This happens 
because insertion and deletions are block events, with a number of residues 
inserted/deleted at a time.  Due to this fact it is likely that if a particular character is 
gapped, the probability of the next one being gapped is higher, and hence should be 
penalized less. To correctly model this phenomenon we will use a convex gap function 
where the gap penalty increases less and less as the gap extends further (see Figure 2), 
which when plotted is similar to a log curve.  The modified algorithm is as follows, with 
GAP being any function: 
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Figure 2: Ideal gap penalty curve.  For large gap length the linear gap penalty is not a 
good representation of the ideal gap penalty.   
 
 
Note that the algorithm above, which models the convex gap function, is very inefficient. 
When evaluating the gap penalty we need to loop through all previous nucleotides (k) to 
find the one that gives the maximum score.  The running time for this algorithm is 
O(n2m), assuming n>m, and space O(nm).   
 



  CSC 2427 Algorithms in Molecular Biology  
  Lecture 8 
   

  3

Gotoh’s Algorithm and Affine Gap Penalty 
To make the algorithm more tractable we will use Gotoh’s algorithm [1], which allows 
for affine gap penalty.  The idea is to have a gap penalty for opening a gap and a different 
gap penalty for extending the gap, which is smaller then gap opening penalty (see Figure 
3).  This is a better fit to the ideal gap penalty model then the linear gap penalty.  Also, it 
requires the algorithm to only know if the previous alignment was to a gap or not.   
 
The implementation of dynamic programming for this algorithm has time complexity of 
O(nm), similar to the algorithms using linear gap penalty.  However, now we need to 
keep track multiple values for each pair of residue coefficient (i.e. each cell in the 
original score matrix) instead of just the alignment score.  Similar to the other algorithms 
we need to calculate the best score up to residues ),( ji  given that ix and jy is aligned, 

),( jiM .  In addition, we need to keep track of the best score given that ix  is aligned to a 
gap, ),( jiN , and the best score given that jy  is in an insertion with respect to x , ),( jiO .  
The algorithm is presented below. 
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where GO is the gap penalty for opening a gap and GE is the penalty for extending an 
opened gap. 
 

 
Figure 3: The affine gap penalty curve.  At high gap length the affine gap penalty is a 
better model of the ideal curve then the linear gap penalty model.  
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Hidden Markov Model for Affine Gap Penalty 
Gotoh’s algorithm which uses a single affine gap penalty can be represented very 
elegantly using a Pair-Hidden Markov Model (Pair-HMM) diagram (see Figure 4).  This 
diagram shows a state for each of the 3 matrix that we used in the algorithm, with 
transition arrows between states.  Each transition arrow is associated with a score change, 
either an increase in the score which represents a match; or a decrease in the score which 
can be from a mismatch, gap opening, or gap extending.  This is a Pair-HMM because it 
simultaneously outputs two sequences. 
 
One of these HMM diagrams is for a single nucleotide alignment between the 2 
sequences.  Thus, the alignment between the 2 full sequences will be represented with a 
string of these HMM models.  In relation to the scoring matrix that we have been using 
(Needleman-Wunsch and Smith-Waterman) we can view this model as having one such 
HMM model in each cell of the scoring matrix.  For each cell we evaluate the alignment 
score base on the HMM model.   
 

 
Figure 4: Hidden Markov Model (HMM) of a single affine gap model. 
 

Multiple Affine Gap Model 
Gotoh’s algorithm, which uses one affine gap penalty, works better then the linear gap 
penalty model but it is still not a good fit to the idea gap penalty (log curve) at high gap 
length.  One way to better model this is to use multiple affine gap penalties (see Figure 6), 
though the time complexity of the algorithm will increase rapidly as the number of affine 
gap increases.   
 
In the HMM we can model this by adding 2 new states for a two affine gap penalty model 
(see Figure 7).  To extend this to a n gap penalty model we will just add n2 states.  As 
with the single affine gap penalty model the calculation for each cell will be just the 
evaluation of this new HMM.   
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Figure 6: The multiple affine gap penalty curve.  This curve is piecewise combination of 
multiple linear affine gap penalty curves.  This curve looks more like the log curve (ideal 
gap penalty model) as the number of affine gap increases.  

 
Figure 7: Hidden Markov Model of a two affine gap model. 
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Multiple Alignment (details in following lectures) 
Multiple alignments refer to aligning more than 2 sequences at once.  Multiple 
alignments differ significantly from pairwise alignment in both the scoring method and 
the alignment approach.  Sum of Pairs (SP) scores is one approach to score the 
alignments and progressive alignment is one approach for building the alignments.  
 
Progressive alignment works by constructing a succession of pairwise alignments.  First, 
the two closest sequences are chosen and aligned using standard pairwise alignment 
algorithm.  Then, a third sequence is chosen and aligned to the resulting alignment of the 
first two sequences.  When doing this we can use sum-of-pairs scoring: the SP scoring 
function is defined as the sum of all pairwise scores between all pairs of letters in the 
columns of the multiple alignments: 
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where scores s(a,b) comes from a substitution scoring matrix such as a PAM or 
BLOSUM matrix.  This is repeated until all sequences are aligned.   A phylogenetic tree 
similar to Figure 8 can be used as a guide for choosing the order of the pairwise 
alignment.   
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Figure 8: Phylogenetic tree.  It can be used to provide progressive alignment algorithms 
the order of the pairwise alignment. 
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