CSC 373 - Winter 2009, Lecture 2 Michael Brudno

Lecture II. Numbers and Arithmetic

Whenever we talk about complexity of an algorithm it is important that we keep in mind what
exactly is the input to our algorithm. In classical computational theory big-O is usually a function of
the total length of the input. While this is useful when working with a Turing machine, every element
of which is just a bit, this notation would become cumbersome for many of the problems that we will
discuss in this class. For example when we talk about algorithms we will usually assume that adding,
subtracting, multiplying, or dividing two numbers can be accomplished in O(1) time. This is almost
always true in practice - the numbers within a computer are usually represented as a binary string of
up to 64 bits. Arithmetic operation are implemented efficiently “in hardware”, and the results will be
available just one clock cycle later. When implementing most algorithms this time will rarely be a
concern. However fixed-size numbers can only represent a limited range of values. In particular, the
way 64 bit integers are implemented on most machines one can represent whole numbers in the
range [-263- 1, 263]. If you want to use bigger numbers, you will have to implement them explicitly,
and to re-implement for these all of the arithmetic operations (of course you can also Google-around
for a ready implementations of Biglntegers, which are part of standard libraries for many languages,
such as Java and Python, but what would be the fun in that?). Why would you want to implement
very large numbers? One prominent example is Cryptography (see Chapter 1 of the book). Many
cryptographic schemes depend on non-invertible functions: those which are easy to compute, but
hard to invert (i.e. given the answer, find the argument). One prominent example of such a function is
factoring. Given two prime numbers, a and b, computing their product c = a * b is relatively easy (as
we will soon see). However given a number c that is a product of two primes, how would one find out
what a and b where? You may suggest the following algorithm:

int factor (int c) {
for (i = 0; 1 < ¢; i++) {
if (¢ % 1 == 0)
return i; // returns the smallest of the two factors

}

What's so difficult about this, you may ask. This algorithm runs in linear time, it is quite fast. This is
not true. This algorithm runs in time O(c), which is in fact exponential in terms of the size of ¢, if c is
representedusing binary (or any other base besides unary): only 64 bits can encode all numbers up
to 264. So this algorithm is, in fact, exponential in the size of ¢ (which we will write as |c|). In fact, the
popular RSA cryptosystem uses 1024 bit integers. Because no known fast algorithms exist for
factoring such large numbers you can securely submit your credit card information to a website.

Well, if factoring is so slow, you may ask, what about the other operations? Can we multiply two large
numbers quickly, in order to get the product in the first place? To understand how to do this, we first
need to decide how to represent the numbers on a computer (we will call these Bigints). We will use
the binary system, with every digit (bit, to be technically correct) stored as an element of an array A.
A[0] will be the lowest order bit (2°), while A[K], is the 2kth bit. (If you have difficulty with the
positional notation system we recommend the following link:
http://www.youtube.com/watch?v=a81YvrV7Vv8.) For simplicity, assume that A.size will tell us the
largest bit that is not zero in the array A. Let us now define a few simple operations on numbers

CSC 373 - Winter 2009, Lecture 2 Michael Brudno

which are represented in this way. Let us start with addition. We will do this exactly how you learned
to do this in grade school - write the numbers one under the other, add the two rightmost digits. If
you get a value that is greater than a single digit (9 in grade school ,and 1 in our case) you carry a
one. And so, on now also using the carry. This algorithm becomes the following piece of code:

BigInt add (BigInt a, BigInt b) {
int carry = 0;
int 1 = 0;
BigInt c;
for (i=0; 1 < MAX(a.size, b.size); i++) {
c[i] = (al[i] + b[i] + carry) % 2;
if (al[i] + b[i] + carry > 1)
carry = 1;
else carry = O0;

}

return c;

This algorithm runs in linear time (in the size of the two integers, not, their values). Subtraction can
be implemented in a similar manner. Next is multiplication. In the multiplication method from grade
school, you multiplied one number by each digit of the other, shifting the result by one for each
subsequent digit, and then added the results together. For binary this is easy: there are only two bits:
Multiplying by one is just the original number, while by zero gives you zero. Adding we have already
implemented. The only remaining step is shifting (we will pad the strings with zeroes on the right):

BigInt 1lshift (BigInt a, int k) { // returns a shifted left by k bits

BigInt c;

int 1i;

for (i = a.size-1; i >= 0 ; 1i--) {
cli+k] = ali]l;

}

for (i = k=1; 1 >= 0; i--) {
c[i] = 0;

return c;

So now we can build the following algorithm:

BigInt multiply (BigInt a, BigInt b) {
BigInt c¢; //initialized to all zeroes
int 1i;
for (i=0; 1 < a.size; 1++) {
if (afi] '= 0) { //if it is zero, nothing to do
c = add (¢, 1lshift (b, 1i));
}
}

return c;

CSC 373 - Winter 2009, Lecture 2 Michael Brudno

What is the running time of the resulting algorithm? We do O(|a|) passes through the loop, with each
requiring O(|b|) time (addition and shifts). So the overall runtime is O(n?) if n = |a| = |b]. Can we do
better? Well, in some special cases, certainly. For example, multiplication (and division) by 2, or any
of its powers, can be implemented using shift operations. Just as multiplying by 10 in decimal adds a
zero on the right, the same happens when multiplying by 2 in binary. However what about in the
other cases? We were able to make a faster exponentiation algorithm by using a little bit of algebra,
so perhaps we can do the same here. We can try to halve one of the numbers at every step:
‘) 2a*|b/2)) if beven
a =
a+2(a*|b/2)) if bodd

However halving a number only reduces the number of bits in it by one. So the recursion will have
number of levels proportional to |b|. At each one we will do O(n) work, so this approach will not give
us a speedup. Instead of dividing the number by two, we have to divide it into two parts, the left and
the right. Let us start by recalling that if we split a number into two equal parts (call them a; and a;),
the original number is 27/2*3; + a. So the multiplication a*b can be rewritten as

(20/2%q) + a,)* (27/2*by + by) = 2raiby + 2"/2(aib-+biay) + arb

If we would compute this directly, we actually would get a recurrence of T(n) = 4 T(n/2) + O(n),
which means to compute the result for n, we will do four sub-jobs of size n/2, and then spend O(n)
time merging the results (additions and multiplying by powers of 2). What will the running time be?
Our recursion will have O(log n) levels, but the amount of work will double to every next level: n at
the top level, 4*n/2 = n * 2 at the next level, etc. Only the bottom level will have n * 2log (n) = 2
operations! While at first this may seem like a slower way of computing the product of two numbers,
in fact it turns out to be equivalent. If we sum up all of the levels, n?+ n2/2 + n?/4 +... < 2*n?, so the
overall running time of our algorithm is the same. However let us go back to the equations, and try
to use a little bit more algebra to solve them in a smarter way. Note that

(a+b)*(c+d) = ac + bc + ad + bd
bc +ad = (a+b)*(c+d) - ac - bd

This suggests that the aib-+biar of the original equation can be computed using the result of
(ar+a;)*(bi+br), aib, and a;by, and that the four multiplications can be rewritten with three:

BigInt multiply (BigInt a, BigInt b) {
BigInt ¢, al, ar, bl, br, pl, p2, p3;
if (n = 1) return a*b; //assume that n is the size of the two integers
al = leftside(a); ar = rightside(a);
bl = leftside(b); br = rightside(b);
pl = multiply(al, bl);
r3 multiply (ar, br);
¢ = multiply(add(al,ar),add(bl,br));
p2 = subtract (subtract(c, pl), p2); // ¢ — pl — p3
return add(add(lshift(pl, n) + 1lshift(p2, rshift(n,1))), p3)

CSC 373 - Winter 2009, Lecture 2 Michael Brudno

What is the running time of this? Well, we now only have 3 recursive calls, while the amount of work
at each level has not changed (at least from a big-O perspective). Now each level will have 1.5 times
more work then the previous one, with the bottom level having n * 1.5l08 () = n1.59, Again, the overall
big-0 running time will be equal to the bottom level: n1-59+ n1:59* 2 /3 + n1.59* 4 /9 .. < 5/2 * n1.59

This gives us an 0(n59) algorithm for multiplying two large numbers. In fact, faster algorithms do
exist, they run in almost linear time, but they are based on very similar ideas. You may ask about the
practical aspects of such an algorithm: given all of the other operations that need to happen, will it
actually be faster? The answer is only if the numbers are big. The large constants, plus the overhead of
the recursion will make the algorithm slower for smaller numbers, and even the theoretical dvantage
of n4!is not that big: 100 941 = 6.3; 1000 °41= 15.8. However if the numbers are very big, this will be
faster. Of course the natural modification is to only use divide and conquer for the bigger numbers,
until they are small enough that the O(n?) algorithm becomes faster.

