Discuss basic algorithms for POMDPs (from last time)

POMDPs: Point-based Value Iteration

Structured Models of MDPs

Announcements

- Asst.1 due today
- Project discussions slots on Tues, Thurs, Friday this week
 - 20 minute time slots (come prepared)
Recap: POMDPs

- **POMDPs** offer a very general model for sequential decision making allowing:
 - uncertainty in action effects
 - *uncertainty in knowledge of system state, noisy observations*
 - multiple (possibly conflicting) objectives
 - nonterminating, process-oriented problems

- It is the *uncertainty in system state* that distinguishes them from MDPs
Recap: POMDPs: Basic Model

- As in MDPs: $S, A, p_{ij}^a, r_i^a, r_i^T$
- Observation space: Z (or Z_a)
- Observation probabilities: p_{ijz}^a for $z \in Z_a$
Recap: History-based Policies

- Information available at time t:
 - initial distribution (belief state) $b \in \Delta(S)$
 - history of actions, observations: $a_1^1, z_1^1, a_2^2, z_2^2, \ldots, a_{t-1}^{t-1}, z_{t-1}^{t-1}$

- Thus, we can view a policy as a mapping:

$$\pi : \Delta(S) \times H^{t \leq T} \rightarrow A$$

- For given belief state b, it is a conditional plan

 $$\begin{cases}
 \text{if Def: IN; MN; MN...} \\
 \text{else: MN; MN; EX} \end{cases}$$

 e.g., $MN; MN; EX$

- notice distinction with MDPs: can’t map from state to actions
Recap: Belief States

- History-based policy grows exponentially with horizon
 - infinite horizon POMDPs problematic
- **Belief state** $b \in \Delta(S)$ summarizes history sufficiently [Aoki (1965), Astrom (1965)]
- Let b be belief state; suppose we take action a, get obs z
- Let $T(b,a,z)$ be *updated belief state* (transition to new b)
- If we let b_i denote $Pr(S = i)$, we update:

\[
T(b,a,z)_i = Pr(i \mid a,z,b) \\
= \alpha Pr(z \mid i,a,b) Pr(i \mid a,b) \\
= \frac{\sum_j b_j p_{ji}^a p_{jiz}^a}{\sum_{jk} b_k p_{jk}^a p_{jkz}^a}
\]
Recap: Belief State MDP

- POMDP now an MDP with state space $\Delta(S)$
- Reward: $r_b^a = b \cdot r^a = \sum_i b_i r_i^a$
- Transitions: $p_{b,b'}^a = \Pr(z \mid b, a)$ if $b' = T(b, a, z); 0 \text{ o.w.}$
- Optimality Equations:

\[
Q^k_a(b) = b \cdot r^a + \sum_{b'} p_{b,b'}^a V^{k-1}(b)
= \sum_i b_i \left[r_i^a + \sum_j p_{ij}^a \sum_z p_{ijz} V^{k-1}(T(b,a,z)) \right]
\]

\[
V^k(b) = \max_a Q^k_a(b) \quad \pi^k(b) = \arg \max_a Q^k_a(b)
\]
Recap: Belief State MDP Graphically

Belief State Transitions for Action a, Belief State b
Recap: PWLC Value Function
Recap: Representation of Q-function

PWLC Representation of \(Q_a \)

\[\sigma_1 \text{ corresponds to } \text{“Do}(a); \\ \text{if } z_1, \text{ do(red);} \\ \text{if } z_2, \text{ do(green)}” \]
Recap: Linear Support Graphically

Value at witness w1

Value at witness w2

Belief State
Sources of Intractability

- **Size of α-vectors**
 - each is size of state space (exponential in number of variables)

- **Number of α-vectors**
 - potentially grows exponentially with horizon

- **Belief state monitoring**
 - must maintain belief state online in order to implement policy using value function
 - belief state representation: size of state space
Approximation Strategies

- Sizes of problems solved exactly are quite small
 - various approximation methods developed
 - often deal with 1000 or so states, not much more

- Grid-Based Approximations
 - compute value at small set of belief states
 - require method to “interpolate” value function
 - require grid-selection method (uniform, variable, etc.)
 - *we’ll discuss one method (Perseus/PBVI) today*

- Finite Memory Approximations
 - e.g., policy as function of most recent actions, observations
 - can sometimes convert VF into finite-state controller
Approximation Strategies

- **Learning Methods**
 - assume specific value function representation
 - e.g., linear value function, smooth approximation, neural net
 - train representation through simulation

- **Heuristic Search Methods**
 - search through belief space from initial state
 - requires good heuristic for leverage
 - heuristics could be generated by other methods

- **Structure-based Approximations**
 - E.g., based on decomposability of problem
Grid-based Approximations

- High level motivation:
 - number of a vectors grows exponentially (even in practice) with horizon (one of biggest impediments to solving POMDPs)
 - intuitively, need optimal policies for every belief point
 - instead, we could select a finite sample (or grid) of belief points on the n-dimensional simplex and compute optimal value function (or policy) for those points
 - for any other belief points not on grid, use some interpolation scheme
 - can define a simple value iteration scheme based on this idea
Belief Grid (2-D, 3-D), with VF (2-D)

2 state POMDP \((s_0, s_1)\)

3 state POMDP \((s_0, s_1, s_2)\)
Grid-based Value Iteration

- Given value function $V(k-1)$ on grid B
- Compute value $V(k)$ at grid points in usual way

\[
Q_k^a(b) = \sum_i b_i \left[r_i^a + \sum_j p_{ij}^a \sum_z p_{ijz} V^{k-1}(T(b,a,z)) \right]
\]

- Problem: $T(b,a,z)$ not usually on grid even if b is
- Solution: use some form of interpolation over $V(k-1)$
Point-based Value Iteration

- Grid-based methods expensive, performance debatable
 - Selecting suitable grid, interpolation can be expensive
- But recall approximation based on Cheng’s linear support
 - just use a subset of α-vectors
- PBVI methods combine the two insights
 - select a small subset of belief points
 - but compute/backup α-vectors instead of just values
 - no interpolation, use collection of α-vectors as VF representation

Briefly, let’s look at:
- Pineau’s original PBVI
- Spaan and Vlassis Perseus
Point-based Value Iteration

- Main idea (roughly)
 - fix a small set of belief points B
 - assume approximate set of α-vectors $V(k-1)$
 - do backups for each b in B, using $V(k-1)$, to construct $V(k)$
 - can prune (remove dominated vectors)
 - can expand set of belief points in an anytime fashion (add new belief points if you want, as time permits)
PBVI: Which Belief States (Grid)?

- Initial belief states B
 - starting at b_0, consider updated $T(b,z,a)$ reached by taking action a and sampling a random observation z (sample z with $Pr(z|b,a)$)
 - take belief state from one of these actions, the one that is greatest distance (L1 or L2) from any belief point in the set
 - aim: trying to get maximum coverage of belief space (diversity, but informed by reachability considerations)

- Repeat as time permits, consider expanding belief set B by
 - using same process as above, for each b in B
 - double size of belief set at each iteration until you are “satisfied” with coverage (or number of belief states reaches some threshold)

- Paper discusses other methods for generating belief points
 - experiments don’t show large differences except for one (large) domain
PBVI: Observations

- Time complexity: each backup takes $O(SAOVB) \approx O(SAOB^2)$
 - each backup requires AO belief projections
 - each projection required V value evaluations (to determine which vector has max value)
 - each projection/evaluation takes $O(S)$ time
 - B points to backup (and V is bounded by B)

- Error can be bounded based on density of belief grid
 - result is straightforward, bound is a bit too loose to be useful

Theorem 1 For any belief set B and any horizon n, the error of the PBVI algorithm $\eta_n = \| V_n^B - V_n^* \|_\infty$ is bounded by

$$\eta_n \leq \frac{(R_{max} - R_{min})\epsilon_B}{(1 - \gamma)^2}$$

Introduce an error by pruning away alpha vectors at each stage of:
$R_{max} - R_{min} \cdot \epsilon / (1 - \gamma)$
PBVI: Performance (works pretty well)

| Method | Goal% | Reward | Time(s) | $|B|$ |
|-----------------|-------|--------|---------|-----|
| **Maze33 / Tiger-Grid** | | | | |
| QMDP[*] | n.a. | 0.198 | 0.19 | n.a.|
| Grid [Brafman, 1997] | n.a. | 0.94 | n.v. | 174 |
| PBUA [Poon, 2001] | n.a. | 2.30 | 12116 | 660 |
| PBVI[*] | n.a. | 2.25 | 3448 | 470 |
| **Hallway** | | | | |
| QMDP[*] | 47 | 0.261 | 0.51 | n.a.|
| QMDP [Littman et al., 1995] | 47.4 | n.v. | n.v. | n.a.|
| PBUA [Poon, 2001] | 100 | 0.53 | 450 | 300 |
| PBVI[*] | 96 | 0.53 | 288 | 86 |
| **Hallway2** | | | | |
| QMDP[*] | 22 | 0.109 | 1.44 | n.a.|
| QMDP [Littman et al., 1995] | 25.9 | n.v. | n.v. | n.a.|
| Grid [Brafman, 1997] | 98 | n.v. | n.v. | 337 |
| PBUA [Poon, 2001] | 100 | 0.35 | 27898 | 1840|
| PBVI[*] | 98 | 0.34 | 360 | 95 |
| **Tag** | | | | |
| PBVI[*] | 59 | -9.180 | 180880 | 1334|

n.a. = not applicable
n.v. = not available

| Name | $|S|$ | $|O|$ | $|A|$ |
|--------------|-----|-----|-----|
| Tiger-grid | 33 | 17 | 5 |
| Hallway | 57 | 21 | 5 |
| Hallway2 | 89 | 17 | 5 |
| Tag | 870 | 30 | 5 |

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier
PERSEUS

- Perseus makes a small but useful tweak on PBVI
 - fixes a set of belief states B
 - given $V(k-1)$, does not update all belief states to get $V(k)$, instead:
 - select a random b from B
 - do a point-based backup to get a new α-vector $\alpha(b)$ for b
 - if new α-vector not improving, use best old one from $V(k-1)$
 - if $\alpha(b)$ improves any other b' in B, then do not backup b'
 - continue until all belief states b' in B have “improved”, either through their own backup or by that of some other b
 - Simple idea: don’t waste backups on b in B if other backups have improved its value anyway
 - little you can prove about this, but it keeps the size of the sets $V(k)$ of α-vectors much smaller in practice
Figure 2: Tag: (a) state space with chasing and opponent robot; (b)–(e) performance of Perseus.
Perseus Performance (Comparative)

| Tiger-grid | R | $|\pi|$ | T |
|------------|-----|--------|-----|
| HSVI | 2.35| 4860 | 10341 |
| PERSEUS | 2.34| 134 | 104 |
| PBUA | 2.30| 660 | 12116 |
| PBVI | 2.25| 470 | 3448 |
| BPI w/b | 2.22| 120 | 1000 |
| Grid | 0.94| 174 | n.a. |
| Q_{MDP} | 0.23| n.a. | 2.76 |

(a) Results for Tiger-grid.

| Hallway | R | $|\pi|$ | T |
|----------|-----|--------|-----|
| PBVI | 0.53| 86 | 288 |
| PBUA | 0.53| 300 | 450 |
| HSVI | 0.52| 1341 | 10836 |
| PERSEUS | 0.51| 55 | 35 |
| BPI w/b | 0.51| 43 | 185 |
| Q_{MDP}| 0.27| n.a. | 1.34 |

(b) Results for Hallway.

| Hallway2 | R | $|\pi|$ | T |
|----------|-----|--------|-----|
| PERSEUS | 0.35| 56 | 10 |
| HSVI | 0.35| 1571 | 10010 |
| PBUA | 0.35| 1840 | 27898 |
| PBVI | 0.34| 95 | 360 |
| BPI w/b | 0.32| 60 | 790 |
| Q_{MDP}| 0.09| n.a. | 2.23 |

(c) Results for Hallway2.

| Tag | R | $|\pi|$ | T |
|-----|-----|--------|-----|
| PERSEUS | -6.17| 280 | 1670 |
| HSVI | -6.37| 1657 | 10113 |
| BPI w/b | -6.65| 17 | 250 |
| BBSLS | ≈ -8.3| 30 | 10^5 |
| BPI n/b | -9.18| 940 | 59772 |
| PBVI | -9.18| 1334 | 180880 |
| Q_{MDP} | -16.9| n.a. | 16.1 |

(d) Results for Tag.
State Space Explosion

- For MDPs/POMDPs, state space explosion is a key issue
 - MDPs, POMDPs: transition, reward, obs rep’n are \(O(S^2) \), \(O(S) \)
 - MDPs: value functions and policies: \(O(S) \)
 - POMDPs: each \(\alpha \)-vector (just a VF): \(O(S) \)

- Most problems (in AI especially) are feature-based
 - \(S \) is exponential in number of variables
 - Specification/representation of problem in state form impractical
 - Explicit state-based dynamic programming impractical

- Require structured representations
 - exploit regularities in probabilities, rewards

- Require structured computation
 - exploit regularities in policies, value functions
 - can aid in approximation (anytime computation)
Structured Representation

- States decomposable into state variables
 \[S = X_1 \times X_2 \times \ldots X_n \]

- **Structured** representations the norm in AI
 - STRIPS, Sit-Calc., Bayesian networks, etc.
 - Describe *how actions affect/depend on features*
 - Natural, concise, can be exploited computationally

- Same ideas can be used for MDPs
 - actions, rewards, policies, value functions, etc.
 - dynamic Bayes nets [DeanKanazawa89, BouDeaGol95]
 - decision trees and diagrams [BouDeaGol95, Hoeyetal99]
Action Representation – DBN/ADD

Pickup Printout

$J \rightarrow J_{t+1}$
$L \rightarrow L_{t+1}$
$P \rightarrow P_{t+1}$
$E \rightarrow E_{t+1}$

$J - Joe needs coffee$
$L - robot in printer room$
$P - robot has printout$
$E - robot gripper empty$

$f_P(L_t,P_t,E_t,P_{t+1})$

$J(t+1) \quad \overline{J(t+1)}$
\begin{tabular}{c|cc}
 J & J(t+1) & \overline{J(t+1)} \\
 T & 1.0 & 0.0 \\
 F & 0.0 & 1.0 \\
\end{tabular}$

$f_J(J_t,J_{t+1})$

$P(t+1) \quad \overline{P(t+1)}$
\begin{tabular}{c|cccc}
 L & E & P & P(t+1) & \overline{P(t+1)} \\
 T & T & T & 1.0 & 0.0 \\
 F & T & T & 1.0 & 0.0 \\
 T & F & T & 1.0 & 0.0 \\
 F & F & T & 1.0 & 0.0 \\
 T & T & F & 0.8 & 0.2 \\
 F & T & F & 0.0 & 1.0 \\
 T & F & F & 0.0 & 1.0 \\
 F & F & F & 0.0 & 1.0 \\
\end{tabular}$
\[\Pr(J_{t+1}, L_{t+1}, P_{t+1}, E_{t+1} \mid J_t, L_t, P_t, E_t) \]

\[= f_J(J_t, J_{t+1}) \times f_P(L_t, P_t, E_t, P_{t+1}) \times f_L(L_t, L_{t+1}) \times f_E(E_t, E_{t+1}) \]

- Only 28 parameters vs. 256 for matrix

- Removes global exponential dependence
Action Representation – DBN/ADD

Pickup Printout

- ADDs, decision trees, Horn rules, both compact and natural

Algebraic Decision Diagram (ADD)

\[P(t+1) \quad P(t+1) \quad P(t+1) \]

1.0 0.0 0.8 0.2
DBN Remarks

- Dynamic Bayes net action representation
 - each state variable occurs at time t and $t+1$
 - dependence of time $t+1$ variables on time t variables
 - can also depend on other time $t+1$ variables (provided the DBN remains acyclic) to capture correlations in action effects
 - *no quantification* of time t variables is specified (since we don’t care about prior)
 - so DBN represents a *family of conditional distributions* over the time $t+1$ variables given the time t variables
 - compact representation of CPTs using trees, ADDs, Horn rules exploits *context-specific independence* [BFGK96]
Reward Representation

- Rewards represented similarly
 - save on 2^n size of vector rep’n

JC - Joe has coffee
JP - Joe has printout
CC - Craig has coffee
CP - Craig has printout
BC - Battery charged
Reward Representation

- Rewards represented similarly
 - save on 2^n size of vector representation
- Additive independent (or GAI) reward also very common
 - as in multi-attribute utility theory
 - offers more natural and concise representation for many types of problems
Structured Computation

- Given compact representation, can we solve MDP without explicit state space enumeration?
- Can we avoid $O(|S|)$-computations by exploiting regularities made explicit by DBNs/ADDS?
State Space Abstraction

- **General method:** *state aggregation*
 - group states, treat aggregate as single state
 - commonly used in OR [SchPutKin85, BertCast89]
 - viewed as automata minimization [DeanGivan96]

- **Abstraction** is a specific aggregation technique
 - aggregate by ignoring details (features)
 - ideally, focus on *relevant* features
Value function (or policy choice) depends only on a small subset of variables \((A,B,C)\) and not others \((D,E,F,...)\); and may do so in a “structured” fashion.
Decision-Theoretic Regression

- **Goal regression** a classical abstraction method
 - $\text{Regr}(G,a)$ is a logical condition C under which a leads to G (aggregates C states and $\neg C$ states)

- Decision-theoretic analog: given “logical description” of V^{t+1}, produce such a description of V^t or optimal policy (e.g., using ADDs)

- Cluster together states at any point in calculation with *same best action* (policy), or with *same value* (VF)
A Graphical View of DTR

\[Q^+(a) \]
Functional View of DTR

- Generally, V^{t+1} depends on only a subset of variables (usually in a structured way).
- *What is value of action a at time t (at any s)?*

\[
\begin{align*}
J_t & \rightarrow J_{t+1} & f_J(J_t, J_{t+1}) \\
L_t & \rightarrow L_{t+1} & f_L(L_t, L_{t+1}) \\
P_t & \rightarrow P_{t+1} & f_P(L_t, P_t, E_t, P_{t+1}) \\
E_t & \rightarrow E_{t+1} & f_E(E_t, E_{t+1}) \\
V^{t+1} & & \\
P & \rightarrow E & 20 \\
E & \rightarrow 0 &
\end{align*}
\]
Functional View of DTR

- Assume VF V_{t+1} is structured: what is value of doing action a at time t?
- Use variable elimination!
Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

$$Q^a_t(J_t, L_t, P_t, E_t)$$
Functional View of DTR

Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

$$Q^a_t(J_t,L_t,P_t,E_t)$$

$$= R^+ \sum_{J,L,P,E(t+1)} Pr^a(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_t,L_t,P_t,E_t) \ V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$$
Functional View of DTR

- Assume VF V_{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

$$Q_{t}^{a}(J_t,L_t,P_t,E_t)$$

$$= R^+ \sum_{J,L,P,E(t+1)} Pr^a(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_t,L_t,P_t,E_t) V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$$

$$= R^+ \sum_{J,L,P,E(t+1)} f_J(J_t,J_{t+1}) f_P(L_t,P_t,E_t,P_{t+1}) f_L(L_t,L_{t+1}) f_E(E_t,E_{t+1}) V_{t+1}(P_{t+1},E_{t+1})$$
Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

$$Q^a_t(J_t, L_t, P_t, E_t) = R + \sum_{J, L, P, E(t+1)} Pr^a(J_{t+1}, L_{t+1}, P_{t+1}, E_{t+1} | J_t, L_t, P_t, E_t) \ V_{t+1}(J_{t+1}, L_{t+1}, P_{t+1}, E_{t+1})$$

$$= R + \sum_{J, L, P, E(t+1)} f_J(J_t, J_{t+1}) \ f_P(L_t, P_t, E_t, P_{t+1}) \ f_L(L_t, L_{t+1}) \ f_E(E_t, E_{t+1}) \ V_{t+1}(P_{t+1}, E_{t+1})$$

$$= R + \sum_{L, P, E(t+1)} f_P(L_t, P_t, E_t, P_{t+1}) \ f_L(L_t, L_{t+1}) \ f_E(E_t, E_{t+1}) \ V_{t+1}(P_{t+1}, E_{t+1})$$
When V^{t+1} depends on subset of variables:
- $Q^t(a)$ usually depends on subset of variables as well
- Computation can be structured without exponential blowup (VE)
- Further enhancements: Each function represented as ADD
- … and ADD operations allow structure to be preserved
Structured Value Iteration

- Assume compact representation of V^k
 - start with R at stage-to-go 0 (say)
- For each action a, compute Q^{k+1} using variable elimination on the two-slice DBN
 - eliminate all k-stage-to-go variables, leaving only $k+1$ variables
 - use ADD operations when initial representation (Pr, R) are ADDs
- Compute $V^{k+1} = \max_a Q^{k+1}$
 - use ADD operations again to preserve structure, efficiency
- Policy iteration can be approached similarly
Structured Policy and Value Function

```
HCU
  /   
Noop HCR
  /   
Loc W
  /   
DelC R
  /   
Go U
  /   
GetU

HCU
  /   
Loc W
  /   
BuyC R
  /   
Loc U
  /   
GetU

HCU
  /   
Loc W
  /   
R  U
  /   
W  U
  /   
W  U
  /   
W  U

```

Values:
- HCU: 9.00 10.00
- HCR: 7.45 8.45 8.36
- Loc: 6.64 7.64 6.19 5.62
- W: 5.19 5.83 6.83 6.10

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier
Example Action Reward/Representation
ADD: Example Value Function
SPUDD Results

<table>
<thead>
<tr>
<th>Example Name</th>
<th>State space size variables</th>
<th>State space size total</th>
<th>State space size states</th>
<th>time (s)</th>
<th>SPUDD - Value internal nodes</th>
<th>SPUDD - Value leaves</th>
<th>equiv. tree leaves</th>
<th>time (s)</th>
<th>SPI - Value internal nodes</th>
<th>SPI - Value leaves</th>
<th>ratio of tree nodes: ADD nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>factory</td>
<td>3</td>
<td>14</td>
<td>55296</td>
<td>78.0</td>
<td>828</td>
<td>147</td>
<td>8937</td>
<td>2210.6</td>
<td>6721</td>
<td>7879</td>
<td>8.12</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>17</td>
<td>131072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2188.23</td>
<td>9513</td>
<td>9514</td>
<td>11.48</td>
</tr>
<tr>
<td>factory0</td>
<td>3</td>
<td>16</td>
<td>221184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111.4</td>
<td>1137</td>
<td>147</td>
<td>14888</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>19</td>
<td>524288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5763.1</td>
<td>15794</td>
<td>18451</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6238.4</td>
<td>22611</td>
<td>22612</td>
<td>19.89</td>
</tr>
<tr>
<td>factory1</td>
<td>3</td>
<td>18</td>
<td>884736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14731.9</td>
<td>31676</td>
<td>37315</td>
<td>14.60</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>21</td>
<td>2097132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15430.6</td>
<td>44304</td>
<td>44305</td>
<td>20.43</td>
</tr>
<tr>
<td>factory2</td>
<td>3</td>
<td>19</td>
<td>1769472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>279.0</td>
<td>2169</td>
<td>178</td>
<td>49558</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>22</td>
<td>4194304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14742.4</td>
<td>31676</td>
<td>37315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15465.0</td>
<td>44304</td>
<td>44305</td>
<td>20.43</td>
</tr>
<tr>
<td>factory3</td>
<td>4</td>
<td>21</td>
<td>10616832</td>
<td>462.1</td>
<td>2169</td>
<td>178</td>
<td>49558</td>
<td>98340.0</td>
<td>138056</td>
<td>168207</td>
<td>29.31</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>25</td>
<td>33554432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112760.1</td>
<td>193318</td>
<td>193319</td>
<td>41.04</td>
</tr>
<tr>
<td>factory4</td>
<td>4</td>
<td>24</td>
<td>63700992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14651.5</td>
<td>7431</td>
<td>238</td>
<td>707890</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>28</td>
<td>268435456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decision-theoretic Regression: Relative Merits

- Adaptive, nonuniform, exact abstraction method
 - provides exact solution to MDP
 - much more efficient on certain problems (time/space)
 - see SPUDD package

- Some drawbacks
 - produces piecewise constant VF
 - some problems admit no compact solution representation (though ADD overhead “minimal”)
 - approximation may be desirable or necessary
Approximate Decision-theoretic Regression

- Straightforward to approximate solution using DTR
- Simple *pruning* of value function
 - Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]
A Pruned Value ADD
Approximate Decision-theoretic Regression

- Straightforward to approximate solution using DTR
- Simple *pruning* of value function
 - Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]
- Gives regions of *approximately same value*
- Can derive simple error bounds as well
 - e.g., for pruned versions of value iteration (with discount factor β, stopping criterion ε and maximum approximation span δ):

$$
\left\| V^* - V_\pi \right\| \leq \frac{2\beta(2\delta + \varepsilon)}{1 - \beta}
$$
Approximate DTR: Relative Merits

- **Relative merits of ADTR**
 - fewer regions implies faster computation
 - can provide leverage for *optimal* computation
 - e.g., start with aggressive pruning, then relax (exploit contraction)
 - allows fine-grained control of time vs. solution quality with dynamic (*a posteriori*) error bounds
 - technical challenges: variable ordering, convergence, fixed vs. adaptive tolerance, etc.

- **Some drawbacks**
 - (still) produces piecewise constant VF
 - doesn’t exploit additive structure of VF at all

- **Many other ways of exploiting structure, DBNs, etc.**
 - function approximation (especially linear approximations)
 - decompositions (sub-problem structure, etc.)
 - …
State-based Decomposition

- MDP may have weakly or non-interacting subcomponents
 - E.g., policy for running several assembly lines, robots, ...
 - Actions taken for one may have no (or little) impact on others
 - Can solve for policies independently if no interaction
 - If some interaction, use “independent” policies and values to guide the coordination (e.g., interaction limited to occasional assignment of resources to each assembly line)
Temporal Abstraction

- Solve local MDPs over specific “regions” of state space
 - Macro-actions, “local policies,” temporally-extended actions
 - Use the local policies as actions in a smaller abstract MDP
 - Fast value propagation, small abstract MDP, prior knowledge, …
 - Issues: which macros, computing macro-models (state space), transferability/reuse for new domains/objectives, …

From Sutton, Precup, Singh, AIJ-99
Linear Value Function Approximation

- **Set of basis functions**: $B = \{b_1, b_2, \ldots, b_k\}$
 - Each $b_i: S \rightarrow \mathbb{R}$ assigns value to states, compact (e.g., depends only on a few state features)

- **Approx. V with linear combination**: $	ilde{V}(s) = \sum_i w_i b_i(s)$
 - Compact representation: weight vector w and small basis f’ns
 - Limits VF to fall within space spanned by B

- **Approx. value iteration**: sequence $w^{(k)}$ of k-stage-to-go VFs
 - Run Bellman back up on $w^{(k)}$ to produce $w^{(k+1)} = L(w^{(k)})$
 - Trick: $w^{(k+1)}$ usually falls out of B-space, but still compact; project back into B-space before moving to next iteration
 - Issues: good set of basis functions? Keeping computation tractable (Bellman backup, projection), e.g., exploiting DBNs? etc.

- **Policy iteration, etc. can also be used**