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Abstract We investigate the performance of the adjoint approach and the
variational approach for computing the sensitivities of the least squares ob-
jective function commonly used when fitting models to observations. We note
that the discrete nature of the objective function makes the cost of the adjoint
approach for computing the sensitivities dependent on the number of observa-
tions. In the case of ODEs, this dependence is due to having to interrupt the
computation at each observation point during numerical solution of the adjoint
equations. Each observation introduces a jump discontinuity in the solution
of the adjoint differential equations. These discontinuities are propagated in
the case of DDEs, making the performance of the adjoint approach even more
sensitive to the number of observations for DDEs. We quantify this cost and
suggest ways to make the adjoint approach scale better with the number of
observations. In numerical experiments, we compare the adjoint approach with
the variational approach for computing the sensitivities.

Keywords Ordinary differential equations · Delay differential equations ·
Adjoint method · Variational equations · Sensitivities

Introduction

Ordinary differential equations (ODEs) have long been used in the physical
sciences to help us better understand the world around us. More recently,
delay differential equations (DDEs) have been successfully applied to model
phenomena in a variety of applications, such as population dynamics [7,5],
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epidemics [6], and chemical systems with feedback [11]. Central to the model-
ing process is the computation of sensitivities, which provide key information
for a variety of tasks related to quantifying uncertainty, determining optimal
parameters to fit observed data, and designing experiments to collect appro-
priate data to facilitate model fitting. In any case, it is desirable to be able
to compute these sensitivities efficiently and with sufficient accuracy for the
application.

We consider two cases where the need for sensitivities arise. In the problem
of determining the best fit values of model parameters, we are interested in
computing the sensitivity of an objective function to changes in the model
parameters. If these sensitivities are computed sufficiently accurately, they
can be used in a gradient based optimization scheme to efficiently find a local
minimum of the objective function.

The second use for sensitivities is to quantify how sensitive the model is
to changes in its parameters when the optimal parameters are known. While
similar to the previous case of parameter estimation, this is different in that
we need to compute how sensitive the model, not the objective function, is
to changes in the parameter values. Note that the model sensitivities are a
matrix valued quantity, while the sensitivities for a scalar objective function
are a vector valued quantity.

In section one, we introduce the general forms of the models we consider
and the least squares (LSQ) objective function. The variational and adjoint
approaches are then described in section two. The third section describes our
numerical experiments and suggests ways to deal with limitations of the adjoint
approach that arise in the case of LSQ. The numerical experiments use DDEM
- a C++ framework for solving and analyzing DDEs [14]. In the fourth section,
we discuss how the cost of each approach scales with the number of delays
in the model and we suggest ways to exploit parallelism. The final section
summarizes our results and outlines future work.

Related Work

In [10], the authors look at comparing the adjoint, variational, and finite differ-
ence methods for computing objective function sensitivities for IVPs, focusing
on cases where the adjoint method is most suitable. The adjoint method is best
suited for cases where the objective function is scalar and the model consists
of more parameters than state variables. In this work, our focus is on how the
adjoint and variational methods scale with the number of observations in the
LSQ objective function.

In [8], Bock considers the benefits of applying the principle of internal differ-
entiation (as opposed to external differentiation) to computing the sensitivities
of DDEs. They look at implementing the forward approach by differentiating
an implicit CRK formula directly, as opposed to setting up the system of
DDEs for the solver to integrate, and taking advantage of the structure of the
resulting equations. Issues of error control are discussed and their approach
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benefits from being able to conveniently control the error of the sensitivities
being computed when low order approximations are used.

Explicit CRK solvers are also used in the fortran library, DENSERKS [1], to
efficiently interpolate the forward solution during simulation of the associated
adjoint IVP.

For a good reference on the variational and adjoint methods for DAEs and
PDEs, we refer the reader to [9].

1 Mathematical Setting

1.1 ODE definition

We consider the parameterized initial value problem (IVP),

ẏ(t) = f(t,y(t),p),

y(0) = y0, (1)

t ∈ (0, T ),

where y is the state vector of dimension ny, p is the constant vector of model
parameters of dimension np, and y0 are the initial conditions of the state
vector - each component of which may be a parameter appearing in p. We will
denote the solution of (1) for a specific p by y(t,p). For convenience, when it
is clear, we will use y(t) to represent y(t,p).

1.2 DDE definition

We restrict ourselves to systems of DDEs with constant lags, in which case we
are considering the IVP,

ẏ(t) = f(t,y(t),y(t− τ1), . . . ,y(t− τnd
),p),

t ∈ (0, T ), (2)

y(t) = h(t,p) ; t < 0,

where each τr, r = 1, . . . , nd, is a constant delay that may appear in our
parameter vector, p, and h(t,p) is the history function. Note that, as with
(1), y and h are vector valued functions of dimension ny.

1.3 Data

We assume that a series of measurements (or observations) of the state vector
is given,

ỹj(ti) = yj(ti,p
∗) + noise, for i = 1, . . . , no; j = 1, . . . , ny,
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where no is the number of observation points and yj(ti,p
∗) denotes the true

solution of the IVP at time ti corresponding to the optimal value, p∗, that
best-fits the observed data. For least squares, the noise is assumed to follow a
normal distribution.

1.4 Model Sensitivities

Model sensitivities refer to how sensitive the solution of the model is to its
parameters. In our case, for a given time, t ∈ [0, T ], this is the matrix valued
quantity,

∂y(t,p)

∂p
≡ yp(t,p), (3)

For convenience, we will use yp(t) to represent yp(t,p).

1.5 Least Squares Parameter Estimation (Inverse Problem)

As our main application, we consider least squares (LSQ) parameter estima-
tion. For a given value of p, the standard LSQ objective function is,

S(p) =

no∑
i=1

||ỹ(ti)− y(ti,p)||2

2
, (4)

where the Euclidean norm is used.

2 Methods

2.1 Variational Approach

The first approach we will describe is the variational approach, sometimes
referred to as the forward approach. This standard approach for computing
model sensitivities directly approximates the variational equations, which are
characterized or defined by an ODE satisfied by yp(t).

These equations are easily derived by taking the time derivative of yp(t),

d

dt
yp(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t,y(t,p),p)

= fy(t)yp(t) + fp(t)
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This matrix valued ODE can be solved simultaneously with the original sys-
tem, (1), with the initial conditions, yp(0), whose (i, j) entry is,

∂yi
∂pj

(0) =

{
1, if pj is the initial condition for yi
0, otherwise

.

Approximating the solution of this system directly gives us the model sensi-
tivities for any t. The sensitivity of the LSQ objective function with respect
to the parameters can then be approximated from (1) and (4) as,

∂S(p)

∂p
=

no∑
i=1

(ỹ(ti)− y(ti,p))Typ(ti,p). (5)

2.1.1 Variational Approach for DDEs

For constant lag DDEs, the variational approach results in the following neu-
tral DDE, which we obtain by again taking the time derivative of yp(t),

d

dt
yp(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t,y(t,p),y(t− τ,p),p)

= fy(t)yp(t) + fp(t) + fν(t)yp(t− τ)− y′(t− τ)τp,

where ν = y(t − τ). This matrix valued DDE can be approximated simulta-
neously with the original system,(2), with the initial conditions, yp(0), whose
(i, j) entry is,

∂yi
∂pj

(0) =

{
1, if pj is the initial condition for yi
0, otherwise

.

The corresponding history function is given by,

∂yi
∂pj

(t) =
∂hi
∂pj

(t), for t < 0.

A limitation of this approach is that the variational system consists of ny+
nynp differential equations. A significant advantage of this approach compared
to the adjoint approach is that it extends in a straightforward way to general
systems of DDEs and not just to the special class we are considering here. For
details, see [16].
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2.2 Adjoint Approach

For a more complete discussion of the adjoint method, we refer the reader to
[4]. We first present a derivation of the adjoint method for systems of IVPs.
In the following, we consider objective functions of the form,

G(y,p) = G(y(p)) =

∫ T

0

g(y(t,p)) dt, (6)

where we are restricting ourselves to objective functions that only depend on
p through y(s,p). Let λT (t) be any vector valued function of dimension ny,
defined for t ∈ [0, T ]. Now, consider the perturbed objective function,

J(p) = G(y(p)) +

∫ T

0

λT (t)
(
ẏ(t,p)− f(t,y(t,p),p)

)
dt. (7)

Note that the term we have added is zero, since y(t) satisfies the ODE, (1).
Taking the derivative with respect to the parameters, we obtain,

Jp =
dG

dp
+

∫ T

0

λT (t)

(
dẏ

dp
(t)− ∂

∂p

[
f(t,y(t,p),p)

])
dt

=
dG

dp
+

∫ T

0

λT (t)
(
ẏp(t)− fy(t)yp(t)− fp(t)

)
dt. (8)

From (6),

dG

dp
=

∂

∂p

[ ∫ T

0

g(y(t,p)) dt
]

=

∫ T

0

gy(t)yp(t) dt,

and therefore, from (8),

Jp =

∫ T

0

(
gy(t)yp(t) + λT (t)

(
ẏp(t)− fy(t)yp(t)− fp(t)

))
dt. (9)

Using integration by parts, we can express the integral term involving λT (t)ẏp(t)
as, ∫ T

0

λT (t)ẏp(t) dt =
(
λT (t)yp(t)

)∣∣∣T
0
−
∫ T

0

λ̇
T

(t)yp(t) dt. (10)

From (10) and (9), we obtain, after re-arranging terms,

Jp =

∫ T

0

(
gy(t)−λT (t)fy(t)−λ̇

T
(t)
)
yp(t) dt−

∫ T

0

λT (t)fp(t) dt+
(
λT (t)yp(t)

)∣∣∣T
0
.

(11)
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The adjoint system is defined by requiring that λT (t) be the solution of the
IVP:

λ̇
T

(t) = gy(t)− λT (t)fy(t) ;λT (T ) = 0. (12)

This choice for λT (t) eliminates the integral involving yp(t) in (11) and results
in the sensitivities being given by,

Jp = −
∫ T

0

λT (t)fp(t) dt+
(
λT (t)yp(t)

)∣∣∣T
0

= −
∫ T

0

λT (t)fp(t) dt− λT (0)yp(0). (13)

In some applications, we might not be interested in the sensitivity of G,
but rather in the sensitivity of g at time T . In this case, if we take derivatives
of (12) and (13) with respect to T , we obtain,

λ̇
T

T (t) = −λTT (t)fy(t) ;λTT (T ) = gy(T ), (14a)

dg

dp
= −

∫ T

0

λTT (t)fp(t) dt+ λTT (0)
dy

dp
(0), (14b)

Note that the above equations are defined with t varying from T to 0. Defining
x = T − t, we can return to the standard situation where the independent
variable varies from 0 to T .

For our purposes, there are two objective functions of interest. The first is
the LSQ objective function, the second corresponds to model sensitivities. In
the case of LSQ, we can either use (12-13) or (14) above. For model sensitiv-
ities, we are trying to obtain the sensitivities of the model to the parameters
at a specific t, so we use (14). We will now investigate in more detail these two
forms.

2.2.1 Case of Model Sensitivities

In this case, with g(s,y(s,p)) = yj(ti,p), we have gy = ej , where ej is one

for the jth component and zero for the other components. This will give us the
sensitivity of the yj at time ti. While this is fine mathematically, it turns out
this is inefficient in practice. The difficulty is that since y has ny components,
we must apply the adjoint approach to each component of y. Moreover, if we
want dy

dp (ti) for each ti, then we must apply the adjoint approach at each ti.
This is because we are equivalently asking for the sensitivity of a vector valued
objective function at each ti, which is not what the adjoint method is efficient
at computing. As we discussed in section 2.1, the forward approach is better
suited to this task, since it directly approximates the model sensitivities.
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2.2.2 Case of LSQ Objective Function

We now make use of a different characterization of (4) that is consistent with
the form of the objective function (6). We re-write J(p) ≡ G(y(p)) using the
Dirac-delta function as,

J(p) =

∫ T

0

g(y(t,p)) dt =

∫ T

0

[ no∑
i=1

ny∑
j=1

(ỹj(ti)− yj(ti,p))2

2
δ(ti − t)

]
dt,

where yj(ti,p) is the jth component of the solution of the ODE at time ti and
δ(t− ti) is the Dirac-delta function, which is zero everywhere, except at t = ti.
δ(t− ti) has the property that,∫ b

a

q(t)δ(t− ti)dt = q(ti), (15)

for any sufficiently smooth function q(s), if a < ti < b. With this representation
for g,

gy =

no∑
i=1

(ỹ(ti)− y(ti,p))δ(t− ti).

In this case, we must appropriately handle the
∑
i(ỹ(ti) − y(ti,p))δ(t − ti)

term when solving the adjoint IVP. The presence of this term will lead to
discontinuities in λT (t), whenever t = ti. The natural way to account for
these discontinuities is to solve (12) on each subinterval (ti, ti+1), and apply
the jumps, to obtain the initial conditions, for the next subinterval (ti−1, ti),

λT (ti)
− = λT (ti)

+ + (ỹ(ti)− y(ti,p)). (16)

It is the cost of applying this jump condition at each ti, that makes the cost
of the adjoint approach particularly sensitive to the number of observations.
We will now briefly review how the adjoint method extends to constant lag
DDEs.

2.3 Adjoint Approach for constant lag DDEs

We consider here the special case of constant lag DDEs with a delay of the form
α = t − τ and constant history function, y(t) = yo, for t < 0. For simplicity,
we assume there is only one delay in the following derivation, but everything
extends in a straightforward way to multiple delays. For a rigorous derivation
of the adjoint method for more general systems of DDEs, we refer the reader
to [15].

The difference here compared to the ODE adjoint system, (12), is that
f not only depends on y(t), but also on y(t − τ). For convenience, we let
ν = y(t− τ).
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Let λT (t) be any vector valued function of dimension ny, defined for t ∈
[0, T + τ ]. Similar to the ODE case, we define a perturbed objective function,

J(p) = G(y(p)) +

∫ T

0

λT (t)
(
ẏ(t,p)− f(t,y(t),y(t− τ),p)

)
dt. (17)

Taking the derivative with respect to the parameters, we obtain,

Jp =
dG

dp
+

∫ T

0

λT (t)

(
dẏ

dp
(t)− ∂

∂p

[
f(t,y(t,p),y(t− τ,p)

])
dt

=
dG

dp

+

∫ T

0

λT (t)
(
ẏp(t)− fy(t)yp(t)− fν(t)

(
yp(t− τ) + y′(t− τ)αp(t)

)
− fp(t)

)
dt

=

∫ T

0

(
gy(t)yp(t) + λT (t)

(
ẏp(t)− fy(t)yp(t)− fν(t)yp(t− τ)

))
dt

−
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt.

In a similar way to the derivation of (10), we can re-write the above expression
as,

Jp =

∫ T

0

(
gy(t) + λT (t)fy(t)− λ̇

T
(t)
)
yp(t) dt−

∫ T

0

λT (t)fν(t)yp(t− τ) dt

−
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt−

(
λT (t)yp(t)

)∣∣∣T
0
.

(18)
Now, after a change of variables and rewriting the second integral in (18) as,

∫ T

0

λT (t)fν(t)yp(t− τ) dt =

∫ T−τ

−τ
λT (t+ τ)fν(t+ τ)yp(t) dt

=

∫ T

0

λT (t+ τ)fν(t+ τ)yp(t) dt

+

∫ 0

−τ
λT (t+ τ)fν(t+ τ)yp(t) dt.

The second equality follows from being able to extend the integral to T by
requiring that λT (t) = 0 for t ≥ T , and splitting the interval of integration.
We now see that we can combine the first integral in this expression, with the
first integral in (18), and after rearranging,
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Jp =

∫ T

0

(
−λ̇

T
(t) + gy(t)− λT (t)fy(t)− λT (t+ τ)fν(t+ τ)

)
yp(t) dt

−
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt

+
(
λT (t)yp(t)

)∣∣∣T
0

+

∫ 0

−τ
λT (t+ τ)fν(t+ τ)yp(t) dt.

The adjoint system for this constant lag DDE is defined by requiring that
λT (t) be the solution of the IVP,

λ̇
T

(t) = gy(t)−λT (t)fy(t)−λT (t+ τ)fν(t+ τ) ;λT (t) = 0, for t ≥ T . (19)

As in the ODE case, this choice for λT (t) eliminates the integral involving
yp(t) and results in the sensitivities being given by,

Jp = −
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt

+
(
λT (t)yp(t)

)∣∣∣T
0

+

∫ 0

−τ
λT (t+ τ)fν(t+ τ)yp(t) dt

Jp = −
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt

−λT (0)yp(0)−
∫ 0

−τ
λT (t+ τ)fν(t+ τ)hp(t) dt.

Note that because the last integral is for t ≤ 0, we have replaced yp(t)
with hp(t) (recall that h is the history function).

2.3.1 Additional Considerations for DDEs

For DDEs, we have to be careful to properly handle discontinuities and storage
of the solution on previous subintervals. As we did in the ODE case, we have
to restart the solver at each observation point, ti, when integrating the adjoint
IVP from T to 0. However, the discontinuities introduced by (16) at each ti

will be encountered again, since λ̇
T

(t) depends on the lagged value, λT (t+ τ).
Also, discontinuities in y(t) must be taken into consideration as well. It is
usually the case that y(t) will be continuous, but its higher derivatives may
not be. For example, if the history is constant, h(t) = y0, then the derivative to
the left of the initial time is zero, while it is f(t, y0, p) to the right of the initial
time. For a fixed lag, t − τ , we will encounter this discontinuity again when
t = τ . At this point, the discontinuity is propagated, but in a derivative of
order one higher. At some point, this discontinuity is of sufficiently high order
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that it can be ignored. This will be the case when the order of the derivative
discontinuity is higher than the order of the underlying CRK formula.

To handle these additional discontinuities, we should restart the solver at
each of them. In Figure 1, we illustrate the impact that the discontinuities
have on the behaviour of the solutions of a DDE model and its associated
adjoint system. As we will see, the presence of these discontinuities will make
the adjoint approach significantly more expensive for the case of DDEs than
it is for ODEs.

For a detailed discussion of how discontinuities in DDEs impact the smooth-
ness of the sensitivities, we refer the reader to [2].

Fig. 1 Top: Solution of each component of the Kermack-McKendrick model (see 3.2.2).
Middle: Derivative of each component of the solution of the model. Bottom: The adjoint
variable for the first component of the model (blue), and the cumulative value of the integral,
Jτ2 (green). The locations of discontinuities, up to second order, are indicated by dotted
lines at the times where they occur. For this model, τ1 = 1, and τ2 = 10. Observations are
at times 5,30, and 55.

3 Numerical Experiments

3.1 Implementation

For our experiments, we have implemented the adjoint method in the DDEM
package, which already includes an implementation of the variational ap-
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proach. DDEM uses an order 6 CRK IVP solver to maintain an order 6 piece-
wise polynomial approximation to the solution over the entire interval, [0, T ].

3.2 Experiments

In this section, we introduce two test problems, investigate how the adjoint
method compares with the variational approach under various conditions, and
discuss some key aspects of the adjoint approach. In each experiment, we
generate observations by simulating the models very accurately with specified
parameter values and then add normally distributed noise. The sensitivities
are then computed for the specified parameter values.

3.2.1 Barnes Problem

The Barnes Problem is commonly used in the literature on parameter esti-
mation for IVP models [13,12]. It refers to a specific parameterization of the
following predator-prey model.

y1
′(t) = p1y1(t)− p2y1(t)y2(t)

y2
′(t) = p2y1(t)y2(t)− p3y2(t)

For our test problem, the parameters and initial conditions are chosen to
be p1 = 1, p2 = 1, p3 = 1, y1(0) = 1, y2(0) = 0.3, and t ∈ [0, 20].

3.2.2 Kermack-McKendrick Model

This DDE system models the spread of disease within a population, where
there are periodic outbreaks [6].

y1
′(t) = −y1(t)y2(t− τ1) + y2(t− τ2)

y2
′(t) = y1(t)y2(t− τ1)− y2(t)

y3
′(t) = y2(t)− y2(t− τ2)

For convenience, we denote the initial conditions as y(0) = [a, b, c]. For our
test problem, the parameters are chosen to be a = 5, b = 0.1, c = 1, τ1 = 1,
τ2 = 10, and t ∈ [0, 55].

3.2.3 Determining the Order of Discontinuities to Track in the adjoint DDEs

First, we investigate what order of discontinuity it is necessary to track, in
order to obtain reasonable performance when approximating the adjoint DDE.
Note that since we use reliable error control when approximating the adjoint
IVP, even if we only track the jump discontinuities occurring at each of our
observations, we should still obtain accurate sensitivities. This is illustrated
in Table 1. However, we see that we end up either taking extra steps in order



Numerical Methods for Computing Sensitivities for ODEs and DDEs 13

Table 1 For several tolerances and maximum orders of discontinuity to track, we report the
computer time taken by the adjoint method (including the time required for approximating
the forward IVP) and the number of steps taken during the simulation of the adjoint IVP.
This is done for the Kermack-McKendrick test problem, with no = 5.

Max Order Tol Max Rel Error Time Adjoint Steps

0 0.001 0.00704 0.0144 106
1 0.001 0.00678 0.0135 101
2 0.001 0.00705 0.0131 106
3 0.001 0.00702 0.0145 127
4 0.001 0.00695 0.0168 159
5 0.001 0.0077 0.0183 182
6 0.001 0.00733 0.0197 204
7 0.001 0.00764 0.0214 231
8 0.001 0.00748 0.023 257

0 0.0001 0.000236 0.0228 165
1 0.0001 0.000236 0.0179 135
2 0.0001 0.000236 0.0163 131
3 0.0001 0.000236 0.0165 144
4 0.0001 0.000236 0.0176 167
5 0.0001 0.000236 0.0194 191
6 0.0001 0.000236 0.0206 213
7 0.0001 0.000236 0.0223 239
8 0.0001 0.000236 0.024 265

0 1e-05 5.39e-05 0.0369 282
1 1e-05 5.39e-05 0.0223 182
2 1e-05 5.39e-05 0.0186 163
3 1e-05 5.39e-05 0.019 175
4 1e-05 5.39e-05 0.0206 200
5 1e-05 5.39e-05 0.0223 224
6 1e-05 5.39e-05 0.0233 243
7 1e-05 5.39e-05 0.0244 263
8 1e-05 5.39e-05 0.0255 283

to satisfy the error requirements or we take extra steps when we force the
integration to stop at locations of all the identified discontinuities, which are
not based on controlling the local truncation error of the adjoint IVP. Given
these results, we only track discontinuities in the solution of the adjoint DDE
and its first and second derivatives for the remainder of our experiments. (The
resulting error control for the adjoint IVP will be less reliable but adequate
for most problems.)

3.2.4 Dependence on no

We also investigate how many observations we can have before the cost of the
adjoint approach is prohibitively expensive, relative to that associated with
solving the variational equations. For the case of ODEs, we consider the Barnes
problem. As we can see in Figure 2, the adjoint approach requires less computer
time than the variational approach up to around 400 observations. We also
note that for small numbers of observations, the adjoint method performs fairly
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Fig. 2 For TOL = 10−6, we plot the time taken by the adjoint and variational approaches
versus the number of observations for the Barnes ODE. We also show how using a fourth
order RK method with no error control for the adjoint ODE can reduce the computer time.

consistently, up until the spacing of the observations begins to restrict the step
size the solver is able to take. For the variational approach, the cost remains
flat, since increasing no only increases the number of off mesh interpolations
we have to make in evaluating (5), which is much cheaper than the cost of
simulating the variational equations.

For DDEs, we consider the Kermack-McKendrick model. As we see in Fig-
ure 3, the cost of the adjoint approach depends strongly on the number of
observations. For example, with TOL = 10−5, the adjoint method is already
more expensive than the variational approach when there are more than 6
observations.

3.2.5 Low Order Method for Approximating the Adjoint Differential
Equations

As discussed above, if we have a large number of observations, then our step
size during solution of the adjoint equation might be severely restricted by
having to restart the integration at each observation point rather than by
only having to ensure the numerical accuracy of the solution be obtained. In
such cases, it might be more efficient to use a lower order RK method for
the adjoint ODEs or a lower order CRK method for the adjoint DDEs. As an
example, for the ODE model, we have applied a fixed step size fourth order
RK method (denoted RK4), with no associated error control, to the associated
adjoint IVP. The impact on the cost is shown in Figure 2. We see that by using
the lower order solver for the adjoint ODE, we are able to handle around 2400
observations before the adjoint method requires more computer time than the
variational approach. On the other hand, the accuracy and reliability of the
error in the approximate solution of the adjoint IVP will be reduced.
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Fig. 3 For different tolerances, we plot the time taken by the adjoint (blue) and variational
(black) approaches versus the number of observations for the Kermack-McKendrick DDE.

4 Discussion

4.1 Effect of the number of Delays in DDEs

Recall that the variational approach requires approximating the matrix valued
IVP,

d

dt
yp(t) = fy(t)yp(t) + fp(t) + fν(t)yp(t− τ)− y′(t− τ)τp. (20)

If we have more than one delay, nd > 1, then fν(t)yp(t− τ)− y′(t− τ)τp on
the RHS of (20) is replaced by,

nd∑
i=1

fνi
(t)yp(t− τi)− y′(t− τi)τip,

where νi = y(t− τi). As such, we see that the cost of computing the RHS of
(20) will have a linear dependence on the number of delays. For the adjoint
approach, recall that the adjoint matrix valued IVP is given by,

λ̇
T

(t) = gy(t)−λT (t)fy(t)−λT (t+ τ)fν(t+ τ) ;λT (t) = 0, for t ≥ T , (21)

and the sensitivities are given by,

Jp = −
∫ T

0

λT (t)
(
fν(t)y′(t− τ)αp(t) + fp(t)

)
dt (22)

−λT (0)yp(0)−
∫ 0

−τ
λT (t+ τ)fν(t+ τ)hp(t) dt.
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For the case of multiple delays, we have that the term λT (t+ τ)fν(t+ τ),
on the RHS of both (21) and (22), is replaced by,

nd∑
i=1

λT (t+ τi)fνi
(t+ τi), (23)

and fν(t)y′(t− τ)αp(t) on the RHS of (22) is replaced by,

nd∑
i=1

fνi
(t)y′(t− τi)αip(t). (24)

For each τi, in order to evaluate fνi
(t+τi) in (23), we require y(t+τi−τj),

for each j = 1, . . . , nd. Hence, the cost of approximating (21) and (22) will
require work proportional to the square of the number of delays, and the cost
of evaluating (24) will be linear in the number of delays. Furthermore, we also
have to restart the solver each time we encounter a discontinuity in y, λ, or
any of their low order derivatives. This means that we have to restart each
time y(t + τi − τj) (or one of its derivatives) has a discontinuity, as well as

whenever λT (t+ τi) (or one of its derivatives) has a discontinuity.

4.2 Parallelism

Up to now, we have been assuming that we would be implementing the differ-
ent approaches in a sequential computing environment. In real applications,
we would like to exploit parallelism where possible. For both the adjoint and
variational approaches, it is possible to divide the work based on subsets of
the parameters and distribute the work amongst the available processors. Note
that since both the variational and adjoint systems are linear (and possibly
homogeneous) systems of differential equations, the principle of superposition
applies and this observation can lead to opportunities to exploit parallelism.
For the variational approach, this means that each column of yp can be ap-

proximated independently in parallel. For the adjoint approach, λT (t) is a
vector, so we can not take advantage of superposition to efficiently approxi-
mate λT (t). However, once we have approximated λT (t), we can evaluate each
component of Jp in parallel.

5 Conclusions and Future Work

We have discussed the variational and adjoint approaches for computing model
sensitivities and sensitivities for a LSQ objective function. We identified how
the cost of the adjoint approach can be much more sensitive to the number
of observations than the variational approach and demonstrated how using a
low order RK scheme for simulating the adjoint IVP can reduce the cost in
the ODE case. We also discussed how, for DDEs, the cost of the variational
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approach scales linearly with the number of delays, while the cost scales with
the square of the number of delays for the adjoint approach.

The DDEM package requires the user to provide code for computing the
partials of the functions specifying the DDE system. Currently, we symboli-
cally compute these partials in a pre-processing step, which provides us with
the source code to compute them at runtime. Alternatively, we could use Au-
tomatic Differentiation [3] (AD) to compute the partials at runtime. In future,
we will explore how this choice impacts performance.

We also plan to consider the case of larger scale models (where ny is very
large) and the adjoint approach is often used [10]. For the case of LSQ, we
would like to see how many observations are needed before the adjoint ap-
proach becomes less effective for these problems. We also plan to further
investigate and quantify the potential of exploiting parallelism in both the
adjoint and variational approaches for problems that have special structure.
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