 What is MATLAB and how to start it up? MATrix LABoratory Object-oriented high-level interactive software package for scientific and engineering numerical computations. Enables easy manipulation of matrix and other computations Can handle symbolic computation, but is not specifically tailored to do that. To start up MATLAB on CDF (teach.cs) type % matlab -nodesktop or % matlab &	 Exception: when the semicolon or the newline are inside the brackets' list of the matrix entries, they both denote end of a matrix row. MATLAB is case sensitive, i.e. variable A is different than variable a. (Maple is case sensitive too.) Whatever follows the % symbol on a line is a comment. (In Maple, the comment symbol is #) When a MATLAB statement is too long to fit on one line, it can be split in two (or more) lines using the continuation mark in each but the last line of the statement (see example on page after the next). (In Maple, if there is no colon or semicolon, it is assumed that the statement continues in the next line.)
	MATLAB tutorial 3 © C. Christara, 2023-24
An example of MATLAB code	Using MATLAB interactively
 An example of MATLAB code A = [1 2 3; 4 5 6]; % define the entries of a 2x3 matrix x = [-1; 0; -2]; % define the entries of a 3x1 vector b = A*x % compute and output the product A*x % and save it in b The above piece of code sets the entries of a 2×3 matrix A and a 3×1 vector x, then computes the matrix vector product Ax and sets the result to (2×1 vector) b. Thus, A = [1 2 3 / 4 5 6], x = [-1 0 / 2], b = Ax = [-7 / -16] The assignment operator is = (In Maple, it is :=). The semicolon (;) causes suppression of echoing the result of assignment/computations. (In Maple, the semicolon causes echoing the result and the colon (:) causes suppression of echoing). (See exception) The newline (<return> or <enter>) denotes the end of a statement. (The comma can also be used to denote the end of a statement.) If no semicolon precedes the newline, the result of the statement will be echoed. (In Maple, a statement ends with colon or semicolon. The newline does not denote anything specific.) (See exception)</enter></return> 	Using MATLAB interactively Recall that whatever follows >> on a line starting with >> is typed by the user at the MATLAB prompt. The rest is output echoed by MATLAB. >> A = $[1 2 3; 4 5 6];$ >> x = $[-1; 0; -2];$ >> b = A*x b = -7 -16 >> A = $[1 2 3; 4 5 6]$ A = 1 2 4 5 >> x = $[-1; 0; -2]$ x = -1 0 -2

	Matrices (arrays)			
<pre>>> 100 + (32-17)*5 + 2^3 + exp(1.1) ans = 186.0042 >> exp(1.1) ans =</pre>	 MATLAB requires neither the dimension of matrices nor the type of their entries to be specified. The simplest way to declare a matrix is to directly list its entries (row-by-row) enclosed in square brackets and assign the result to a variable. For example, >> A = [1 2 3 ; 4 5 6 ; 7 8 9] will result in the output A = 1 2 3 4 5 6 7 8 9 Matrix entries in the same row are separated by one or more blank spaces (or by a comma), while rows are separated by a semicolon. If the matrix is large, we can put each row in one line. That is, >> A = [1 2 3 4 5 6 7 8 9] will give us the same result, as above. To refer to a matrix entry that has already been assigned a value, type the matrix variable name followed by (i, j), where i is the row index and j is the column index 			
MATLAB tutorial 5 © C. Christara, 2023-24	of the entry. For example, assuming the previous declaration of the matrix A, MATLAB tutorial 7 © C. Christara, 2023-24			
 MATLAB can be used as a simple calculator, i.e. it is not needed to assign the result of a computation to a variable. A default variable, named ans, is used to save the result of the latest computation or expression. (In Maple, the above is also true, but the name of the default variable is percent % in Maple 7 and doublequote " in Maple V.) MATLAB has all the standard mathematical functions, e.g. exp, log (stands for ln), log10, log2, sin, cos, tan, asin, acos, atan, sqrt, sinh, cosh, abs, max, min, etc, and many more built-in functions that compute a variety of mathematical results. (In Maple, the above is also true, but the names of some functions are different, e.g. ln (same as log), arcsin, arccos, etc.) Complex numbers are handled just as easily as real ones. Complex numbers are output in the form a + bi. The variables i and j are by default set to the value √-1. If, though, the user overwrites them, the value √-1 is lost. It can be recovered through i = sqrt(-1) and j = sqrt(-1). The variable pi is by default set to the value of the number π. If, though, the user overwrites it, then the value of π is lost. It can be recovered through pi = 4*atan(1). (In Maple, pi is Pi.) To clear the variable name a use clear a, while to clear all variable names use clear. (In Maple, use unassign.) 	>> A(2, 3) results in ans = 6 The dimension of matrices in MATLAB is set dynamically. It can be changed on demand. Assuming the previous declaration of the matrix A, executing >> A(4, 3) = 10 will give A = 1 2 3 4 5 6 7 8 9 0 0 10 The size of the matrix is changed automatically to accommodate the new element, and the old values are kept. Any undefined elements are set to 0. The built-in function size gives the size of a matrix. Assuming A is an already defined matrix, the multiple assignment statement >> [m, n] = size(A) assigns to m and n the number of rows and columns of A, respectively.			

© C. Christara, 2023-24

6

MATLAB tutorial

MATLAB tutorial

8

© C. Christara, 2023-24

<pre>In MATLAB, it is easy to extract parts of the matrix. In general, >> A(i:j, k:l) gives the submatrix of A defined by rows i through j and columns k through l of matrix A. If the index is just a colon (:), without numbers that define a range, all rows or all columns of the matrix are included. For example, >> A(:, k:l) gives the submatrix of A defined by columns k through l of all rows of matrix A.</pre>	>> A = [1 2 3 4 5 6 7 8 9 0 0 10]; >> B = A(1:2, 2:3) B = 2 3 5 6 >> C = [-1; -4] C = -1 -4 >> D = [B C] D = 2 3 -1 5 6 -4	<pre>>> x = [11 12 13] x =</pre>
MATLAB tutorial 9 © C. Christara, 2023-24	MATLAB tutorial 11	© C. Christara, 2023-24
In general, the colon can be used to generate a sequence of numbers forming a vector (or one-dimensional matrix). Thus, >> m:k:n gives a list of numbers, starting from m and ending to n with stepsize k and >> m:n gives a list of numbers, starting from m and ending to n with stepsize 1. Matrix concatenation can also be easily done. If A and B are two matrices of the same number of rows, >> C = [A B] creates a matrix C, with the same number of rows as A and B, and number of columns the sum of the numbers of columns of A and B. The columns of C consist of the col- umns of A (to the left) followed by the columns of B (to the right). On the other hand, if A and B are two matrices of the same number of columns, C = [A; B] creates a matrix C, with the same number of columns as A and B, and number of rows the sum of the numbers of rows of A and B. The rows of C consist of the rows of A (top) followed by the rows of B (bottom).	<pre>MATLAB has many built-in functions and oper >> iA = inv(A); computes the inverse of matrix A (if A is alread inverse exists), and saves it in variable iA. Als >> A' displays the transpose of A, while >> I3 = eye(3, 3); saves the 3 × 3 identity matrix in variable I3. MATLAB takes a high-level approach when a solvable n × n matrix and b a n × 1 vector, >> x = A\b; will compute the solution x to the system Ax</pre>	rators for matrices. For example, ady defined as a square matrix and if the so, asked to solve linear systems. If A is a = b.

12

© C. Christara, 2023-24

Example: >> A = [1 2 3; 5 4 6; 7 8 9] A = 1 2 3 5 4 6 7 8 9 >> b = [14; 31; 50] b = 14 31 50 >> x = A\b x = 1.0000 2.0000 3.0000			A two-level nested loop: (assume n is already assigned a value) for i = 1:n statements that possibly use i for j = 1:n statements that possibly use i and j end end The break statement can be used to terminate the loop prematurely.				
MATLAB tutorial	13	© C. Christara, 2023-24	MATLAB tutorial	15	© C. Christara, 2023-24		
	For loops		If (condit	ional) statement, relational and log	ical operators		
The most typical syntax of the for $i = j:k:1$ statements end where i, the loop counter, star ing, i.e. the for statement loo value 1. Note that none of the Examples: What values does a for $a = 0.1:0.1:0.5$, 0.1, 0.2, 0.3, 0.4, 0.5 for $a = 0.1:0.2:0.6$, 0.1, 0.3, 0.5 for $a = 0:-2:-10$, stat 0, -2, -4, -6, -8, -10 for $a = 0:-2:10$, stat None! To be precise, it takes t	e for loop is of the form rts from j, and proceeds to l, wit oks like for i = j:l, the e i, j, k and l variables needs to b a take in the following loops? statements, end statements, end tements, end the value of the empty matrix.	h stepsize k. If k is miss- stepsize takes the default be integer. Thus the statements of the	The general form of the The statements following statement is true. In M to false. Thus, the state the (first) expression is The statements follow tive branch is true and branch is executed if r and elseif parts are nested if's.	e if statement is if expression statements elseif expression statements else statements end ing the (first) if are executed, if the MATLAB, any non-zero real expression tements following the (first) if are of non-zero (or is a matrix with all non- ing each elseif are executed, if the none of the previous branches resulta- none of the previous branches resulta- e optional. Zero or more elseif p	(first) expression of the if on is true and 0 corresponds executed, if the real part of -zero elements). The expression of the respec- ed in execution. The else ad in execution. The else arts can be used as well as		

16

A simple form of the expression ator) is ==, <, >, <=, >=, (In Maple, the respective relops a Example: if I == J A(I, J) = 2; elseif abs(I-J) == 1 A(I, J) = -1; else A(I, J) = 0; end	<pre>is expr relop expr where relop (relational oper- or ~=. ure =, <, >, <=, >=, or <>.) What would the result of the above statement be, if it is inserted in a two-level nested for loop with both counters I and J starting at 1 and proceeding to 7 with stepsizes 1?</pre>	$A = 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ A = 7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-1 2 -1 0 0 0 0 0 6 7 0 0	0 -1 2 -1 0 0 0 5 6 7 0	0 0 -1 2 -1 0 0 0 5 6 7	0 0 -1 2 -1 0 0 5 6	0 0 0 -1 2 -1 0 0 0 5	0 0 0 -1 2 0 0 0 0	
		0	0	0	0	7	6	5	
		0 0	0 0	0 0	0 0	0 0	7 0	6 7	
MATLAB tutorial	17 © C. Christara, 2023-24	MATLAB tutorial				19			© C. Christara, 2023-24
The standard logical operators ar	e &, and $$.								
(In Maple, they are and, or ar	d not, respectively.)	A =	c	F	1	0	0	0	
ments.	s, we can build more complex expressions for if state-	-1	6 7	5	-1 5	-1	0	0	
Example:		-1	-1	7	6	5	-1	0	
if (I <= J) & (J-3 < I)		-1	-1	-1	7	6	5	-1	
A(I, J) = 7-J+I;		-1	-1	-1	-1	7	6	5	
end What would the result of the ab	ave statement he if it is incented in a two level needed	-1	-1	-1	-1	-1	7	6	
for loop with both counters L and	I starting at 1 and proceeding to 7 with stepsizes 1?		-1	-1	-1	-1	-1	1	
	s surfing at 1 and proceeding to 7 with stepsizes 1.	-1	-1	-1	-1	0	0	0	
Consider also the conditional sta	tements	-1	-1	-1	-1	-1	0	0	
$ \begin{array}{cccc} 1 & (1 & \langle - & 0 \rangle) & & (0 - 3 & \langle 1 \rangle) \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	$\begin{array}{ccc} 11 & (0-4 < 1) \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $	-1	-1	-1	-1	-1	-1	0	
elseif $(J-4 < I)$	elseif (I <= J) & (J-3 < I)	-1	-1	-1	-1	-1	-1	-1	
A(I, J) = -1;	A(I, J) = 7-J+I;	-1	-1	-1	-1	-1	-1	-1	
end	end	-1	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1	

Functions and scripts in MATLAB

Functions in MATLAB can be either built-in or user-defined. Functions are saved in **M-files**, called so because the filename ends in .m. Functions may have one or more input parameters and may return one or more output variables. Currently, only one function (and its subfunctions, if any) can be defined per M-file.

A M-file does not always need to be a function. It can also be a (possibly long) sequence of MATLAB statements, i.e. a script. Scripts have neither formal input parameters, nor formal output variables.

- To execute a function M-file, type (after the MATLAB prompt) the name of the file without the .m extension, followed by the input arguments in parentheses.
- Should you need to save the output variables, precede the call by the output variables (in square brackets if more than one) and the '=' sign.
- To execute a script M-file, just type (after the MATLAB prompt) the name of the file without the .m extension.

Assume also the following is in file script.m in the current directory

a = 25; r = 100; U = 6*pi; n = 200; [ix1, iy1] = trochoid1(a, r, U, n); plot(ix1, iy1, '-'); xlabel('x'); ylabel('y'); print -depsc trochoid.eps % print trochoid.ps

Assume now we start MATLAB, and type

>> script

What will happen?

- Variables a, r, U and n are set to the respective values.
- pi gets the default value of the number π .
- The trochoid1 function is called with input arguments a, r, U, n, and output arguments ix1, iy1.
- ix1, iy1 get their value through the call to the function trochoid1.
- a, r, U and n keep the value they had before the call to trochoid1.
- All other variables used in the function trochoid1 are local by default (i.e. they do not keep their value outside the scope of trochoid1).

MATLAB tutorial	21	© C. Christara, 2023-24	MATLAB tutorial	23	© C. Christara, 2023-24
<pre>Examples: Assume the following function [ix, iy du = U/n; x = 0; y = r; u = 0; ix(1) = round(x) iy(1) = round(y) for i = 2:n+1 u = u + du; x = a*u - r³ y = r*cos(u) ix(i) = rour iy(i) = rour end</pre>	<pre>is in file trochoid1.m in the current director y] = trochoid1(a, r, U, n) % x = a*u0 - r*sin(u0); % y = r*cos(u0); % u = u0; % sin(u); ; nd(x); nd(x); nd(y);</pre>	у	 ix1, iy1 are very the pixels rendering. The y-coordinates appears in an X-wie The plot is saved can be included in the Unix command % lpr trochoid Type >> help to get all the help topic or >> help topic or >> doc topic to get information on a >> help inv will tell you how to us get on-line help throug >> helpwin 	<pre>ctors of size n+1 and denote (integer) g a trochoid. are plotted versus the x-coordinates wi ndow. in file trochoid.eps in encapsulate Latex code. The .ps file can be printe l (after the user quits MATLAB) d.ps On-line help cs and any specific MATLAB topic. For example the inv built-in function that gives the gh a html window environment, type</pre>	Cartesian coordinates of th a solid line. The plot ed postscript format, and d on the CDF printer by ble, e inverse of a matrix. To