#### ALLPATHS: *de novo* assembly of whole genome micro-reads

by Butler et al.

Presented by Tim Smith CSC2431 2008/03/12

### NGS data presents new challenges and opportunities



#### "Find all overlaps" is not adequate for NGS data

| K   | E. coli | S. cerevisiae | A. thaliana | H. sapiens |
|-----|---------|---------------|-------------|------------|
| 200 | 0.063   | 0.26          | 0.053       | 0.18       |
| 160 | 0.068   | 0.31          | 0.064       | 0.49       |
| 120 | 0.074   | 0.39          | 0.086       | 1.7        |
| 80  | 0.082   | 0.49          | 0.15        | 7.2        |
| 60  | 0.088   | 0.58          | 0.27        | 18         |
| 50  | 0.091   | 0.63          | 0.39        | 32         |
| 40  | 0.095   | 0.69          | 0.65        | 78         |
| 30  | 0.11    | 0.77          | 1.5         | 330        |
| 20  | 0.15    | 1.0           | 5.7         | 2100       |
| 10  | 18      | 63.8          | 880         | 40000      |

#### Mean number of false placements of K-mers

#### ALLPATHS finds all *paths* across read pairs



Gaps in read pairs are "walked" from one read to the other by filling in the gap with overlapping reads

### ALLPATHS introduces the concept of *unipath graphs*



Sequence graph of *C. jejuni* with K = 6000 bases

Two valid paths: ABCDBCEFCEG and ABCEFCDBCEG

### ALLPATHS finds approximate unipaths between read pairs



### Unipaths with low copy number become seeds

- Ideally, seeds are long and unique
- Copy number is inferred from read coverage of unipath components
- Read pairing is used to optimize seed selection

#### "Neighborhoods" are built around seeds



Unipaths assigned coordinates relative to the seed

Read "partners" added to primary cloud





Repetitive read pairs are placed in the secondary cloud

# All paths between merged short-fragment pairs are found

- Paths between merged short-fragment pairs are computed
- Resulting set of paths covers neighborhood
- Paths are then used as reads to walk midlength (~5 kb) read pairs from the primary read cloud

### Local assemblies are glued together



(a) Sequences around bubble match

(b) Common path identified

(c) Edges "zipped up"

### The global assembly is glued together



#### The global assembly is edited



#### Evaluation was performed using "simulated short reads"

- Ten reference genomes (2-39 Mb)
- 10Mb segment of reference human genome
- Segmented into 30 base "reads"
  - 1X coverage from long fragments (~50 kb)
  - 39.5X from medium fragments (~6 kb)
  - 39.5X from short fragments (~500 bases)
  - Total of 80X coverage

#### The results were promising

| INPUTS            |        |           |           | OUTPUTS   |          |             |          |                     |
|-------------------|--------|-----------|-----------|-----------|----------|-------------|----------|---------------------|
| Species           | Ploidy | Genome    | Reference | Component | Edge     | Ambiguities | Coverage | Coverage by perfect |
|                   |        | size (kb) | N50 (kb)  | N50 (kb)  | N50 (kb) | per Mb      | (%)      | edges≥10 kb (%)     |
| C. jejuni         | 1      | 1,800     | 1,800     | 1,800     | 1,800    | 0.0         | 100.0    | 100.0               |
| E. coli           | 1      | 4,600     | 4,600     | 4,600     | 4,600    | 0.0         | 100.0    | 100.0               |
| B. thailandensis  | 1      | 6,700     | 3,800     | 1,800     | 890      | 2.7         | 99.8     | 99.5                |
| E. gossypii       | 1      | 8,700     | 1,500     | 1,500     | 890      | 2.6         | 100.0    | 99.9                |
| S. cerevisiae     | 1      | 12,000    | 920       | 810       | 290      | 28.7        | 98.7     | 94.9                |
| S. pombe          | 1      | 13,000    | 4,500     | 1,400     | 500      | 19.1        | 98.8     | 97.5                |
| P. stipitis       | 1      | 15,000    | 1,800     | 900       | 700      | 8.6         | 97.9     | 96.3                |
| C. neoformans     | 1      | 19,000    | 1,400     | 810       | 770      | 4.5         | 96.4     | 93.4                |
| Y. lipolytica     | 1      | 21,000    | 3,600     | 2,200     | 290      | 6.2         | 99.1     | 98.6                |
| N. crassa         | 1      | 39,000    | 660       | 640       | 90       | 17.4        | 97.0     | 92.5                |
| H. sapiens region | 2      | 10,000    | 10,000    | 490       | 2        | 68.2        | 97.3     | 0.2                 |

#### ALLPATHS accuracy is still unknown

- Comparisons were against "reference" genomes
- No "coverage bias" in simulated reads
- Is ALLPATHS actually accurate, or just biased in the same way as Sanger?

Evaluation was also performed with "artificially paired" Solexa reads"

- 36 base *E. coli* Solexa reads mapped to reference genome
- Reads paired in same 80X coverage distribution as above
- Simulated error as a result in error in fragment length

# Performance with real data was slightly worse

- ALLPATHS produced assembly of 58 components, with 99.1% coverage
- Components were ordered and oriented using read pair information to produce a single contiguous sequence
- Assembled sequence matches reference except in 12 locations

The performance on real paired read data is unknown

- Same problems with "simulated data" evaluation
- Bias in fragment size "error"?
- Lack of read error information

### Variance in fragment size can cause "closure explosion"

|                   | walk using e  | entire genome  | walk within 20 kb region |                |  |
|-------------------|---------------|----------------|--------------------------|----------------|--|
|                   | $500 \pm 1\%$ | $500 \pm 10\%$ | $500 \pm 1\%$            | $500 \pm 10\%$ |  |
| closures          | % of pairs    | % of pairs     | % of pairs               | % of pairs     |  |
| found             |               |                |                          |                |  |
| 0                 | 0.19          | 0.29           | 0.20                     | 0.22           |  |
| 1                 | 94.3          | 93.3           | 98.7                     | 98.3           |  |
| 2                 | 1.17          | 1.07           | 0.30                     | 0.29           |  |
| 3 to 5            | 1.21          | 1.06           | 0.41                     | 0.33           |  |
| 6 to 9            | 0.91          | 0.74           | 0.14                     | 0.17           |  |
| $10^{1}$ -        | 1.32          | 1.28           | 0.22                     | 0.51           |  |
| $10^{2}$ -        | 0.58          | 0.36           | 0.03                     | 0.15           |  |
| $10^{3}$ -        | 0.12          | 0.62           | 0                        | 0.05           |  |
| $10^{4}$ -        | 0.12          | 0.58           | 0                        | 0              |  |
| 10 <sup>5</sup> - | 0.06          | 0.43           | 0                        | 0              |  |
| $10^{6}$ -        | 0.04          | 0.19           | 0                        | 0              |  |
| $10^{7}$ -        | 0.003         | 0.07           | 0                        | 0              |  |

Number of read pair closures in E. coli using 30-base reads and K = 20

#### Unipath graphs offer a compact and informative representation of sequence components



#### Questions?