
A BRIEF INTRODUCTION TO MATLAB
by

Christina Christara and Winky Wai

December 2001, last rev. September 2021

1. What is MATLAB?

MATLAB is an object-oriented high-level interactive
software package for scientific and engineering numerical
computations. Its name stands for matrix laboratory. MAT -
LAB enables easy manipulation of matrix and other computa-
tions without the need for traditional programming. MAT-
LAB’s basic data element is the matrix.

2. How to use MATLAB.

MATLAB can be started up by the
% matlab -nodesktop
or the
% matlab
commands at the Unix shell prompt. The matlab
-nodesktop command starts up MATLAB in your current
window (most likely an xterm), and can work on any ASCII
terminal; it gives you a simple and light ASCII interface, still
including plots, assuming you are running Xwindows. The
matlab command starts up MATLAB in a new window of
the console you are on, assuming you are running Xwindows;
it gives you a more powerful, but also complex and heavy
interface. With matlab you will get one main window with
various menus and buttons, and one (or more) inner windows,
(e.g. a Command Window, a History Window, etc.), the col-
lection of which is called desktop environment. If you run
matlab, it is suggested that you start it up with matlab &,
so that you can re-use the window in which you started it.
Note that you can not get the desktop environment from a
non-Xwindow system. Thus, if you are at home using a PC
and Windows, and run ssh or putty to greywolf.cdf, the
command matlab will give you the simple ASCII interface.
The standard MATLAB prompt is >> . In the following,
whatever follows >> on a line starting with >> is typed by
the user at the MATLAB prompt.

To quit MATLAB, type
>> quit
or
>> exit

2.1. M-files, functions and scripts.

MATLAB has a lot of built-in functions. It also allows
users to define their own. Functions are saved in M-files,
called so because the filename ends in .m. Functions may
have one or more input parameters and may return one or
more output variables. A M-file does not always need to be a
function. It can also be a long sequence of MATLAB state-
ments, i.e. a script. Scripts have neither formal input parame-
ters, nor formal output variables.

2.2. Invoking MATLAB functions and scripts.

To execute a function M-file, type the name of the file
without the .m extension, followed by the input arguments in
parentheses. Should you need to save the output variables,
precede the call by the output variables (in square brackets if
more than one) and the ‘=’ sign. For example,
>> lu(A)
displays the LU decomposition of matrix A, while
>> [L, U] = lu(A)
also saves the lower and upper triangular factors in matrices L
and U respectively.

To execute a script M-file, just type the name of the file
without the .m extension.

When MATLAB executes a statement in which a func-
tion or script is invoked, it checks if it is a built-in function.
If it is not a built-in function, it assumes it is a user-defined
function or script and goes through a search path of directo-
ries to look for that function/script. The first directory on the
path is the current directory that you start up MATLAB. If
the function/script is not found in this directory, MATLAB
searches in a directory called matlab under your home
directory. You can build up your own MATLAB library by
creating such a directory and putting the M-files of all func-
tions/scripts you write in it. Such a setup will allow the func-
tions and scripts in the matlab directory to be used no mat-
ter in which directory you run MATLAB.

2.3. Setting your environment.

You can pick a directory name other than the default
matlab for your own MATLAB library, if you wish. For
example, suppose you want to have the M-files corresponding
to your own MATLAB functions and scripts in a directory
called ownfunc under your home directory. Then, include
the following line in your .cshrc file (this file is in your
home directory):

setenv MATLABPATH $HOME/ownfunc
Here, $HOME is the shell environment variable that gives the
name of your home directory. You can arrange to have your
MATLAB functions/scripts in more than one directory or
subdirectory, if you wish. For example, suppose you want to
have some functions/scripts in ownfunc, and some other
functions/scripts in the directory morefunc under your 350
directory. Then, include the following line in your .cshrc
file instead
setenv MATLABPATH $HOME/350/morefunc:$HOME/ownfunc

To find out what is the search path of MATLAB, after you get
into MATLAB, type
>> path

A brief introduction to MATLAB 1 © C. Christara and W. Wai, 1992-2021

2.4. On-line help.

MATLAB offers a lot of on-line help. Type
>> help
to get all the help topics and
>> help topic
to get information on any MATLAB topic. For example,
>> help inv
will tell you how to use the inv built-in function that gives the
inverse of a matrix. To get on-line help through a html win-
dow environment, type
>> helpwin

2.5. Command line editing.

MATLAB allows command line editing. That is, you
can use arrow keys at the MATLAB prompt to correct
mistyped commands, or to recall previous commands. The
following is a summary of the line editing commands:

Up Arrow, Ctrl-P recall previous line
Down Arrow, Ctrl-N recall next line
Left Arrow, Ctrl-B move left one character
Right Arrow, Ctrl-F move right one character
Back Space, Ctrl-D delete character at cursor
Delete delete character before the cursor
Ctrl-L move left one word
Ctrl-R move right one word
Ctrl-A move to beginning of line
Ctrl-E move to end of line
Ctrl-K delete to end of current line
Ctrl-U cancel current line
Ctrl-T toggle insert and overtype mode

3. MATLAB statements.

A MATLAB statement is of the form
variable = expression

The above statement assigns the result of expression to the
variable. Variables’ names are case sensitive in MATLAB.

A MATLAB statement can also be simply
expression

in which case the result is assigned to the default variable
ans. ans is a special variable in MATLAB. It saves the result
of the last execution of a MATLAB command when that
result is not explicitly saved in a user-specified variable.
Finally, a MATLAB statement can also be simply

variable

in which case, if the variable was previously assigned a
value, no assignment or calculation takes place, otherwise a
warning about an undefined variable is displayed.

MATLAB statements are executed when they are fol-
lowed by a carriage return (newline). By default, MATLAB
statements followed by a carriage return (newline) echo their
result(s) on the standard output. If you wish to suppress

automatic echoing, follow the MATLAB statement by a

semicolon (;), then by a carriage return.
Examples of MATLAB statements:
>> 100 + (32-17)*5 + 2ˆ3

results in doing the calculation 100 + (32-17)*5 + 23 and out-
puting the result as follows

ans =
183

while
>> a = 1.1
results in assigning the value 1.1 to variable a and echoing
the result as follows:
a =

1.1000
On the other hand,
>> b = 2;
results in assigning the value 2 to variable b without echoing
and
>> b
results in outputing the value of variable b as previously
assigned.
b =

2

To clear all variables from the workspace, type
>> clear
To clear a particular variable, say var, type
>> clear var

In MATLAB, whatever follows the percent mark (%) in
the same line is considered a comment.

When a MATLAB statement is long to fit on one line, it
can be split in two (or more) lines using the ... continuation
mark in each but the last line of the statement.
>> % this is a comment
>> % the following is an example of a long
>> % statement split in two lines
>> avariablewithalongname = 100 + (32-17)*5 ...

+ 2ˆ3 - log(10)/log(2)
avariablewithalongname =
179.6781

4. Relational and logical operators in MATLAB.

The following are the relational and logical operators
of MATLAB:

Relational Operator Meaning

< less than
<= less than or equal
> greater than

>= greater than or equal
== equal
˜= not equal

Logical Operator Meaning

& AND
| OR
˜ NOT
0 FALSE

non-zero number TRUE

5. Working with matrices in MATLAB.

MATLAB requires neither the dimension of matrices
nor the type of their entries to be specified. The simpliest
way to declare a matrix is to directly list its entries (row-by-
row) enclosed in square brackets and assign the result to a

A brief introduction to MATLAB 2 © C. Christara and W. Wai, 1992-2021

variable:
>> A = [1 2 3 ; 4 5 6 ; 7 8 9]
will result in the output
A =

1 2 3
4 5 6
7 8 9

Matrix entries in the same row are separated by one or more
blank spaces (or by a comma), while rows are separated by a
semicolon. If the matrix is large, we can put each row in one
line. That is,
>> A = [1 2 3

4 5 6
7 8 9]

will give us the same result, as above.

To refer to a matrix entry that has been assigned earlier,
type the matrix variable name followed by (i, j), where i
is the row index and j is the column index of the entry. For
example, assuming the previous declaration of the matrix A,
>> A(2, 3)
results in
ans =

6

The dimension of matrices in MATLAB is set dynami-
cally. It can be changed on demand. Executing
>> A(4, 3) = 10
will give
A =

1 2 3
4 5 6
7 8 9
0 0 10

The size of the matrix is changed automatically to accommo-
date the new element, and the old values are kept. Any unde-
fined elements are set to 0. The built-in function size

gives the size of a matrix. The built-in function size gives
the size of a matrix. Assuming A is an already defined
matrix, the multiple assignment statement
>> [m, n] = size(A)
assigns to m and n the number of rows and columns of A,
respectively.

In MATLAB, it is easy to extract parts of the matrix.
>> A(i:j, k:l)
gives the submatrix of A defined by rows i through j and
columns k through l of matrix A. If the index is just a colon
(:), without numbers that define a range, all rows or all col-
umns of the matrix are included. For example,
>> A(:, k:l)
gives the submatrix of A defined by columns k through l of
all rows of matrix A.

In general, the colon can be used to generate a
sequence of numbers forming a vector (or one-dimensional
matrix).
>> m:k:n
gives a list of numbers, starting from m and ending to n with
step k and
>> m:n

gives a list of numbers, starting from m and ending to n with
step 1.

Matrix concatenation can also be easily done. If A and
B are two matrices of the same number of rows,
>> C = [A B]
creates a matrix C, with the same number of rows as A and B.
The number of columns of C is the sum of the number of col-
umns of A and B, with the columns of A followed by the col-
umns of B. On the other hand, if A and B are two matrices of
the same number of columns,
C = [A; B]
creates a matrix C, with the same number of columns as A
and B. The number of rows of C is the sum of the number of
rows of A and B, with the rows of A followed by the rows of
B.

Some basic operations on matrices:
A’ transpose of A
inv(A) inverse of matrix A
A + B matrix addition
A - B matrix subtraction
A * B matrix multiplication
A \ B left multiplication of B by inverse of A if

A is not singular. i.e. same as inv(A)*B
B / A right multiplication of B by inverse of A if

A is not singular. i.e. same as B*inv(A)
A .* B element-wise matrix multiplication
A .\ B element-wise division (right divided by left)
B ./ A element-wise division (left divided by right)

6. Saving output and plots from MATLAB.

Typing
>> diary outfile
causes a copy of all subsequent terminal input and the result-
ing output, except plots, to be written to the file outfile. If
the file already exists, the result is appended to the file. Typ-
ing
>> diary off
suspends the above copying to the file.

To produce a hard copy of the graphs, use
>> print plotfile.ps
after each statement that does a plot. This creates (over-

writes) the postscript file plotfile.ps. Graphs are accu-
mulated if the file plotfile.ps, if you use
>> print -append plotfile.ps
To get the graphs printed on paper, type
% lpr plotfile.ps
at the Unix shell prompt.

7. Simple examples.

>> % matrix multiplication
>> A = [1 0 1; 0 1 1; 1 1 1]
A =

1 0 1
0 1 1
1 1 1

A brief introduction to MATLAB 3 © C. Christara and W. Wai, 1992-2021

>> B = [1 2; 3 4; 5 6]
B =

1 2
3 4
5 6

>> A*B
ans =

6 8
8 10
9 12

>> % save the result in C
>> C = A*B
C =

6 8
8 10
9 12

>> % see again the contents of A
>> A
A =

1 0 1
0 1 1
1 1 1

>> % find the determinant of A
>> det(A)
ans =

-1
>> % find the inverse of A
>> inv(A)
ans =

0 -1 1
-1 0 1
1 1 -1

>> % find the eigenvalues of A
>> eig(A)
ans =

1.0000
2.4142

-0.4142
>> % Find the eigenvectors/values of A
>> % and save them in ec/el, respectively.
>> % Each column of ec is an eigenvector of A.
>> % The diagonal entries of el are the
>> % eigenvalues of A.
>> [ec, el] = eig(A)
ec =

-0.7071 0.5000 -0.5000
0.7071 0.5000 -0.5000
0.0000 0.7071 0.7071

ev =
1.0000 0 0

0 2.4142 0
0 0 -0.4142

>> % see the transpose of C
>> C’

ans =
6 8 9
8 10 12

>> % matrix multiplications with wrong dimensions
>> V = [1; 2; 3; 4]
V =

1
2
3
4

>> A*V
??? Error using ==> *
Inner matrix dimensions must agree.

>> % solving a linear system Ax = b
>> A = [1 2 3; 4 5 0; 7 8 9]
A =

1 2 3
4 5 0
7 8 9

>> b = [5; -4; 11]
b =

5
-4
11

>> x = A\b % note the backslash!
x =

-1
0
2

>> % concatenation of matrices
>> % append columns
>> D = [A B]
D =

1 2 3 1 2
4 5 0 3 4
7 8 9 5 6

>> % append rows
>> E = [A; B’]
E =

1 2 3
4 5 0
7 8 9
1 3 5
2 4 6

>> % a simple plot -- try it on a workstation
>> % define two vectors (one-dimensional matrices)
>> % and plot one versus the other
>> x = [1 2 3 4 5];
>> y = [10 100 1000 10000 1e5];
>> plot(x, y)
>> % try logarithmic with respect to y scale
>> semilogy(x, y)

A brief introduction to MATLAB 4 © C. Christara and W. Wai, 1992-2021

>> % An example of a function
>> % Suppose we have the following function
>> % saved in the file addmat.m:

function [C, m, n] = addmat(A, B)
% Add matrices A and B and return
% the sum C and its dimensions.
% This block comment will be displayed
% if the user types ‘‘help addmat’’.

% first check if the dimensions match
if (any(size(A) ˜= size(B)))

error(’matrices’’ dimensions don’’t agree’)
end
[m, n] = size(A);
% do the addition using a traditional for-loop
for i = 1:m

for j = 1:n
C(i, j) = A(i, j) + B(i, j);

end
end
% this is the end of file addmat.m

>> % An example of using the function addmat
>> % Define two matrices of same dimensions
>> % A is the identity matrix of size 3
>> A = eye(3)
A =

1 0 0
0 1 0
0 0 1

>> % B is a 3x3 matrix of 4’s
>> B = 4*ones(3, 3)
B =

4 4 4
4 4 4
4 4 4

>> % compute C = A + B
>> [C, m, n] = addmat(A, B)
C =

5 4 4
4 5 4
4 4 5

m =
3

n =
3

>> % the same result is obtained using MATLAB’s
>> % high-level programming constructs and
>> % built-in functions
>> C = A + B
C =

5 4 4
4 5 4
4 4 5

>> [m, n] = size(A)

m =
3

n =
3

8. Sparse matrices

Several applications result in large sparse matrices.
Storage and manipulation of such matrices in dense form is at
best inefficient and at worst impossible. MATLAB provides
sparse storage and special functions for such matrix computa-
tions. For example, the following MATLAB code
>> n = 10;
>> e = ones(nˆ2, 1);
>> S = spdiags([-e, -e, 4*e, -e, -e], ...

[-n, -1, 0, 1, n], nˆ2, nˆ2);

generates a sparse matrix S, of size n2 × n2, with 5 nonzero
bands, the main diagonal (all 4s), the subdiagonal, the super-
diagonal, and another 2 diagonals at distance n from the main
diagonal (all 1s). With
>> spy(S)
we can visualise the sparsity pattern of the matrix S (on a
workstation). Try
>> help sparfun
to find out all the built-in functions related to sparse matrices.

9. More examples.

>> % diag is a very useful function
>> % diag(A), where A is a matrix,
>> % returns the main diagonal of A
>> C
C =

6 8
8 10
9 12

>> diag(C)
ans =

6
10

>> % diag(A, n), where A is a matrix,
>> % returns the nth superdiagonal of A, if n > 0,
>> % and the |n|th subdiagonal of A, if n < 0
>> diag(C, 1)
ans =

8
>> diag(C, -1)
ans =

8
12

>> % diag(V), where V is a vector,
>> % returns a diagonal matrix with V on its
>> % main diagonal
>> V = 1:4
V =

1 2 3 4

A brief introduction to MATLAB 5 © C. Christara and W. Wai, 1992-2021

>> diag(V)
ans =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

>> % diag(V, n), where V is a vector,
>> % returns a diagonal matrix with V on its
>> % nth superdiagonal, if n > 0,
>> % and on its |n|th subdiagonal, if n < 0.
>> diag(V, 1)
ans =

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

>> diag(V, -1)
ans =

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

>> % more advanced examples
>> n = 5;
>> 3*eye(n) - diag(ones(n-1, 1), -1) ...
+ 2*diag(ones(n-1, 1), +1)

ans =
3 2 0 0 0

-1 3 2 0 0
0 -1 3 2 0
0 0 -1 3 2
0 0 0 -1 3

>> 3*eye(n) - diag(diag(ones(n-1)), -1) ...
+ 2*diag(diag(ones(n-1)), +1)

ans =
3 2 0 0 0

-1 3 2 0 0
0 -1 3 2 0
0 0 -1 3 2
0 0 0 -1 3

>> % three different ways of defining
>> % the same vector
>> % first, using colon
>> v = 1:n
v =

1 2 3 4 5
>> % second, using concatenation
>> v = [];
>> for j = 1:n

v = [v j];
end

>> v

v =
1 2 3 4 5

>> % third, using a traditional for-loop
>> clear v
>> for j = 1:n

v(j) = j;
end

>> v
v =

1 2 3 4 5
>> % Among the above 3 ways of defining a vector
>> % the first (colon) is the fastest and neatest.

>> % a component-wise vector operation
>> w = 10.ˆv
w =

10 100 1000 10000 100000
>> % another vector
>> u = 1:2:2*n
u =

1 3 5 7 9

>> % two vectors plotted versus the same vector
>> % note the diacritical marks to distinguish
>> % the two lines plotted
>> semilogy(v, w, ’+’, v, u, ’o’)
>> % note the different types of lines and colors
>> semilogy(v, w, ’y-’, v, u, ’c--’)
>> % diacritical marks, lines and colors altogether
>> % semilogy(v, w, ’+’, v, u, ’o’, ...

v, w, ’y-’, v, u, ’c--’)

10. For more information.

The file /u/ccc/matlab.primer.ps on the CDF
machines is a brief but comprehensive introduction to MAT-
LAB, based on a previous version of MATLAB, version 4.
Although there are differences between versions 4 and 6, it is
still a useful source of information. You can view the file by
the command
% gv /u/ccc/matlab.primer.ps
given at the Unix shell prompt on any Xwindow workstation.

You may also wish to take a look at the main MATLAB
web-page, the MathWorks page, at http://www.math-
works.com, for books, software, news, newsgroups and on-
line documentation about MATLAB.

Please note that "The Student Edition of MATLAB",
which runs on personal computers, may have some limita-
tions which the CDF version does not have.

A brief introduction to MATLAB 6 © C. Christara and W. Wai, 1992-2021

