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Abstract

Recently Markov decision processes and optimal control policies
have been applied to the problem of decision-theoretic planning.
However, the classical methods for generating optimal policies
are highly intractable, requiring explicit enumeration of large state
spaces. We explore amethod for generating abstractionsthat allow
approximately optimal policies to be constructed; computational
gains are achieved through reduction of the state space. Abstrac-
tions are generated by identifying propositions that are “relevant”
either through their direct impact on utility, or their influence on ac-
tions. Thisinformation is gleaned from the representation of utili-
ties and actions. We prove bounds on the loss in value due to ab-
straction and describe some preliminary experimental results.

1 Introduction

Recently there hasbeen considerableinterest in probabilistic
and decision-theoretic planning (DTP) [5, 9, 14, 3]. A prob-
abilisticframework allowsagentsto plan in situationsof un-
certainty, while decision-theoretic methods permit compar-
ison of various courses of action, or the construction of ap-
propriate nearly-optimal behavior when (optimal) goas are
unachievable. Dean et al. [2] have investigated planning in
such contexts as a question of stochastic optimal control, in
particular, modeling the effects of actions on the environ-
ment as a (completely observable) Markov decision process
(MDP) [7]. Thismodel alows oneto view each action as a
stochastic mapping among states of the environment, and al-
lows one to associate various rewards or utilitieswith these
states. With such a model, standard techniques can be used
to construct an optimal policy of action that maximizes the
expected reward of the agent. Unfortunately, these methods
quickly become intractable as the state space grows. As a
concession to these considerations, Dean et al. [2] explore
anytimealgorithmsfor policy generation using restricted en-
vel opes within the state space.

We explore a different way of coping with the computa-
tional difficultiesinvolved in optimal policy generation. By

assuming aparticular representation of actions, we can gen-
erate an abstract state space in which (concrete) states are
clustered together. Standard techniques may be used in this
reduced space. Our approach hassevera advantagesover the
envelope method. Foremost among these is the fact that no
states are ignored in abstract policy generation — each state
may have someinfluence on the constructed policy by mem-
bership in an abstract state. This alows usto prove bounds
on the value of abstract policies (with respect to an optimal
policy). Furthermore, finer-grained abstractions are guaran-
teed to increase the value of policies. Finally, abstractions
can be generated quickly. These factors alow abstract poli-
cies of varying degrees of accuracy to be constructed in re-
sponse to time pressures. The information obtained in ab-
stract policy generation can then be used in areal-time fash-
ion to refine the abstract policy, as we describe in the con-
cluding section. This is aso well-suited to circumstances
where the goals (or reward structure) communicated to an
agent change frequently; thus problem-specific abstractions
can be generated as needed.

In the next section we describe the MDPs, Howard's [7]
policy iteration algorithm for optimal policy construction
and (briefly) the anytime approach of [2]. In Section 3, we
discuss a possible knowledge representation scheme for ac-
tionsand utilities. The information implicit in such a speci-
fication will be crucia in generating useful abstractions. In
Section 4, we present an algorithm for generating an abstract
state space and an appropriate decision model. We show how
policy iteration is used to generate abstract policies in this
state space that are directly applicable to the original (con-
crete) space, and prove boundsonthe possiblelossdueto ab-
straction. We a so discuss preliminary experimental results
that suggest that abstraction of thisformis quitevaluablein
certain types of domains.
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2 Markov Decision Processes

Let I be afinite set of states or worlds, the possible situa-
tionsin which a planning agent may find itself. We assume
that this set of worldsisassociated with somelogica propo-
sitional language £, and isthus exponential in the number of
atoms generating £. Let .A be afinite set of actions avail-
ableto an agent. An action takes the agent from one world
to another, but the result of an action is known only with
some probability. An action may then be viewed as a map-
pingfrom W into probability distributionsover 1. Wewrite
Pr(wy, a, ws) to denote the probability that w, is reached
given that action « is performed in state w,. These transi-
tion probabilities can be encoded ina |1V | x |WW| matrix for
each action. This notation embodies the usual Markov as-
sumption that the transition probabilitiesdepend only on the
current state.

While an agent cannot (generally) predict with certainty
the state that will result from its action, we assume it can
observe with certainty the resulting state once the transition
is made. Hence the process is completely observable. All
uncertainty is due to the unpredictability of actions. While
some have this property, there will be many domains in
which thisis not the case. However, complete observability
isa useful simplifying assumption that allows us to explore
the fundamental s of abstraction, ignoring thetechnica diffi-
culties of the partially observable case.

We assume a real-valued reward function R, with R(w)
denoting the (immediate) utility of being in state w. For our
purposes an MDP consistsof W, .4, R and the set of transi-
tiondistributions{Pr(-,a,-) : a € A}.

A control policy w isafunctionw : W — A. If thispolicy
is adopted, 7(w) isthe action an agent will perform when-
ever it findsitsalf in state w. Given an MDP, an agent ought
to adopt an optimal policy that maximizes the expected re-
wards accumulated as it performs the specified actions. We
concentrate here on discounted infinite horizon problems:
the current value of future rewards is discounted by some
factor 5 (0 < G < 1); and we want to maximize the ex-
pected accumul ated discounted rewards over an infinitetime
period. However, our methods are suitablefor finite horizon
techniques such as value iteration [7] as well. Intuitively, a
DTP problem can be viewed as finding an optimal policy.!

The expected value of afixed policy = a any given state
w is specified by

Va(w) = R(w) + 8 Y Pr(w,m(w),v) - Ve (v)

veW

Sincethefactors V; (w) are mutualy dependent, thevalue of
m a any initia state w can be computed by solving thissys-

Y1 a“final” state stopsthe process, we may use absorbing states
(at which no action is applicable). Classical (categorical) goalscan
also be specified [2].

tem of linear equations. A policy = isoptimal if V;(w) >
Ve (w) fordl w € W and policies«’. Howard's[7] policy
iteration agorithm works by starting with a random policy
and trying to improve this policy by finding for each world
some action better than the action specified by the policy.
Each iteration of the algorithm involves the following two

steps:
1. For each w € W, compute V; (w).

2. For each w € W, find some action « such that

R(w)+ 8 Z Pr{w,a,v) - Vz(v) > Vz(w)

Let policy n' be such that 7/ (w) = « if such an improve-
ment exists, ' (w) = m(w) otherwise.

The agorithm iterates on each new policy #’ until no im-
provement is found. The algorithm will converge on an op-
tima policy, and in practice tends to converge reasonably
(given, eg., agreedy initid policy). The first step requires
thesolutionof aset of |1V | linear equationsin |17 | unknowns
(requiring polynomial time).

Unfortunately, the factor |1¥| will be exponential in the
number of atoms in our underlying language. Optimal pol-
icy construction is thus computationally demanding. Such
solutions methods may be reasonable in the design of an
agent requiring afixed policy. A solutionmight be computed
off-lineand a corresponding reactive policy embodied in the
agent “onceandfor al.” However, afixed policy of thistype
is not feasible in a setting where an agent must respond to
the changing goals or preferences of a user. While in many
domains the system dynamics may be relatively stable, the
reward structure for which an agent’s behavior is designed
might change frequently (e.g., in response to different task
assignments). Therefore, fast on-line computation of poli-
cieswill be necessary and the computational bottleneck must
be addressed. We expect optimality (of policy) to be sacri-
ficed for computationa gain.

To dedl withthedifficultiesof policy construction, Dean et
al.[2] assumethat it will be sufficient in many circumstances
to consider a very restricted subset of the state space. Their
basic approach is asfollows; an initial envelope £, or subset
of worlds, is chosen and a partial policy is computed for £
(i.e, apolicy applicable only for statesin £) using policy it-
eration. Since an agent might fall out of the envelope while
executing apolicy, al transitionsout of £ are assumed to fall
into a distinguished OUT dtate. If an agent ends up in this
dtate, it must extend (or alter) the current envelope and com-
pute a new partial policy. The anytime aspect of this model
is captured by an a gorithm which constructs apartial policy
for £, and if time permits extends £ to include more states.
Given more time the agorithm will compute a more com-
plete partia policy.
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Thismode requires an estimate of the penalty associated
with the OUT dtate. In[2] it is suggested that the expected
value of al “out states” and some factor accounting for the
timeto recompute a policy be used; but determining thisex-
pected value requires at least some approximation to an op-
tima policy (though in certain domains heuristics may be
available). Aninitial envelope must aso be provided. In
generdl, it is not clear how a good initia envelope should
be generated, althoughin [2] some reasonable guidelinesare
suggested for certain domains (such as navigation).

We propose an dternative anytime model for nearly op-
timal policy construction based on abstraction of the state
space. While considering a restricted envelope may be ap-
propriatein many instances, ingenera finding asuitable sub-
set may be difficult, and partial policies are not suitable for
an agent that may find itself in arbitrary start states. In our
approach, we ignore “irrelevant aspects’ to the domain by
groupingtogether statesthat differ only inthese aspects. Ap-
proximately optimal policiescan be generated inthissmaller
state space. Sinceirrelevanceisamatter of degree, more ac-
curate policies can be constructed (at greater computational
expense) by incorporating additional details. Our model pro-
vides severa advantages over the envelope method. First,
policiesare applicableat al statesof the process. Second, we
may provably bound the degree to which policiesfall short
of optimal. Thisfactor can be used to influence how detailed
an abstractionisrequired (and also the directionin which ab-
stractions should be refined). Finaly, our moddl hasthe fea-
turethat more refined abstractions lead to better policies.

3 Representation of MDPs

Itisunreasonableto expect that aD TP problemwill be speci-
fied using an explicit stochastic transition matrix for each ac-
tion and an explicit reward function. Regularitiesin action
effects and reward structure will usually permit more con-
cise representations. We discuss one possible representation
for actions and utilities, and show how this information can
be exploited in abstraction generation. While our algorithm
depends on the particul ar representation given, the nature of
our method does not. More natural and sophisticated repre-
sentations can be used (e.g., causal networks).

3.1 Action Representation

To represent actionsthat have “ probabilistic effects” we will
adopt amodification of the basic scheme presented in[9], it-
self amodification of the STRIPS representation all owing ef -
fects (add/delete lists) to be applied with a certain probabil-
ity. Westart by defining an effect to bea(finite) consi stent set
of literals. If F'isan effect, itsoccurrence changestheworld.
We let /(w) denote the world that results when effect  is
appliedtow. Intheusua STRIPSfashion, F(w) satisfiesal
literalsin I and agrees with w on all other literals.

To dea with nondeterministic actions, we assume that
possible effects occur with specified probabilities. A prob-
abiligtic effect is afinite set of effects £, . . . E,, with asso-
ciated probabilities py, ... p,, written (E1,p1;... En, pn).
Weinsistthat > p; = 1. Aneffectslist ZL appliedto w in-
duces adiscrete distribution over 17; thelikelihood of mov-
ingto v when F'I. occurs at w isgiven by

Z{pz : z = v}

An action can have different effectsin different contexts. We
associate with each action afinite set D4, ... D, of mutu-
ally exclusive and exhaustive propositions called discrimi-
nants; and associated with each discriminant isa probabilis-
ticeffectslist £'L;. Anaction a applied a w yieldsthe dis-
tribution over outcomes induced by 'L, where Dy, isthe
(unique) discriminant satisfied by w.

Parting from [9], we add the notion of an action aspect.
Some actions have different classes of effects that occur in-
dependently of each other. For instance, under a given ac-
tion, a certain literal may be made true if some condition
holds. A distinct literal may independently be made true if
another condition holds. To capture this, an action can be
specified using different aspects, each of which hastheform
of an action as described above (i.e., each aspect hasitsown
discriminant set). The actua effect of an action at a world
isdetermined by applying the effects list of the relevant dis-
criminant for each aspect of that action. More precisely, let
w besomeworldtowhich weapply an actionwith k aspects.
Since each aspect has a proper discriminant set associated
withit, w satisfies exactly one discriminant for each aspect.
Assumetheseare D', - - -, D* and that each D' has an asso-
ciated effects list (£, pt;... B, p). An effect from each
applicablelist will occur with the specified probability, these
probabilities being independent. Intuitively, action aspects
capturethekind of independence assumptionsone might find
inacausa network or influencediagram. Thus, thenet effect
of an action A at w isthe union of these effects (sets of lit-
erals), one chosen from each aspect. The probability of this
combined effect is determined by multiplying these proba-
bilities. Thus, we have

|Aw Z{ph p]2 p]k'E( ):v}

where F isan effect such that

(v|EL,w)

—_ gl 2 k

To ensurethat actionsare well-formed weimposethefol low-
ing consistency condition: if D' and D’ aremutually consis-
tent discriminants taken from distinct aspects of a given ac-
tion, thentheir effectslistsmust containno atomsin common
(thus, the union aboveis consistent).
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Action Discr. Effect Prob. Action Discr. Effect Prob.

GoL1 L1,L2 | L1,22 | 0.9 GolL2 L2 L1 L2 L1 0.9

(aspect1) (] 0.1 (aspectl) (] 0.1

el se ? 1.0 el se ? 1.0

GoL1 RU w 0.9 GoL2 RU w 0.9

(aspect2) (] 0.1 (aspect?) (] 0.1

el se ? 1.0 el se ? 1.0

BuyC L2 HCR | 08 DdC | L1,HCR | HCU,HCR | 08

] 0.2 HCR 0.1

el se ? 1.0 ? 0.1

GetU L1 U 0.9 L1,HCR HCR 0.9

] 0.1 ] 0.1

el se ? 1.0 el se ? 1.0

Figure 1: An example of STRIPS-style action descriptions.
An example best illustrates this representation. We as- Discr.  Reward. | Discr.  Reward.

sume a user at location .1 instructs arobot to get her coffee HOU, W 10 HOU,W 9
at 1.2 across the street. The robot can have coffee (H C'R) HCU,W 1 HCU, W 0.0

and an umbrella (/). It can get wet (1) if itisraining (R),
andtheuser can havecoffee (H C'U') aswell. Actionsinclude
going to L1 or L2, buying coffee, delivering coffee to the
user and getting an umbrella. These action specifications are
listed in Figure 1.2 The actions GoL 1 and GoL 2 each have
two aspects. GoL 1 induces transition probabilitiesfrom any
world w satisfying L1, L2, R and U as follows: the effect
{L1, L2, W} occurs with probability .81; {Z1, L2} occurs
with probability .09; {WW} occurs with probability .09; and
the null effect # occurs with probability .01.

3.2 Utility Representation

To represent the immediate rewards or utilities associated
with world states, we assume a user specifies a partition of
the state space that groups worlds together if they have the
same utility. Thisis achieved by providing a mutually ex-
clusive and exhaustive set of propositionsand associating a
utility with each propositionin thisset. There are more nat-
ural and concise methods for utility representation. For ex-
ample, if theutilitiesof propositionsare independent and ad-
ditive, these can be directly specified (relative to some base
level). Indeed, such a scheme will generaly make the prob-
lem we address in the next section easier. But this simple
scheme will be sufficient for our purposes. Note that any re-
ward function over astate space generated by a set of propo-
sitions can be represented in this fashion.

In our example, the primary goal of the agent isto get cof-
fee; but wewould likeit to stay dry in the process. No other
propositionsinfluence the immediate reward of a state. We
obtai n the following specification of our reward function:

2We ignore preconditionsfor actions here, assuming that an ac-
tion can be “attempted” in any circumstance. However, precondi-
tions may play a useful role by capturing user-supplied heuristics
that filter out actions in situations in which they ought not (rather
than cannot) be attempted. Theel se discriminantis simply acon-
venient notation for the negation of all action discriminants that ap-
pear earlier in the list.

We dub the propositionsthat determinetheimmediate util -
ity of a state utility discriminants.

4 Generating an Abstract Model

State-aggregation methods have been used to accel erate con-
vergence of M DP sol ution methods with some success (e.g.,
[12]). However, the emphasis has not been on the automatic
generation of aggregated states, nor on the exploitation of
regularities implicit of the representation of an MDP. Ab-
straction has aso been used in classical planning to guide
the search for concrete, fully-specified plans [11]. In par-
ticular, Knoblock [8] has proposed methods for generating
abstractions by exploiting a STRIPS-style action represen-
tion. Our procedure uses the representation scheme for ac-
tions in much the same fashion, as well as utilities, to de-
cide which propositionsare most important in the construc-
tion of a good policy, and which details can be ignored with
little penalty. Once certain propositionsare shown to beiir-
relevant, the state space can be collapsed by clustering to-
gether worlds in which only irrelevant propositions differ
(i.e., worldsaredistinguished by relevant propositionsonly).
Policy iteration can then be performed in this abstract space
and an approximately optimal policy can be generated. Un-
like the classical setting, an abstract policy can be used im-
mediately and can be refined on-line.

There are threeissues that must be addressed using such a
scheme: 1) which propositions should be deemed relevant?
2) how should actions be mapped onto the abstract space? 3)
how should utilitiesbe mapped onto the abstract space?

41 TheAbstract State Space

In order to generate an abstract state space, a set of relevant
propositionsmust be chosen. From the perspective of imme-
diateutility, only those propositionsthat occur among the set
of utility discriminants are of direct relevance. In our exam-
ple, W and HC'U aretheonly (immediately) relevant atoms.
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Of course, immediate relevance is a matter of degree. The
truth or falsity of H#C'U has a greater immediate impact on
utility than 17/, Itisthis observation that will allow ustoig-
nore certain atomic propositions.

Initially, we imagine an agent generates some set ZR. of
immediately relevant propositions. The larger thisset is, the
more fine-grained an abstraction will be. Thisis the cru-
cia factor in the anytime nature of our approach. A larger
number of abstract stateswill require more computation, but
will yield more accurate results. It isthereforeimportant that
the relevant propositions be chosen carefully so as to take
full advantage of thistradeoff. Propositionswiththe greatest
impact on utility are most relevant. A number of strategies
might be employed for discovering the most rel evant propo-
sitions. We discuss one such strategy below, once the exact
nature of our algorithm has been elaborated. In our example,
wedecidethat H C'U isthe most important proposition, set-
tingZR = {HCU}. If weadd W to ZR, then the entire
range of immediate utility is captured (and optimal solutions
will be generated, but at added computationa cost — see be-
low). Wewill assume for simplicity that utility discriminants
are conjunctions of literals (this is sufficient for any utility
function) and that ZR consists of atoms.

An agent should make distinctions based not only on im-
mediately relevant propositions, but on propositions that
may influence the achievement of these. Thus, we provide
arecursive definition for the set R of relevant propositions.
The idea is based on the construction of abstraction hierar-
chiesby Knoblock [8] inaclassical STRIPSdomain. Itrelies
on the particul ar action representation above; but the general
idea is well-suited to other action representations (e.g., the
situation calculus and, especialy, causal networks).

Definition Theset R of relevant propositionsisthe smallest
set suchthat: 1) ZR C R;and 2) if P € R “occurs’ inan
effect list of some action aspect, each proposition occur-
ring in the corresponding discriminantisin R.

Again, for simplicity, we will assume that R consists of
atoms and that an atom occursin alist if the associated pos-
itive or negative literal occurs. Notice that only the atoms
of adiscriminant that might (probabilistically) lead to a cer-
tain effect are deemed relevant; other conditions associated
with the same action aspect can be ignored.> We call such
discriminantsrelevant. We leave aside the question of an al-
gorithm for generating the set R given ZR (see [1] for de-
tails); an obvious modification of Knoblock’s algorithm for
generating problem specific constraints suffices. The oper-
ator graph construct of [13] might also prove useful in de-
termining relevant discriminants. The “branching factor” of

#This connection can be weakened further by ignoring discrim-
inant atomswhoseinfluence on utility ismarginal (seethe conclud-
ing section).

stochagtic actions, the average size of discriminant and ef-
fectslists, and thedegree of “interconnection” will determine
thetimerequired to generate R ; it will certainly beinsignif-
icant in relation to the time required to produce the abstract
policy.

In our example, HCU is
influenced by 21 and H C'R. Bothare, inturn, influenced by
L2. ThusR = {L1,L2, HCR, HCU}. Noticethat the use
of action aspects, while not necessary, can be useful not only
asaconvenient representational device, but al sofor reducing
the number of relevant atoms for a given problem.

Given the set of relevant atoms, we can generate an ab-
stract state space by clustering together worldsthat agree on
themembers or R, ignoring irrelevant details.

Definition The abstract state space generated by R isW =
{0y, ... 0, }, where: @ w; € W; b)U{w;} = W; )
w;Nw; = 0ifi # j;andd) w,v € @; iff w | Pimplies
vE Pfordl PeR.

Any worlds that agree on the truth of the elements of R are
clustered together — in our example, theatoms R, / and W
areignored. Thus, W contai nsjust 16 states rather than the
128 contained in .

4.2 Abstract Actionsand Utilities

If an optimal policy isto be constructed over this abstract
state space, we require actions and a reward function which
are applicable in this space. In general, computing the tran-
sition probabilities for actions associated with an arbitrary
clustering of states is computationally prohibitive; for it re-
quiresthat one consider the effect of an action on each world
in an abstract state. Furthermore, computing the probability
of moving from one cluster to another under a given action
requiresthat a prior distributionover worldsinthefirst clus-
ter be known, which cannot be known in general.

Fortunately, our abstraction mechanism is designed to
avoid such difficulties. The action descriptionsfor the con-
crete space can be readily modified to fit the abstract space
as shown by the following propositions.

Proposition 1 Let w be an abstract stateand let w, v € w.
Then w satisfies a relevant discriminant for some action as-
pect iff v does.

Proposition 2 Let £ beany effect. i) If £/ isassociated with
anirrelevant discriminant, then £ (w) € @; and ii) F(w) €
uiff E(v) € w.

Intuitively, these conditions ensure that for any two worlds
in a given cluster, an action maps these with equa proba-
bility to worldsin any other cluster. In other words, actions
can be viewed as applying directly to clusters. Furthermore,
the action discriminantsand probabilitiescan be used within
the abstract space to determine the probability of atransition
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fromonecluster to another when an actionisperformed. (We
giveagenera agorithmin[1].) Because of these factors no
new abstract actionsare required and the abstract state space
and transition matrices induced by the original actions enjoy
the Markov property.

In our example, the cluster containing those worlds that
satisfy  L1,L2, HCU,HCR maps to cluster
L1,L2, HCU, HC R with probability 0.9 under GoL1 and
maps to itself with probability 0.1. Under action GetU, it
mapstoitself with probability 1.0 (since GetU affectsnorel-
evant atoms).

To associate an immediate utility with agiven cluster, we
use the midpoint of the range of utilities for worlds within
that cluster. For any cluster @, let min(w) denote the min-
imum of the set { R(w) : w € w} and max(w) denote the
corresponding maximum. Our abstract reward functionis:

max(w) + min(w)
2

This choice of R(w) minimizes the possible difference be-
tween R(w) and R(w) for any w € w, and is adopted for
reasons we explain below. Any cluster satisfying HCU has
an abstract utility of .95 (since someworldshave areward of
1.0 and some 0.9), while H C'U ensures a utility of .05.

R(®) =

4.3 Abstract Policiesand their Properties

With the abstract state space, actionsand reward functionin
place, we now have a Markov decision process for which
an optimal policy can be constructed using policy iteration.
Since computationtimefor an optimal policy isafunction of
the number of states, the cardinality of R will determine the
savingsover optimal policy constructioninthe origina state
space. Since the state space increases exponentidly in size
asthe number of relevant atoms increase, any reduction can
result in tremendous speed-up.

Of course, this speed-up comes at the cost of generating
possibly less-than-optimal policies. Thus, some measure of
the loss associated with constructing policies in the abstract
space must be proposed. Let us denote by 7 the optimal ab-
stract policy (that generated for our abstract MDP). We take
7 to be mapped into a concrete policy = in the obviousway:
m(w) = 7(w) where w € w.

Along with 7, policy iteration will produce an abstract
value function V~. We can take V>~ to be an estimate of the
true value of the concrete p0I|cy7r that is, V (w) isapprox-
imated by V~(w) where w € w. The difference between
Ve (w) and V (w) isameasure of the accuracy of policy it-
eration over the abstract space in estimating the value of the
induced concrete policy.

Of more interest is the degree to which the generated ab-
stract policy differs from truly optimal policy. Let 7« de-
notesome optimal policy for theorigina process, with corre-
sponding value function V... The true measure of goodness

for an abstract policy 7 is the degree to which the induced
concrete policy = differsfrom =+; more precisely, we should
be interested in the difference between V; (w) and V. (w)
(for any world w).

Bounds on the magnitudes of these differences can be
computed using the utility span for acluster @: span(w) =
max(w) — min(w). Thisisthe maximum degree to which
the estimate R(w) of theimmediate utility of aworldin that
cluster differs from the world'strue utility R(w). Let § de-
note the maximum span among all clustersin W. We have
the following bounds (recall 5 is the discounting factor):

Theorem 3 [V~(w) — Vz(w)| < 5

Ve(w)] < = ﬁ,for anyw € W.

A foranyw € W.

Theorem 4 |V (w) —

Thus we have some reasonable guarantees about the effec-
tiveness of the computed policy. The key factor in the ef-
fectiveness of an abstraction is the size of ¢ in relation to
theranges of possiblevalues. Intuitively, the abstract policy
can lose no more than § reward per time step or action taken
(comparedto optimal). Thisavery facileworst-caseanalysis
and isunlikely to ever be reached for any world (let alone all
worlds). Some preliminary experimental results have borne
out thisintuition.

In our example, with R = {L1,1.2, HCR, HCU}, the
abstract policy ™ generated essentially requires the robot to
get coffee directly, ignoring the umbrella, whereas the true
optimal policy 7+ will have the robot get theumbrellaif itis
raining (if it startsat 7.1). With adiscounting factor 5 of 0.9,
Theorem 4 guarantees that the expected value of the abstract
policy, for any state, will be within 0.9 of optimal. To cdli-
bratethis, we note that the possible optimal values (over 117)
rangefrom 0 and 10. Computing the abstract policy 7 shows
that for all w € W wehave |V, (w) — Vi (w)| < 0.8901.
Furthermore, at only 12 of 128 states did the concrete and
optimal values differ at al. The timerequired to produce the
abstract policy was 0.12 seconds compared with 21 seconds
for policy iteration performed on the complete network. Al-
though we cannot expect such performance in all domains,
theseresults, aswell as other experiments, show that in many
casesthea gorithmperformsextremely well, producing poli-
ciesthat are closeto optimal and requiring considerably less
computation time than policy iteration.

The utility span formulation of abstraction value shows
the direction in which one should refine abstractions: the
propositionsthat should be incorporated into a new abstrac-
tion are those that reduce the maximum utility span 4 the
most. At some point inrefinement, should J reach 0, optimal
policieswill be generated. Finally, should amore refined ab-
straction be used, the generated policy cannot be worse (and
will typically be better, if any utility span isreduced, even if
the maximum span ¢ remains constant). Let ZRy C 7R be
two sets of immediately relevant atoms, and let = and ¢» be
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theconcretepoliciesinduced by ZR, and ZR 5, respectively.
Theorem 5 |V (w) — Vi (w)] < [Vas (w) — Vi (w)] for any
weW.

Naturally, this analysis shows how one should determine
theinitia set ZR of immediately relevant atoms. For a par-
ticular set ZR, the corresponding set R of relevant atomsis
not immediately obvious, but can be computed as described
above (in negligibletime). In the case where abstractionsare
to be generated frequently for different problems, appropri-
ateinformation of thistype can bere-used. Thesizeof R is
agood predictor of the time required to generate an abstract
policy. Thus, our algorithm has a*“ contract anytime”’ nature
(relativetothecomputation of R). Thequality of theabstract
policy can be bounded by Theorem 4, and the “quality” of a
particular ZR can be computed easily by considering the ab-
stract statesit induces. More precisely, let 77z bethe set of
truth assignmentsto ZR (we treat these loosaly as conjunc-
tions of literals). Let D be the set of utility discriminants.
Foranyt € Trr, let

max(t) = %%X{R(d) cd E At}

and let min(¢) denotethe corresponding minimal value. The
“goodness’ of ZR is measured by
tEHTE?;{maX(t) — min(?)}

The smaller thisvalue (the maximal utility span), the tighter
the guarantee on the optimality of the abstract policy. While
the computation of this maximal span is exponentia in the
number of immediately relevant atoms, ZR will always be
restricted to atoms mentioned in the reward function R,
whichwill be arather small subset of atoms.

The idea of using utility spans to generate abstractionsis
proposed by Horvitz and Klein [6], who use the notion in
single-step decision making. Our analysis can be applied to
their framework to establish bounds on the degree to which
an“abstract decision” can belessthan optimal. Furthermore,
thenotionisuseful in more genera circumstances, asour re-
sultsillustrate.

5 Concluding Remarks

We have shown that abstraction can be a valuable tool for
computing close-to-optima policiesfor MDPsand DTP. Our
approach is one that is amenable to both theoretical and ex-
perimental analysis, and appears promising given our pre-
l[iminary results. Our model provides “contract anytime be-
havior” sincethe computationtimerequiredisdetermined by
the number of relevant propositions chosen. Our approach
has a number of interesting benefits. Since abstractions can
be generated relatively easily, our approach iswell-suited to
problem-specific abstractions, for instance, to particular re-
ward functions or starting state distributions (see Knoblock

[8], who aso discusses problem-specific abstraction). Fur-
thermore, since abstractions cover al possible states, the
abstract state space offers a useful method for represent-
ing reactive strategies. A close-to-optimal strategy can be
encoded with exponential space-saving. This may be use-
ful also in determining which bits of information a reactive
agent should ignore when sensor costs are high.

There are agreat number of directionsin which thiswork
is being extended. We are currently exploring an expected-
case analysis by making certain assumptions about prob-
lem distributions, augmenting the worst-case results pro-
vided here. We are also exploring other methods of ignor-
ing details. In particular, we have developed some meth-
ods for considering only discriminants whose relevant ef-
fects are sufficiently probable or sufficiently important [1].
In our example, carrying the umbrella might dightly de-
crease the chance of successful coffee delivery, but can beig-
nored. Whilethe concrete action probabilities are not accu-
rate in such an abstract space, they are roughly correct. The
Markov assumptionis*“approximately” trueand theerror as-
sociated with solving the problem with inaccurate transition
probabilities can be bounded. Discounting can be incorpo-
rated in such amodel tofurther reducethenumber of relevant
atoms; essentialy, effectsfroma“ distance” can begivenless
weight. A crucial feature of thisextension isthefact that ab-
stractions are generated reasonably quickly. Nicholson and
Kaelbling [10] have proposed abstracting state spaces in a
similar fashion using sensitivity analysis to determine rele-
vant variables; however, such a method has high computa-
tiona cost.

A key problem is the adaptation of our method to differ-
ent action and utility representations (e.g., using causal net-
works, or general propositional action and utility discrimi-
nants). This should lead to adaptive and nonuniform clus-
tering techniques. However, there are certain technica diffi-
culties associated with nonuniform clusters. We hopeto in-
vestigate the features of both the envelope and abstraction
methods and determine to which types of domains each is
best suited and how theintuitionsof both might be combined
(see[10]). Featuresthat will ensure the success of our tech-
nique include: a propositional domain representation; ap-
proximately additive utilities over features; a wide range of
utilities; goal swith possibleminor improvements, and so on.
The extent to which real domains possess these qualitiesis
ultimately an empirical question.

We are also exploring search methods that can be used to
refine abstract policies [4]. While an abstract policy might
not be ultimately acceptable, it may be suitableas a set of de-
fault reactions under time-pressure. Astime permits, finite-
horizon decision-tree search can be used to refine the policy.
The abstract value function, a by-product of abstract policy
construction, can be used quite profitably as aheuristic func-
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tion to guide this search. Preliminary results appear quite
promising. In our example, search of depth 4 guarantees op-
timal action [4]. Finally, we hope to generaize our tech-
niques to semi-Markov and partially observable processes.
The computational difficulties associated with the partially
observabl e case make abstraction especially attractiveinthat
Setting.
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