
To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

Using Abstractions for Decision-Theoretic Planning with Time
Constraints

Craig Boutilier and Richard Dearden
Department of Computer Science
University of British Columbia

Vancouver, BC, CANADA, V6T 1Z4
email: fcebly,deardeng@cs.ubc.ca

Abstract
Recently Markov decision processes and optimal control policies
have been applied to the problem of decision-theoretic planning.
However, the classical methods for generating optimal policies
are highly intractable, requiring explicit enumeration of large state
spaces. We explore a method for generating abstractions that allow
approximately optimal policies to be constructed; computational
gains are achieved through reduction of the state space. Abstrac-
tions are generated by identifying propositions that are “relevant”
either through their direct impact on utility, or their influence on ac-
tions. This information is gleaned from the representation of utili-
ties and actions. We prove bounds on the loss in value due to ab-
straction and describe some preliminary experimental results.

1 Introduction
Recently there has been considerable interest in probabilistic
and decision-theoretic planning (DTP) [5, 9, 14, 3]. A prob-
abilistic framework allows agents to plan in situations of un-
certainty, while decision-theoretic methods permit compar-
ison of various courses of action, or the construction of ap-
propriate nearly-optimal behavior when (optimal) goals are
unachievable. Dean et al. [2] have investigated planning in
such contexts as a question of stochastic optimal control, in
particular, modeling the effects of actions on the environ-
ment as a (completely observable) Markov decision process
(MDP) [7]. This model allows one to view each action as a
stochastic mapping among states of the environment, and al-
lows one to associate various rewards or utilities with these
states. With such a model, standard techniques can be used
to construct an optimal policy of action that maximizes the
expected reward of the agent. Unfortunately, these methods
quickly become intractable as the state space grows. As a
concession to these considerations, Dean et al. [2] explore
anytime algorithms for policy generation using restricted en-
velopes within the state space.

We explore a different way of coping with the computa-
tional difficulties involved in optimal policy generation. By

assuming a particular representation of actions, we can gen-
erate an abstract state space in which (concrete) states are
clustered together. Standard techniques may be used in this
reduced space. Our approach has several advantages over the
envelope method. Foremost among these is the fact that no
states are ignored in abstract policy generation – each state
may have some influence on the constructed policy by mem-
bership in an abstract state. This allows us to prove bounds
on the value of abstract policies (with respect to an optimal
policy). Furthermore, finer-grained abstractions are guaran-
teed to increase the value of policies. Finally, abstractions
can be generated quickly. These factors allow abstract poli-
cies of varying degrees of accuracy to be constructed in re-
sponse to time pressures. The information obtained in ab-
stract policy generation can then be used in a real-time fash-
ion to refine the abstract policy, as we describe in the con-
cluding section. This is also well-suited to circumstances
where the goals (or reward structure) communicated to an
agent change frequently; thus problem-specific abstractions
can be generated as needed.

In the next section we describe the MDPs, Howard’s [7]
policy iteration algorithm for optimal policy construction
and (briefly) the anytime approach of [2]. In Section 3, we
discuss a possible knowledge representation scheme for ac-
tions and utilities. The information implicit in such a speci-
fication will be crucial in generating useful abstractions. In
Section 4, we present an algorithm for generating an abstract
state space and an appropriate decision model. We show how
policy iteration is used to generate abstract policies in this
state space that are directly applicable to the original (con-
crete) space, and prove bounds on the possible loss due to ab-
straction. We also discuss preliminary experimental results
that suggest that abstraction of this form is quite valuable in
certain types of domains.

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

2 Markov Decision Processes
Let W be a finite set of states or worlds, the possible situa-
tions in which a planning agent may find itself. We assume
that this set of worlds is associated with some logical propo-
sitional languageL, and is thus exponential in the number of
atoms generating L. Let A be a finite set of actions avail-
able to an agent. An action takes the agent from one world
to another, but the result of an action is known only with
some probability. An action may then be viewed as a map-
ping fromW into probabilitydistributionsoverW . We write
Pr(w1; a; w2) to denote the probability that w2 is reached
given that action a is performed in state w1. These transi-
tion probabilities can be encoded in a jW j � jW jmatrix for
each action. This notation embodies the usual Markov as-
sumption that the transition probabilities depend only on the
current state.

While an agent cannot (generally) predict with certainty
the state that will result from its action, we assume it can
observe with certainty the resulting state once the transition
is made. Hence the process is completely observable. All
uncertainty is due to the unpredictability of actions. While
some have this property, there will be many domains in
which this is not the case. However, complete observability
is a useful simplifying assumption that allows us to explore
the fundamentals of abstraction, ignoring the technical diffi-
culties of the partially observable case.

We assume a real-valued reward function R, with R(w)
denoting the (immediate) utility of being in state w. For our
purposes an MDP consists ofW , A, R and the set of transi-
tion distributions fPr(�; a; �) : a 2 Ag.

A control policy� is a function� :W !A. If this policy
is adopted, �(w) is the action an agent will perform when-
ever it finds itself in state w. Given an MDP, an agent ought
to adopt an optimal policy that maximizes the expected re-
wards accumulated as it performs the specified actions. We
concentrate here on discounted infinite horizon problems:
the current value of future rewards is discounted by some
factor � (0 < � < 1); and we want to maximize the ex-
pected accumulated discounted rewards over an infinite time
period. However, our methods are suitable for finite horizon
techniques such as value iteration [7] as well. Intuitively, a
DTP problem can be viewed as finding an optimal policy.1

The expected value of a fixed policy � at any given statew is specified byV�(w) = R(w) + � Xv2W Pr(w; �(w); v) � V�(v)
Since the factors V�(w) are mutually dependent, the value of� at any initial state w can be computed by solving this sys-1If a “final” state stops the process, we may use absorbing states
(at which no action is applicable). Classical (categorical) goals can
also be specified [2].

tem of linear equations. A policy � is optimal if V�(w) �V�0 (w) for all w 2 W and policies �0. Howard’s [7] policy
iteration algorithm works by starting with a random policy
and trying to improve this policy by finding for each world
some action better than the action specified by the policy.
Each iteration of the algorithm involves the following two
steps:

1. For each w 2W , compute V�(w).
2. For each w 2W , find some action a such thatR(w) + � Xv2W Pr(w; a; v) � V�(v) > V�(w)

Let policy �0 be such that �0(w) = a if such an improve-
ment exists, �0(w) = �(w) otherwise.

The algorithm iterates on each new policy �0 until no im-
provement is found. The algorithm will converge on an op-
timal policy, and in practice tends to converge reasonably
(given, e.g., a greedy initial policy). The first step requires
the solutionof a set of jW j linear equations in jW j unknowns
(requiring polynomial time).

Unfortunately, the factor jW j will be exponential in the
number of atoms in our underlying language. Optimal pol-
icy construction is thus computationally demanding. Such
solutions methods may be reasonable in the design of an
agent requiring a fixed policy. A solutionmight be computed
off-line and a corresponding reactive policy embodied in the
agent “once and for all.” However, a fixed policy of this type
is not feasible in a setting where an agent must respond to
the changing goals or preferences of a user. While in many
domains the system dynamics may be relatively stable, the
reward structure for which an agent’s behavior is designed
might change frequently (e.g., in response to different task
assignments). Therefore, fast on-line computation of poli-
cies will be necessary and the computational bottleneck must
be addressed. We expect optimality (of policy) to be sacri-
ficed for computational gain.

To deal with the difficulties of policy construction, Dean et
al. [2] assume that it will be sufficient in many circumstances
to consider a very restricted subset of the state space. Their
basic approach is as follows: an initial envelope E , or subset
of worlds, is chosen and a partial policy is computed for E
(i.e., a policy applicable only for states in E) using policy it-
eration. Since an agent might fall out of the envelope while
executing a policy, all transitions out of E are assumed to fall
into a distinguished OUT state. If an agent ends up in this
state, it must extend (or alter) the current envelope and com-
pute a new partial policy. The anytime aspect of this model
is captured by an algorithm which constructs a partial policy
for E , and if time permits extends E to include more states.
Given more time the algorithm will compute a more com-
plete partial policy.

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

This model requires an estimate of the penalty associated
with the OUT state. In [2] it is suggested that the expected
value of all “out states” and some factor accounting for the
time to recompute a policy be used; but determining this ex-
pected value requires at least some approximation to an op-
timal policy (though in certain domains heuristics may be
available). An initial envelope must also be provided. In
general, it is not clear how a good initial envelope should
be generated, although in [2] some reasonable guidelines are
suggested for certain domains (such as navigation).

We propose an alternative anytime model for nearly op-
timal policy construction based on abstraction of the state
space. While considering a restricted envelope may be ap-
propriate in many instances, in general finding a suitable sub-
set may be difficult, and partial policies are not suitable for
an agent that may find itself in arbitrary start states. In our
approach, we ignore “irrelevant aspects” to the domain by
grouping together states that differ only in these aspects. Ap-
proximately optimal policies can be generated in this smaller
state space. Since irrelevance is a matter of degree, more ac-
curate policies can be constructed (at greater computational
expense) by incorporatingadditional details. Our model pro-
vides several advantages over the envelope method. First,
policies are applicable at all states of the process. Second, we
may provably bound the degree to which policies fall short
of optimal. This factor can be used to influence how detailed
an abstraction is required (and also the direction in which ab-
stractions should be refined). Finally, our model has the fea-
ture that more refined abstractions lead to better policies.

3 Representation of MDPs
It is unreasonable to expect that a DTP problem will be speci-
fied using an explicit stochastic transition matrix for each ac-
tion and an explicit reward function. Regularities in action
effects and reward structure will usually permit more con-
cise representations. We discuss one possible representation
for actions and utilities, and show how this information can
be exploited in abstraction generation. While our algorithm
depends on the particular representation given, the nature of
our method does not. More natural and sophisticated repre-
sentations can be used (e.g., causal networks).

3.1 Action Representation

To represent actions that have “probabilistic effects” we will
adopt a modification of the basic scheme presented in [9], it-
self a modification of the STRIPS representation allowingef-
fects (add/delete lists) to be applied with a certain probabil-
ity. We start by defining an effect to be a (finite) consistent set
of literals. IfE is an effect, its occurrence changes the world.
We let E(w) denote the world that results when effect E is
applied tow. In the usual STRIPS fashion,E(w) satisfies all
literals in E and agrees with w on all other literals.

To deal with nondeterministic actions, we assume that
possible effects occur with specified probabilities. A prob-
abilistic effect is a finite set of effects E1; : : :En with asso-
ciated probabilities p1; : : : pn, written hE1; p1; : : :En; pni.
We insist that

P pi = 1. An effects list EL applied to w in-
duces a discrete distribution overW ; the likelihood of mov-
ing to v when EL occurs at w is given by

Pr(vjEL;w) =Xfpi : Ei(w) = vg
An action can have different effects in different contexts. We
associate with each action a finite set D1; : : :Dn of mutu-
ally exclusive and exhaustive propositions called discrimi-
nants; and associated with each discriminant is a probabilis-
tic effects list ELi. An action a applied at w yields the dis-
tribution over outcomes induced by ELk, where Dk is the
(unique) discriminant satisfied by w.

Parting from [9], we add the notion of an action aspect.
Some actions have different classes of effects that occur in-
dependently of each other. For instance, under a given ac-
tion, a certain literal may be made true if some condition
holds. A distinct literal may independently be made true if
another condition holds. To capture this, an action can be
specified using different aspects, each of which has the form
of an action as described above (i.e., each aspect has its own
discriminant set). The actual effect of an action at a world
is determined by applying the effects list of the relevant dis-
criminant for each aspect of that action. More precisely, letw be some world to which we apply an action with k aspects.
Since each aspect has a proper discriminant set associated
with it, w satisfies exactly one discriminant for each aspect.
Assume these are D1; � � � ; Dk and that each Di has an asso-
ciated effects list hEi1; pi1; : : :Ein; pini. An effect from each
applicable list will occur with the specified probability, these
probabilities being independent. Intuitively, action aspects
capture the kind of independence assumptions one might find
in a causal network or influence diagram. Thus, the net effect
of an action A at w is the union of these effects (sets of lit-
erals), one chosen from each aspect. The probability of this
combined effect is determined by multiplying these proba-
bilities. Thus, we have

Pr(vjA;w) =Xfp1j1 � p2j2 � � �pkjk : E(w) = vg
where E is an effect such thatE = E1j1 [E2j2 [� � � [Ekjk
To ensure that actions are well-formed we impose the follow-
ing consistency condition: ifDi andDj are mutually consis-
tent discriminants taken from distinct aspects of a given ac-
tion, then their effects lists must contain no atoms in common
(thus, the union above is consistent).

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

Action Discr. Effect Prob. Action Discr. Effect Prob.
GoL1 L1; L2 L1; L2 0:9 GoL2 L2; L1 L2; L1 0:9

(aspect1) ; 0:1 (aspect1) ; 0:1
else ; 1:0 else ; 1:0

GoL1 R;U W 0:9 GoL2 R;U W 0:9
(aspect2) ; 0:1 (aspect2) ; 0:1

else ; 1:0 else ; 1:0
BuyC L2 HCR 0:8 DelC L1;HCR HCU;HCR 0:8; 0:2 HCR 0:1

else ; 1:0 ; 0:1
GetU L1 U 0:9 L1;HCR HCR 0:9; 0:1 ; 0:1

else ; 1:0 else ; 1:0
Figure 1: An example of STRIPS-style action descriptions.

An example best illustrates this representation. We as-
sume a user at locationL1 instructs a robot to get her coffee
at L2 across the street. The robot can have coffee (HCR)
and an umbrella (U). It can get wet (W) if it is raining (R),
and the user can have coffee (HCU) as well. Actions include
going to L1 or L2, buying coffee, delivering coffee to the
user and getting an umbrella. These action specifications are
listed in Figure 1.2 The actions GoL1 and GoL2 each have
two aspects. GoL1 induces transition probabilities from any
world w satisfying L1, L2, R and U as follows: the effectfL1; L2;Wg occurs with probability :81; fL1; L2g occurs
with probability :09; fWg occurs with probability :09; and
the null effect ; occurs with probability :01.

3.2 Utility Representation
To represent the immediate rewards or utilities associated
with world states, we assume a user specifies a partition of
the state space that groups worlds together if they have the
same utility. This is achieved by providing a mutually ex-
clusive and exhaustive set of propositions and associating a
utility with each proposition in this set. There are more nat-
ural and concise methods for utility representation. For ex-
ample, if the utilities of propositions are independent and ad-
ditive, these can be directly specified (relative to some base
level). Indeed, such a scheme will generally make the prob-
lem we address in the next section easier. But this simple
scheme will be sufficient for our purposes. Note that any re-
ward function over a state space generated by a set of propo-
sitions can be represented in this fashion.

In our example, the primary goal of the agent is to get cof-
fee; but we would like it to stay dry in the process. No other
propositions influence the immediate reward of a state. We
obtain the following specification of our reward function:2We ignore preconditions for actions here, assuming that an ac-
tion can be “attempted” in any circumstance. However, precondi-
tions may play a useful role by capturing user-supplied heuristics
that filter out actions in situations in which they ought not (rather
than cannot) be attempted. The else discriminant is simply a con-
venient notation for the negation of all action discriminants that ap-
pear earlier in the list.

Discr. Reward. Discr. Reward.HCU;W 1.0 HCU;W .9HCU;W .1 HCU;W 0.0

We dub the propositionsthat determine the immediate util-
ity of a state utility discriminants.

4 Generating an Abstract Model
State-aggregation methods have been used to accelerate con-
vergence of MDP solution methods with some success (e.g.,
[12]). However, the emphasis has not been on the automatic
generation of aggregated states, nor on the exploitation of
regularities implicit of the representation of an MDP. Ab-
straction has also been used in classical planning to guide
the search for concrete, fully-specified plans [11]. In par-
ticular, Knoblock [8] has proposed methods for generating
abstractions by exploiting a STRIPS-style action represen-
tion. Our procedure uses the representation scheme for ac-
tions in much the same fashion, as well as utilities, to de-
cide which propositions are most important in the construc-
tion of a good policy, and which details can be ignored with
little penalty. Once certain propositions are shown to be ir-
relevant, the state space can be collapsed by clustering to-
gether worlds in which only irrelevant propositions differ
(i.e., worlds are distinguished by relevant propositionsonly).
Policy iteration can then be performed in this abstract space
and an approximately optimal policy can be generated. Un-
like the classical setting, an abstract policy can be used im-
mediately and can be refined on-line.

There are three issues that must be addressed using such a
scheme: 1) which propositions should be deemed relevant?
2) how should actions be mapped onto the abstract space? 3)
how should utilities be mapped onto the abstract space?

4.1 The Abstract State Space
In order to generate an abstract state space, a set of relevant
propositionsmust be chosen. From the perspective of imme-
diate utility, only those propositions that occur among the set
of utility discriminants are of direct relevance. In our exam-
ple,W andHCU are the only (immediately) relevant atoms.

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

Of course, immediate relevance is a matter of degree. The
truth or falsity of HCU has a greater immediate impact on
utility than W . It is this observation that will allow us to ig-
nore certain atomic propositions.

Initially, we imagine an agent generates some set IR of
immediately relevant propositions. The larger this set is, the
more fine-grained an abstraction will be. This is the cru-
cial factor in the anytime nature of our approach. A larger
number of abstract states will require more computation, but
will yield more accurate results. It is therefore important that
the relevant propositions be chosen carefully so as to take
full advantage of this tradeoff. Propositions with the greatest
impact on utility are most relevant. A number of strategies
might be employed for discovering the most relevant propo-
sitions. We discuss one such strategy below, once the exact
nature of our algorithm has been elaborated. In our example,
we decide that HCU is the most important proposition, set-
ting IR = fHCUg. If we add W to IR, then the entire
range of immediate utility is captured (and optimal solutions
will be generated, but at added computational cost – see be-
low). We will assume for simplicity that utilitydiscriminants
are conjunctions of literals (this is sufficient for any utility
function) and that IR consists of atoms.

An agent should make distinctions based not only on im-
mediately relevant propositions, but on propositions that
may influence the achievement of these. Thus, we provide
a recursive definition for the set R of relevant propositions.
The idea is based on the construction of abstraction hierar-
chies by Knoblock [8] in a classical STRIPS domain. It relies
on the particular action representation above; but the general
idea is well-suited to other action representations (e.g., the
situation calculus and, especially, causal networks).

Definition The setR of relevant propositions is the smallest
set such that: 1) IR � R; and 2) if P 2 R “occurs” in an
effect list of some action aspect, each proposition occur-
ring in the corresponding discriminant is in R.

Again, for simplicity, we will assume that R consists of
atoms and that an atom occurs in a list if the associated pos-
itive or negative literal occurs. Notice that only the atoms
of a discriminant that might (probabilistically) lead to a cer-
tain effect are deemed relevant; other conditions associated
with the same action aspect can be ignored.3 We call such
discriminants relevant. We leave aside the question of an al-
gorithm for generating the set R given IR (see [1] for de-
tails); an obvious modification of Knoblock’s algorithm for
generating problem specific constraints suffices. The oper-
ator graph construct of [13] might also prove useful in de-
termining relevant discriminants. The “branching factor” of3This connection can be weakened further by ignoring discrim-
inant atoms whose influence on utility is marginal (see the conclud-
ing section).

stochastic actions, the average size of discriminant and ef-
fects lists, and the degree of “interconnection” will determine
the time required to generate R; it will certainly be insignif-
icant in relation to the time required to produce the abstract
policy.

In our example, HCU is
influenced by L1 andHCR. Both are, in turn, influenced byL2. Thus R = fL1; L2;HCR;HCUg. Notice that the use
of action aspects, while not necessary, can be useful not only
as a convenient representational device, but also for reducing
the number of relevant atoms for a given problem.

Given the set of relevant atoms, we can generate an ab-
stract state space by clustering together worlds that agree on
the members or R, ignoring irrelevant details.

Definition The abstract state space generated by R isfW =f ew1; : : : ewng, where: a) ewi � W ; b) [f ewig = W ; c)ewi\ ewj = ; if i 6= j; and d) w; v 2 ewi iff w j= P impliesv j= P for all P 2 R.

Any worlds that agree on the truth of the elements of R are
clustered together — in our example, the atomsR, U andW
are ignored. Thus,fW contains just 16 states rather than the
128 contained in W .

4.2 Abstract Actions and Utilities
If an optimal policy is to be constructed over this abstract
state space, we require actions and a reward function which
are applicable in this space. In general, computing the tran-
sition probabilities for actions associated with an arbitrary
clustering of states is computationally prohibitive; for it re-
quires that one consider the effect of an action on each world
in an abstract state. Furthermore, computing the probability
of moving from one cluster to another under a given action
requires that a prior distribution over worlds in the first clus-
ter be known, which cannot be known in general.

Fortunately, our abstraction mechanism is designed to
avoid such difficulties. The action descriptions for the con-
crete space can be readily modified to fit the abstract space
as shown by the following propositions.

Proposition 1 Let ew be an abstract state and let w; v 2 ew.
Then w satisfies a relevant discriminant for some action as-
pect iff v does.

Proposition 2 Let E be any effect. i) IfE is associated with
an irrelevant discriminant, thenE(w) 2 ew; and ii)E(w) 2eu iff E(v) 2 eu.

Intuitively, these conditions ensure that for any two worlds
in a given cluster, an action maps these with equal proba-
bility to worlds in any other cluster. In other words, actions
can be viewed as applying directly to clusters. Furthermore,
the action discriminants and probabilities can be used within
the abstract space to determine the probability of a transition

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

from one cluster to another when an action is performed. (We
give a general algorithm in [1].) Because of these factors no
new abstract actions are required and the abstract state space
and transition matrices induced by the original actions enjoy
the Markov property.

In our example, the cluster containing those worlds that
satisfy L1; L2;HCU;HCR maps to clusterL1; L2;HCU;HCR with probability 0:9 under GoL1 and
maps to itself with probability 0:1. Under action GetU, it
maps to itself with probability1:0 (since GetU affects no rel-
evant atoms).

To associate an immediate utility with a given cluster, we
use the midpoint of the range of utilities for worlds within
that cluster. For any cluster ew, let min(ew) denote the min-
imum of the set fR(w) : w 2 ewg and max(ew) denote the
corresponding maximum. Our abstract reward function is:R(ew) = max(ew) + min(ew)2
This choice of R(ew) minimizes the possible difference be-
tween R(w) and R(ew) for any w 2 ew, and is adopted for
reasons we explain below. Any cluster satisfyingHCU has
an abstract utilityof :95 (since some worlds have a reward of1:0 and some 0:9), whileHCU ensures a utility of :05.

4.3 Abstract Policies and their Properties
With the abstract state space, actions and reward function in
place, we now have a Markov decision process for which
an optimal policy can be constructed using policy iteration.
Since computation time for an optimal policy is a function of
the number of states, the cardinality of R will determine the
savings over optimal policy construction in the original state
space. Since the state space increases exponentially in size
as the number of relevant atoms increase, any reduction can
result in tremendous speed-up.

Of course, this speed-up comes at the cost of generating
possibly less-than-optimal policies. Thus, some measure of
the loss associated with constructing policies in the abstract
space must be proposed. Let us denote by e� the optimal ab-
stract policy (that generated for our abstract MDP). We takee� to be mapped into a concrete policy � in the obvious way:�(w) = e�(ew) where w 2 ew.

Along with e�, policy iteration will produce an abstract
value function Ve� . We can take Ve� to be an estimate of the
true value of the concrete policy �; that is, V�(w) is approx-
imated by Ve�(ew) where w 2 ew. The difference betweenV�(w) and Ve�(ew) is a measure of the accuracy of policy it-
eration over the abstract space in estimating the value of the
induced concrete policy.

Of more interest is the degree to which the generated ab-
stract policy differs from truly optimal policy. Let �� de-
note some optimal policy for the original process, with corre-
sponding value function V��. The true measure of goodness

for an abstract policy e� is the degree to which the induced
concrete policy� differs from ��; more precisely, we should
be interested in the difference between V�(w) and V��(w)
(for any world w).

Bounds on the magnitudes of these differences can be
computed using the utility span for a cluster ew: span(ew) =max(ew) � min(ew). This is the maximum degree to which
the estimate R(ew) of the immediate utility of a world in that
cluster differs from the world’s true utilityR(w). Let � de-
note the maximum span among all clusters in fW . We have
the following bounds (recall � is the discounting factor):

Theorem 3 jVe�(ew)� V�(w)j � �2(1��) , for any w 2W .

Theorem 4 jV��(w)� V�(w)j � ��1�� , for any w 2W .

Thus we have some reasonable guarantees about the effec-
tiveness of the computed policy. The key factor in the ef-
fectiveness of an abstraction is the size of � in relation to
the ranges of possible values. Intuitively, the abstract policy
can lose no more than � reward per time step or action taken
(compared to optimal). This a very facile worst-case analysis
and is unlikely to ever be reached for any world (let alone all
worlds). Some preliminary experimental results have borne
out this intuition.

In our example, with R = fL1; L2;HCR;HCUg, the
abstract policy e� generated essentially requires the robot to
get coffee directly, ignoring the umbrella, whereas the true
optimal policy ��will have the robot get the umbrella if it is
raining (if it starts at L1). With a discounting factor � of 0:9,
Theorem 4 guarantees that the expected value of the abstract
policy, for any state, will be within 0:9 of optimal. To cali-
brate this, we note that the possible optimal values (overW)
range from 0 and 10. Computing the abstract policy e� shows
that for all w 2 W we have jV��(w) � V�(w)j � 0:8901.
Furthermore, at only 12 of 128 states did the concrete and
optimal values differ at all. The time required to produce the
abstract policy was 0.12 seconds compared with 21 seconds
for policy iteration performed on the complete network. Al-
though we cannot expect such performance in all domains,
these results, as well as other experiments, show that in many
cases the algorithmperforms extremely well, producingpoli-
cies that are close to optimal and requiring considerably less
computation time than policy iteration.

The utility span formulation of abstraction value shows
the direction in which one should refine abstractions: the
propositions that should be incorporated into a new abstrac-
tion are those that reduce the maximum utility span � the
most. At some point in refinement, should � reach 0, optimal
policies will be generated. Finally, should a more refined ab-
straction be used, the generated policy cannot be worse (and
will typically be better, if any utility span is reduced, even if
the maximum span � remains constant). Let IR1 � IR2 be
two sets of immediately relevant atoms, and let � and be

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

the concrete policies induced by IR1 and IR2, respectively.

Theorem 5 jV �(w)�V (w)j � jV��(w)�V�(w)j for anyw 2W .

Naturally, this analysis shows how one should determine
the initial set IR of immediately relevant atoms. For a par-
ticular set IR, the corresponding set R of relevant atoms is
not immediately obvious, but can be computed as described
above (in negligible time). In the case where abstractions are
to be generated frequently for different problems, appropri-
ate information of this type can be re-used. The size of R is
a good predictor of the time required to generate an abstract
policy. Thus, our algorithm has a “contract anytime” nature
(relative to the computation ofR). The quality of the abstract
policy can be bounded by Theorem 4, and the “quality” of a
particular IR can be computed easily by considering the ab-
stract states it induces. More precisely, let TIR be the set of
truth assignments to IR (we treat these loosely as conjunc-
tions of literals). Let D be the set of utility discriminants.
For any t 2 TIR, letmax(t) = maxd2D fR(d) : d 6j= :tg
and let min(t) denote the corresponding minimal value. The
“goodness” of IR is measured bymaxt2TIRfmax(t)�min(t)g
The smaller this value (the maximal utility span), the tighter
the guarantee on the optimality of the abstract policy. While
the computation of this maximal span is exponential in the
number of immediately relevant atoms, IR will always be
restricted to atoms mentioned in the reward function R,
which will be a rather small subset of atoms.

The idea of using utility spans to generate abstractions is
proposed by Horvitz and Klein [6], who use the notion in
single-step decision making. Our analysis can be applied to
their framework to establish bounds on the degree to which
an “abstract decision” can be less than optimal. Furthermore,
the notion is useful in more general circumstances, as our re-
sults illustrate.

5 Concluding Remarks
We have shown that abstraction can be a valuable tool for
computingclose-to-optimal policies for MDPs and DTP. Our
approach is one that is amenable to both theoretical and ex-
perimental analysis, and appears promising given our pre-
liminary results. Our model provides “contract anytime be-
havior” since the computation time required is determined by
the number of relevant propositions chosen. Our approach
has a number of interesting benefits. Since abstractions can
be generated relatively easily, our approach is well-suited to
problem-specific abstractions, for instance, to particular re-
ward functions or starting state distributions (see Knoblock

[8], who also discusses problem-specific abstraction). Fur-
thermore, since abstractions cover all possible states, the
abstract state space offers a useful method for represent-
ing reactive strategies. A close-to-optimal strategy can be
encoded with exponential space-saving. This may be use-
ful also in determining which bits of information a reactive
agent should ignore when sensor costs are high.

There are a great number of directions in which this work
is being extended. We are currently exploring an expected-
case analysis by making certain assumptions about prob-
lem distributions, augmenting the worst-case results pro-
vided here. We are also exploring other methods of ignor-
ing details. In particular, we have developed some meth-
ods for considering only discriminants whose relevant ef-
fects are sufficiently probable or sufficiently important [1].
In our example, carrying the umbrella might slightly de-
crease the chance of successful coffee delivery, but can be ig-
nored. While the concrete action probabilities are not accu-
rate in such an abstract space, they are roughly correct. The
Markov assumption is “approximately” true and the error as-
sociated with solving the problem with inaccurate transition
probabilities can be bounded. Discounting can be incorpo-
rated in such a model to further reduce the number of relevant
atoms; essentially, effects from a “distance” can be given less
weight. A crucial feature of this extension is the fact that ab-
stractions are generated reasonably quickly. Nicholson and
Kaelbling [10] have proposed abstracting state spaces in a
similar fashion using sensitivity analysis to determine rele-
vant variables; however, such a method has high computa-
tional cost.

A key problem is the adaptation of our method to differ-
ent action and utility representations (e.g., using causal net-
works, or general propositional action and utility discrimi-
nants). This should lead to adaptive and nonuniform clus-
tering techniques. However, there are certain technical diffi-
culties associated with nonuniform clusters. We hope to in-
vestigate the features of both the envelope and abstraction
methods and determine to which types of domains each is
best suited and how the intuitionsof both might be combined
(see [10]). Features that will ensure the success of our tech-
nique include: a propositional domain representation; ap-
proximately additive utilities over features; a wide range of
utilities; goals with possible minor improvements, and so on.
The extent to which real domains possess these qualities is
ultimately an empirical question.

We are also exploring search methods that can be used to
refine abstract policies [4]. While an abstract policy might
not be ultimately acceptable, it may be suitable as a set of de-
fault reactions under time-pressure. As time permits, finite-
horizon decision-tree search can be used to refine the policy.
The abstract value function, a by-product of abstract policy
construction, can be used quite profitably as a heuristic func-

To appear, Proc. Twelfth Nat. Conf. on AI (AAAI-94),
 Seattle, July, 1994

tion to guide this search. Preliminary results appear quite
promising. In our example, search of depth 4 guarantees op-
timal action [4]. Finally, we hope to generalize our tech-
niques to semi-Markov and partially observable processes.
The computational difficulties associated with the partially
observable case make abstraction especially attractive in that
setting.

Acknowledgements
Discussions with Moisés Goldszmidt have considerably influenced
our view and use of abstraction for MDPs. Thanks to Eric
Horvitz, Ann Nicholson and an anonymousreferee for helpful com-
ments. This research was supported by NSERC Research Grant
OGP0121843 and a UBC University Graduate Fellowship.

References
[1] Craig Boutilier and Richard Dearden. Using abstractions for

decision-theoretic planning with time constraints. Techni-
cal report, University of British Columbia, Vancouver, 1994.
(Forthcoming).

[2] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann
Nicholson. Planning with deadlines in stochastic domains. In
Proc. of AAAI-93, pages 574–579, Washington, D.C., 1993.

[3] Thomas Dean and Michael Wellman. Planning and Control.
Morgan Kaufmann, San Mateo, 1991.

[4] Richard Dearden and Craig Boutilier. Integrating planning
and execution in stochastic domains. In AAAI Spring Sympo-
sium on Decision Theoretic Planning, pages 55–61, Stanford,
1994.

[5] Mark Drummond and John Bresina. Anytime synthetic pro-
jection: Maximizing the probability of goal satisfaction. In
Proc. of AAAI-90, pages 138–144, Boston, 1990.

[6] Eric J. Horvitz and Adrian C. Klein. Utility-based abstrac-
tion and categorization. In Proc. of UAI-93, pages 128–135,
Washington, D.C., 1993.

[7] Ronald A. Howard. Dynamic Probabilistic Systems. Wiley,
New York, 1971.

[8] Craig A. Knoblock. Generating Abstraction Hierarchies:
An Automated Approach to Reducing Search in Planning.
Kluwer, Boston, 1993.

[9] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for
probabilistic planning. Technical Report 93-06-04, Univer-
sity of Washington, Seattle, June 1993.

[10] Ann E. Nicholson and Leslie Pack Kaelbling. Toward ap-
proximate planning in very large stochastic domains. In AAAI
Spring Symposium on Decision Theoretic Planning, pages
190–196, Stanford, 1994.

[11] Earl D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115–135, 1974.

[12] Paul L. Schweitzer, Martin L. Puterman, and Kyle W. Kin-
dle. Iterative aggregation-disaggregation procedures for dis-
counted semi-Markov reward processes. Operations Re-
search, 33:589–605, 1985.

[13] David E. Smith and Mark A. Peot. Postponing threats in
partial-order planning. In Proc. of AAAI-93, pages 500–506,
Washington, D.C., 1993.

[14] Michael P. Wellman and Jon Doyle. Modular utility represen-
tation for decision-theoretic planning. In Proc. of AIPS-92,
pages 236–242, College Park, MD, 1992.

