
Chapter 7:
Modifying Samples in a Range

Knowing where we are in the
sound
More complex operations require us to know where

we are in the sound, which sample
Not just process all the samples exactly the same

Examples:
Reversing a sound

 It’s just copying, like we did with pixels
Changing the frequency of a sound

 Using sampling, like we did with pixels
Splicing sounds

>>> print range(1,3)
[1, 2]
>>> print range(3,1)
[]
>>> print range(-1,5)
[-1, 0, 1, 2, 3, 4]
>>> print range(1,100)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … 99]

def increaseVolumeByRange(sound):
 for sampleNumber in range(0, getLength(sound)):
 value = getSampleValueAt(sound, sampleNumber)
 setSampleValueAt(sound, sampleNumber, value * 2)

def increaseVolume(sound):
 for sample in getSamples(sound):
 value = getSample(sample)
 setSample(sample,value * 2)

This really is the same as:

The index lets us modify parts of the sound now -
e.g. here we increase the volume in the first half,
and then decrease it in the second half.

def increaseAndDecrease(sound):
 length = getLength(sound)
 for index in range(0, length/2):
 value = getSampleValueAt(sound,
index)
 setSampleValueAt(sound, index,
value*2)
 for sampleIndex in range(length/2,
length):
 value = getSampleValueAt(sound,
index)
 setSampleValueAt(sound, index,
value*0.2)

Square brackets ([]) are standard notation
for arrays (or lists). To access a single array
element at position index, we use
array[index]
>>> myArray = range(0,
100)
>>> print myArray[0]
0
>>> print myArray[1]
1
>>> print myArray[99]
99

Splicing Sounds
Splicing gets its name from literally cutting and

pasting pieces of magnetic tape together
Doing it digitally is easy (in principle), but

painstaking
The easiest kind of splicing is when the component

sounds are in separate files.
All we need to do is copy each sound, in order, into a

target sound.
Here’s a recipe that creates the start of a sentence,

“Guzdial is …” (You may complete the sentence.)

Splicing whole sound files
def merge():
 guzdial =
makeSound(getMediaPath("guzdial.wav"))
 isSound = makeSound(getMediaPath("is.wav"))
 target =
makeSound(getMediaPath("sec3silence.wav"))
 index = 0
 for source in range(0, getLength(guzdial)):
 value = getSampleValueAt(guzdial, source)
 setSampleValueAt(target, index, value)
 index = index + 1
 for source in range(0,
int(0.1*getSamplingRate(target))):
 setSampleValueAt(target, index, 0)
 index = index + 1
 for source in range(0, getLength(isSound)):
 value = getSampleValueAt(isSound, source)
 setSampleValueAt(target, index, value)
 index = index + 1
 normalize(target)
 play(target)
 return target

How it works
Creates sound objects for the words “Guzdial”, “is”

and the target silence

Set target’s index to 0, then let each loop increment
index and end the loop by leaving index at the next
empty sample ready for the next loop

The 1st loop copies “Guzdial” into the target

The 2nd loop creates 0.1 seconds of silence

The 3rd loop copies “is” into the target

Then we normalize the sound to make it louder

Splicing words into a speech
Say we want to splice pieces of speech together:

We find where the end points of words are
We copy the samples into the right places to make the

words come out as we want them
(We can also change the volume of the words as we

move them, to increase or decrease emphasis and make
it sound more natural.)

Finding the word end-points
Using MediaTools and play

before/after cursor, we can
figure out the index
numbers where each word
ends

We want to splice a copy of
the word “United” after
“We the” so that it says,
“We the United People of
the United States”.

Now, it’s all about copying
We have to keep track of the source and target

indices, srcSample and destSample

destSample = Where-the-incoming-sound-should-start
for srcSample in range(startingPoint, endingPoint):
 sampleValue = getSampleValueAt(source, srcSample)
 setSampleValueAt(dest, destSample, sampleValue)
 destSample = destSample + 1

def splicePreamble():
 file = getMediaPath(“preamble10.wav”)
 source = makeSound(file)
 target = makeSound(file) # This will be the newly spliced sound
 targetIndex =17408 # targetIndex starts at just after "We the" in the new sound
 for sourceIndex in range(33414, 40052): # Where the word "United" is in the sound
 setSampleValueAt(target, targetIndex, getSampleValueAt(source, sourceIndex))
 targetIndex = targetIndex + 1
 for sourceIndex in range(17408, 26726): # Where the word "People" is in the sound
 setSampleValueAt(target , targetIndex, getSampleValueAt(source, sourceIndex))
 targetIndex = targetIndex + 1
 for index in range(0, 1000): #Stick some quiet space after that
 setSampleValueAt(target, targetIndex, 0)
 targetIndex = targetIndex + 1
 play(target) #Let's hear and return the result
 return target

What’s going on here?
First, set up a source and target.
Next, we copy “United” (samples 33414 to

40052) after “We the” (sample 17408)
 That means that we end up at 17408+(40052-33414) =

17408+6638=24046
 Where does “People” start?

Next, we copy “People” (17408 to 26726)
immediately afterward.
 Do we have to copy “of” to?
 Or is there a pause in there that we can make use of?

Finally, we insert a little (1/1441th of a second)
of space – 0’s

def spliceSimpler():
 file = getMediaPath(“preamble10.wav”)
 source = makeSound(file)
 target = makeSound(file) # This will be the newly spliced sound
 targetIndex =17408 # targetIndex starts at just after "We the" in the new sound
 for sourceIndex in range(33414, 40052): # Where the word "United" is in the sound
 setSampleValueAt(target, targetIndex, getSampleValueAt(source, sourceIndex))
 targetIndex = targetIndex + 1

 # Let's hear and return the result
 play(target)
 return target

We can simplify those splicing functions if we had a general
clip method that took a start and end index and returned a
new sound clip with just that part of the original sound in it.

def clip(source, start, end):
 target = makeEmptySound(end - start)
 tIndex = 0
 for sIndex in range(start, end):
 value = getSampleValueAt(source, sIndex)
 setSampleValueAt(target, tIndex, value)
 tIndex = tIndex + 1
 return target

We can also simplify splicing if we had a general copy method
that took a source and target sounds and copied the source
into the target starting at a specified target location.

def copy(source, target, start):
 tIndex = start
 for sIndex in range(0, getLength(source)):
 value = getSampleValueAt(source, sIndex)
 setSampleValueAt(target, tIndex, value)
 tIndex = tIndex + 1

Now we can use these functions to insert “United” into the
preamble in a much simpler way.

def createNewPreamble():
 file = getMediaPath("preamble10.wav")
 preamble = makeSound(file) # old
preamble
 united = clip(preamble, 33414, 40052) #
"United"
 start = clip(preamble, 0, 17407) # "We
the"
 end = clip(preamble, 17408, 55510) # the
rest
 len = getLength(start) + getLength(united)
 len = len + getLength(end) # length of
everything
 newPre = makeEmptySound(len) # new
preamble
 copy(start, newPre, 0)
 copy(united, newPre, getLength(start))
 copy(end, newPre, getLength(start)
+getLength(united))
 return newPre

Changing the splice
What if we wanted to increase or decrease the

volume of an inserted word?
Simple! Multiply each sample by something as it’s

pulled from the source.
Could we do something like slowly increase volume

(emphasis) or normalize the sound?
Sure! Just like we’ve done in past programs, but instead

of working across all samples, we work across only the
samples in that sound!

Reversing Sounds
We can also modify sounds by reversing them
def reverse(source):
 target = makeEmptySound(getLength(source))
 sourceIndex = getLength(source) - 1 # start at end
 for targetIndex in range(0, getLength(target)):
 value = getSampleValueAt(source, sourceIndex)
 setSampleValueAt(target, targetIndex, value)
 sourceIndex = sourceIndex - 1 # move backwards
 return target

Mirroring
We can mirror sounds in exactly the same way we

mirrored pictures
def mirrorSound(sound):
 len = getLength(sound)
 mirrorpoint = len/2
 for index in range(0, mirrorpoint):
 left = getSampleObjectAt(sound, index)
 right = getSampleObjectAt(sound, len-index-1)
 value = getSampleValue(left)
 setSampleValue(right, value)

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Objectives
	Knowing where we are in the sound
	Using for to count with range
	Increasing volume by sample index
	Modify different sound sections
	Array References
	Splicing Sounds
	Splicing whole sound files
	How it works
	Splicing words into a speech
	Finding the word end-points
	Now, it’s all about copying
	The Whole Splice
	What’s going on here?
	What if we didn’t do that second copy? Or the pause?
	General clip function
	General copy function
	Simplified preamble splice
	Changing the splice
	Reversing Sounds
	Mirroring

