Proof of Optimality of Huffman Codes

CSC373 Spring 2009

1 Problem
You are given an alphabet A and a frequency function $f : A \rightarrow (0, 1)$ such that $\sum_x f(x) = 1$. Find a binary tree T with $|A|$ leaves (each leaf corresponding to a unique symbol) that minimizes

$$\text{ABL}(T) = \sum_{\text{leaves of } T} f(x) \text{depth}(x)$$

Such a tree is called optimal.

2 Algorithm

HUF(A, f)
If $|A| = 1$ then return a single vertex.
Let w and y be the symbols with the lowest frequencies.
Let $A' = A \setminus \{w, y\} + \{z\}$.
Let $f'(x) = f(x)$ for all $x \in A' \setminus \{z\}$, and let $f'(z) = f(w) + f(y)$.
$T' = \text{HUF}(A', f')$.
Create T from T' by adding w and y as children of z.
return T

3 Proof

Lemma 1 Let T be a tree for some f and A, and let y and w be two leaves. Let T' be the tree obtained from T by swapping y and w. Then $\text{ABL}(T') - \text{ABL}(T) = (f(y) - f(w))(\text{depth}(w, T) - \text{depth}(y, T))$.

Proof

$$\text{ABL}(T') - \text{ABL}(T) = f(y)\text{depth}(w, T) + f(w)\text{depth}(y, T) - f(w)\text{depth}(w, T) - f(y)\text{depth}(y, T)$$
$$= f(y)(\text{depth}(w, T) - \text{depth}(y, T)) + f(w)(\text{depth}(y, T) - \text{depth}(w, T))$$
$$= (f(y) - f(w))(\text{depth}(w, T) - \text{depth}(y, T))$$

Lemma 2 There exists an optimal tree such that the two symbols with the lowest frequencies are siblings.

Proof Let T be an optimal tree. Let w and y be two symbols with the lowest frequencies. If there is more than one symbol that has the lowest frequency, then
take two that have the biggest depth. If \(w \) and \(y \) are siblings, then we are done. Otherwise, suppose without loss of generality, that \(\text{depth}(w, T) \geq \text{depth}(y, T) \).

We have three cases:

- **\(w \)** has a sibling \(z \). Let \(T' \) be the tree created from \(T \) by swapping \(z \) and \(y \), and thus making \(w \) and \(y \) siblings. By applying Lemma 1, we get that \(\text{ABL}(T') \leq \text{ABL}(T) \). Since \(T \) is optimal, there cannot be another tree with a smaller cost, and so \(\text{ABL}(T') = \text{ABL}(T) \). Thus \(T' \) is also optimal.

- **\(w \)** is an only child. Create \(T' \) by removing \(w \)'s leaf and assigning \(w \) to its old parent. \(T' \) is cheaper than \(T \), contradiction the optimality of \(T \). Hence, this case is not possible.

- There exists a node \(z \) at a depth bigger than \(w \). Create \(T' \) by swapping \(w \) and \(z \). By our choice of \(w \), \(f(w) < f(z) \), so, applying Lemma 1, we have that \(T' \) is cheaper than \(T \), a contradiction. Hence, this case is not possible.

Theorem 3 The algorithm \(\text{HUF}(A, f) \) computes an optimal tree for frequencies \(f \) and alphabet \(A \).

Proof The proof is by induction on the size of the alphabet. The induction hypothesis is that for all \(A \) with \(|A| = n \) and for all frequencies \(f \), \(\text{HUF}(A, f) \) computes the optimal tree.

In the base case \((n = 1)\), the tree is only one vertex and the cost is zero, which is the smallest possible.

For the general case, assume that the induction hypothesis holds for \(n - 1 \). That is, \(T' \) is optimal for \(A' \) and \(f' \). First, let us show the following:

\[
\text{ABL}(T) = \left(\sum_{x \in A \setminus \{w, y\}} f(x) \text{depth}(x, T) + f(w) \text{depth}(w, T) + f(y) \text{depth}(y, T) \right)
\]

\[
= \left(\sum_{x \in A \setminus \{w, y\}} f(x) \text{depth}(x, T) + (f(w) + f(y))(\text{depth}(z, T') + 1) \right)
\]

\[
= \left(\sum_{x \in A \setminus \{w, y\}} f(x) \text{depth}(x, T) + f'(z) \text{depth}(z, T') + f(w) + f(y) \right)
\]

\[
= \left(\sum_{x \in A'} f'(x) \text{depth}(x, T') + f(w) + f(y) \right)
\]

\[
= \text{ABL}(T') + f(w) + f(y)
\]

Now, assume for the sake of contradiction that \(T \) is not optimal, and let \(Z \) be an optimal tree that has \(w \) and \(y \) as siblings (this exists by the above lemma).

Let \(Z' \) be the tree obtained from \(Z \) by removing \(w \) and \(y \). We can view \(Z' \) as a tree for the alphabet \(A' \) and frequency function \(f' \). We can then repeat the calculation above and get \(\text{ABL}(Z) = \text{ABL}(Z') + f(w) + f(y) \). So, \(\text{ABL}(T') = \text{ABL}(T) - f(w) - f(y) > \text{ABL}(Z) - f(w) - f(y) = \text{ABL}(Z') \). Since \(T' \) is optimal for \(A' \) and \(f' \), this is a contradiction.