CSC 373 - Winter 2009; Lecture 1 Michael Brudno

Lecture L. (Re)-Introduction to Algorithms

Welcome to CSC 373 - Design of Algorithms. In this class you will learn about several standard
techniques for designing efficient algorithms, enabling you to design elegant, optimal algorithms
for many problems. Additionally, we will try to teach you about practical algorithms. The goal is
that after taking this class, when you are given a particular problem, you should be able not only
to solve it optimally, but also to write a fast algorithm that solves it well enough. The algorithm
may not be the fastest one; it just has to be fast. And the solution may not be perfect. When you
are out in the real world there are many other constraints that will determine what algorithm
should be used. For example, consider that you have graduated, and are working as a
programmer for a large bank: your boss wants to send a monthly letter to select account holders,
who have > $100,000 in their bank accounts, informing them of new investment opportunities.
You consider two possible solutions: write a simple program that goes through the accounts,
checks the amount in the bank, and sends this letter to the owners, or, alternatively, build a
complex data structure that would allow you to immediately identify these accounts much faster.
While the first program will have a relatively slow running time - O(n), where n is the number of
accounts, it will take you a very short time to write, and since it will only run once a month, this
will not be a significant amount of time, even for millions of accounts. In this case you should go
with the simpler, rather than the fastest solution - by finishing your task faster you will make
your boss happy, earning you a promotion.

Once you are promoted, your boss asks you to write a function that given two numbers, a real
number a and an integer n returns the value of a” This function will be used to compute the
cumulative interest on some savings accounts, and will be called millions of times every day. You
write the following simple algorithm (we will use a C-like language for most of our algorithmic
examples, though they should be simple enough to understand even if you do not know C):

double pow (double a, int n) {
if (n == 0)
return 1;
else
return a * pow (a, n-1);

}

The complexity of this program is also O(n). While this may be good enough if n is small, it will
become too slow if n is large, and the algorithm is called millions of times everyday. So when
given a problem, before coding anything, try to estimate how long a trivial solution will run and
how often it will be called. Ease of implementation is an important consideration when
programming in the real world, as if the actual running time of the program, rather than it’s big-O
complexity. Your boss will not care if you have a theoretically faster algorithm if it is slow in
practice. One of the things we will try to show in this class is how to use your knowledge of big-O
to decide when it is safe to implement an algorithm that is sub-optimal.

If your boss asks you to rewrite the exponentiation algorithm because it is too slow, you may
recall something you learned in middle school and Algebra 1: a?” = a” * a". This allows us to halve
n at every step: When evaluating a” for even n we just use the formula above. Otherwise we
multiply the result by a, and then use the formula. The following is our resulting code:

CSC 373 - Winter 2009; Lecture 1 Michael Brudno

double gpow (double a, int n) {
double res;
if (n == 0)
return 1;
res = gpow (a, n/2); // n/2 will round down for odd n
res = res * res;
if (n%2 == 1)
res = res * aj;
return res;

Because n is halved at every level of recursion, this implementation will take O(log n) time, rather
than the linear time of the previous solution. If n is small this doesn't really matter, but for large
numbers the difference will be quite noticeable.

Exponentiation is one example where it is easy to build a very fast, optimal algorithm. While
many of the other problems we will see in this class will have similarly elegant solutions, most
problems, alas, can not be solved both quickly and optimally. Consider the factorial function: n/ =
n * (n-1)! While the simple, linear algorithm is obvious:

double fact (int n) {
if (n == 0)
return 1;
return n * fact(n-1);

If one needs to compute this value for large n this will again be too slow, just like exponentiation.
And unlike exponentiation, there is no simple O(log n) algorithm. However there is a well known

approximation for the factorial function, known as Stirling’s formula: n!= \/27rn*(n/e)"

Stirling’s formula is remarkably close to n!, especially for very large values of n (you can read
more about this approximation at http://en.wikipedia.org/wiki/Stirling's approximation). Using
the formula, we can compute a good approximation to the factorial, using the quick
exponentiation routine determined above (we would also need a fast sqrt function, but that is
beyond the scope of this lecture ©). The answer will not be exact, but as we will see during this
course perfect is not always possible (or, in fact, necessary).

What about for smaller n? In these cases the formula is less accurate, but you can pre-compute
these, and store the results in an array. In fact, with modern computers having 2GB or more RAM,
if you store (pre-computed) a few thousand factorial values (1000! is thousands of digits long on
its own) no one will ever notice. This brings us to another important principle of algorithm
design: time-space tradeoffs. In this case, we can pre-compute some answers, and while using
some space allow for faster computation of factorial functions at runtime. During the course we
will see the opposite examples, where by sacrificing some amount of running time we will get an
algorithm that uses a practical amount of space.

As an algorithm designer (and implementer) you have to trade-off four critical features: time
efficiency, space efficiency, accuracy of the answer, and implementation time. While there is no
magic formula that will give you the right tradeoff, we hope that during the course you will learn
some of the tricks to doing this effectively.

