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Abstract
Algorithms for stable marriage and related match-
ing problems typically assume that full preference
information is available. While the Gale-Shapley
algorithm can be viewed as a means of eliciting
preferences incrementally, it does not prescribe a
general means for matching with incomplete infor-
mation, nor is it designed to minimize elicitation.
We propose the use of maximum regret to mea-
sure the (inverse) degree of stability of a match-
ing with partial preferences; minimax regret to find
matchings that are maximally stable in the pres-
ence of partial preferences; and heuristic elicitation
schemes that use max regret to determine relevant
preference queries. We show that several of our
schemes find stable matchings while eliciting con-
siderably less preference information than Gale-
Shapley and are much more appropriate in settings
where approximate stability is viable.

1 Introduction
Matching problems are ubiquitous and find application in a
variety of domains. One of the most widely studied economic
matching problems is the stable marriage problem [Gale and
Shapley, 1962], in which members of two disjoint groups
(colloquially men and women) express preferences for be-
ing matched (married) to members of the opposite group. A
stable matching ensures that specified partnerships offer no
incentive for an unmatched pair to defect from the matching.
The stable marriage problem is emblematic of a rich set of bi-
partite matching problems in which elements of each set have
some affinity for, or preference over, elements of the other.
It has direct application to a variety of problems (e.g., labor
market matching, school admissions) [Niederle et al., 2008];
and the classic Gale-Shapley (GS) algorithm [Gale and Shap-
ley, 1962], and its variants, can be used to compute stable
matchings very effectively.

While algorithms for many forms of stable matching
are computationally efficient, the informational burden they
place on participants can be severe: they usually require that
participants rank all potential partners/matches. Of course,
algorithms like GS can be used in an interactive fashion to
avoid this, as we outline below, but are not designed specifi-

cally to minimize this informational burden. For large-scale
matching problems involving hundreds or thousands of op-
tions on each side (e.g., hospital-resident matching, or paper-
reviewer matching), not only is the cognitive burden on par-
ticipants high, much of this ranking information will gener-
ally be irrelevant to the goal of producing a stable matching.
For example, in resident matching, one expects some degree
of correlation across hospitals in the assessment of the most
desirable candidates, and residents to have correlated views
on the desirability of hospitals. Thus, more desirable can-
didates will tend to be matched to more desirable hospitals,
and “first-tier” participants (hospitals and residents) are wast-
ing time and mental energy if they offer precise rankings of
lower-tier alternatives, while second-tier participants should
not bother providing precise rankings of first-tier alternatives.

In this paper, we develop a framework for incremental pref-
erence elicitation in stable matching problems, as well as
procedures for robust matching in the presence of incom-
plete preference information. Our goal is two-fold: first,
we want to find stable matchings while requiring that par-
ticipants specify only relevant information about their prefer-
ences; second, because full stability may require considerable
preference information, we want to exploit some form of ap-
proximate stability to further reduce the information burden
in practice. To address the latter goal, we use maximum regret
to bound the potential for defection in a matching with par-
tial preferences, and devise algorithms for computing match-
ings with minimal maximum (minimax) regret. To address the
former, we develop elicitation schemes that use the match-
ings computed via minimax regret to find suitable queries.
Our empirical results suggest that our regret-based methods
and elicitation heuristics find approximate and exact stable
matchings with much less than complete preference informa-
tion across a variety of preference distributions, and signifi-
cantly outperform the (interactive) GS algorithm.

2 Background
We first describe the stable matching problem addressed in
this paper, briefly discuss prior work on matching with par-
tial preferences and elicitation, then outline the probabilistic
preference models used in our experiments.
Stable Matching. In this paper we focus on the classic sta-
ble marriage/matching problem (SMP) [Gale and Shapley,
1962], which we formulate using the common “marriage sce-



nario.” An SMP consists of set of men M and women W ,
each of size n, and a set of preference orderings associated
with each participant: each man m ∈ M has a strict total
preference order �m over W , with w �m w′ indicating that
m prefers w to w′ as a potential partner; each w ∈ W has
a similar ordering over M . We use � to denote the set of
preference rankings or preference profile of the SMP. For any
q ∈M ∪W , we use Rq to refer q’s (range of) potential part-
ners, i.e., Rq = W if q ∈ M , and Rq = M if q ∈ W . A
matching is a function µ : M ∪ W → M ∪ W , such that
µ(q) ∈ Rq , and q = µ(µ(q)). In other words, µ matches
men and women in a 1:1 correspondence. Given a match-
ing µ, we say (m,w) is a blocking pair if w �m µ(m) and
m �w µ(w). A blocking pair destabilizes µ since m and w
prefer each other to their partners in µ, and thus have incen-
tive to defect (or “run away” with each other). A matching is
stable if it admits no blocking pairs.

The Gale-Shapley (GS) algorithm [Gale and Shapley,
1962] for finding stable matchings proceeds in rounds (we
describe the female-proposing variant). Initially, nobody
is engaged. At each round, any unengaged woman pro-
poses to the favorite man in her preference order to whom
she has not yet proposed. Each man receiving (one or
more) proposals accepts the proposal of the proposer (in-
cluding his current engaged partner, if any) who is highest
in his preference ranking—they become engaged—and re-
jects all other proposals. Once a round is reached where
each woman is engaged, the current set of engagements is
returned as the matching µ. This mechanism has a num-
ber of remarkable properties: it will converge to a stable
matching in polynomial time; it is strategy-proof for women
(but not men, vice versa if men propose); and among (the
lattice of) all stable matchings it gives every woman her
most preferred “achievable” partner [Gale and Shapley, 1962;
Niederle et al., 2008].

This approach has been extended in a variety of ways and
has been applied in many practical settings. Many-to-one
extensions are common (e.g., hospital-resident or student-
school match [Roth, 1984; Abdulkadiroglu et al., 2005]), and
more flexible forms of preferences can be accommodated.
For instance, “incomplete” preference lists can be used to
express acceptability thresholds: a total order over a subset
of partners is specified, with unranked partners deemed un-
acceptable [Roth et al., 1993]. Indifference (ties) in rank-
ings can also be accounted for [Irving, 1994], and give rise
to new forms of stability. For instance, weak stability re-
quires that both partners in a blocking pair strictly prefer
each other, whereas strong stability allows one of the part-
ners to be indifferent between his/her current and block-
ing partners. These two extensions can be combined to
form the Stable Matching Problem with Incomplete Lists
and Ties (SMP-ILT): determining if there is a weakly sta-
ble matching in SMP-ILT where all men (or women) are
matched is NP-complete [Iwama et al., 1999]; however,
SMP-ILT can be addressed heuristically [Gelain et al., 2010;
Gent and Prosser, 2002].

Related Work. The problems of incremental preference
elicitation and computing stable matchings with partial pref-

erence information have received relatively little attention.
GS is typically implemented by having participants submit
their complete preferences, with the “proposal/acceptance”
simulated within the algorithm. However, it can be viewed
as an interactive elicitation algorithm as well, with proposers
and acceptors providing only the information needed to run
GS. We are unaware attempts to use early termination of GS
to find approximately stable matches. Pini et al. [2011] de-
velop several notions of approximate stability, but this is not
used to address partial information (and relies on real-valued
utilities rather than ordinal preferences). Closest in spirit to
our work is that of Rastegari et al. [2013], who investigate
the problem of minimizing the number of interviews needed
to find a stable matching in a labor market. They analyze the
problem from several perspectives. They show that finding
a minimal certificate (i.e., set of partial preferences that sup-
ports an employer-optimal matching) is NP-hard. They also
provide an MDP-formulation assuming a prior over prefer-
ences (which enumerates all, information states or, in our ter-
minology below, “partial preference profiles”), but is other-
wise polynomial in this (exponentially-sized) set. Our work
differs in its focus on computing matches that are approxi-
mately stable given partial preferences, computationally ef-
fective heuristics for elicitation, and anytime evaluation (we
also evaluate our schemes experimentally).

Biró and Norman [2012] present a method for stable
matching that can be viewed as an elicitation scheme. In-
dividuals interact randomly, and form a new pair if it offers
benefit (relative to their current partners). They show that this
is likely to result in an egalitarian solution. However, inter-
preted as an elicitation scheme, it seems to both scale poorly
computationally and require far more elicitation rounds than
our approach. Other work has considered equilibrium match-
ing with unobservable preferences [Liu et al., 2012]. It is
known that the communication complexity of stable match-
ing is Ω(n2 log n) [Chou and Lu, 2010], hence no elicitation
scheme can reduce elicitation burden the worst case.

Our work is closely related to previous work on
regret-based robust optimization and preference elicitation
[Boutilier et al., 2006; Braziunas and Boutilier, 2007; Lu and
Boutilier, 2011b]. Specifically, we adapt the methods of Lu
and Boutilier [2011b] for regret-based winner determination
and elicitation in voting using ordinal preference rankings to
our robust stable matching problem.

Probabilistic Preference Models. To capture correlations in
preferences, we consider several standard probabilistic mod-
els of preferences below. The Mallows φ-model [Mallows,
1957; Marden, 1995] is parameterized by a modal or refer-
ence ranking σ and a dispersion parameter φ ∈ (0, 1], with
the probability of a ranking r given by P (r | σ, φ) ∝ φd(r,σ),
where d is Kendall’s τ distance metric. When φ = 1 we ob-
tain the uniform distribution over rankings (i.e., impartial cul-
ture), and as φ → 0 the distribution concentrates all mass on
σ. The Mallows model (and mixtures thereof) have plausible
psychometric motivations and are commonly used in machine
learning [Murphy and Martin, 2003; Meila and Chen, 2010;
Lebanon and Mao, 2008; Lu and Boutilier, 2011a].

The riffle independence model [Huang and Guestrin, 2009]



partitions a set of items into two sets: a ranking of each set is
generated stochastically (and independently); then a stochas-
tic process is used to interleave or “riffle” the two resulting
rankings to produce a combined ranking. The model can also
be defined hierarchically, with the same process used to gen-
erate the subrankings.

3 Matching with Partial Preferences
In any preference-based matching process, it may be appro-
priate to elicit only partial information about user preferences,
especially when certain preference information is unlikely to
be relevant in the computation of the matching or when the
costs of elicitation outweigh the benefits derived. However,
the partial information elicited may not be sufficient to pro-
duce a fully stable matching. In this section, we define a spe-
cific form of approximate stability given partial preferences
using minimax regret. Apart from providing worst-case sta-
bility guarantees, we will see that it is a very effective driver
of preference elicitation in Sec. 4.

3.1 Minimax Regret
For any q ∈ M ∪W , we assume that q’s ordinal preferences
are captured by a total order or ranking �q over Rq . (Our
methods can be readily adapted to handle ties and unaccept-
able alternatives in a person’s preferences, but we focus on
total orders for ease of exposition.) However, we suppose that
we have access only to partial information about these pref-
erences. This information takes the form of a partial ranking
Pq for q, which is a partially order over Rq , or equivalently
(the transitive closure of) a consistent collection of pairwise
comparisons of the form r �q r′. Most constraints on pref-
erences, including responses to most natural queries can be
represented in this way. A partial preference profile P is a
set of a partial rankings {Pq : q ∈M ∪W}. A completion of
Pq is any total order �q that extends Pq . Let C(Pq) denote
the set of completions of Pq and define the completionsC(P)
of a partial profile P in the obvious way.

Several special forms of partial preferences are of inter-
est, including top-k preferences, in which a user expresses a
total order over her k most preferred partners and provides
no information over the remaining partners (other than the
implicit fact that they are less preferred). Partitioned prefer-
ences [Lebanon and Mao, 2008] allow a user q to partition po-
tential partners Rq into an ordered set of subsets R1, . . . , Rs
s.t. (a) for all i < j ≤ s, if x ∈ Ri and y ∈ Rj then x �q y;
and (b) for each i ≤ s, items in Ri are unordered. Top-k
preferences are a special case of partitioned preferences and
both can be represented as a set of pairwise comparisons.

Example 1. To illustrate consider an example with n = 4
men and women in which all men and women have iden-
tical preferences. Let �w be the same for each w ∈ W ,
with m0 �w m1 �w m2 �w m3; and similarly let w0 �m
w1 �m w2 �m w3 for each m ∈ M . One possible partial
preference ranking for mi consists of two equal-sized parti-
tions: Pmi

= (w0, w1) � (w2, w3). Indeed, this takes the
form of partitioned preferences. This partial preference has
four possible completions (e.g., w1 � w0 � w3 � w2) in-
cluding the true underlying full ranking. The partial profile

P consisting of this same “two-by-two” partitioning for each
m ∈M,w ∈W will be discussed below.

Our interest is in partial-preference stable matching prob-
lems (PP-SMPs), SMPs in which the user preferences are re-
placed by partial rankings. Given the uncertainty inherent in
a partial preference profile P, one cannot guarantee the exis-
tence of a stable matching: while a matching µ may be stable
under some completions of P, it may not be under other com-
pletions. Thus, intuitively, a solution for a PP-SMP instance
should be as stable as possible. We measure the stability of
µ by considering the maximal possible incentive that some
blocking pair might have for “defecting” over all possible re-
alizations of their preferences. While there are several plausi-
ble ways in which to measure the incentive for a blocking pair
to deviate, we adopt one reasonably natural one here. Specif-
ically, we define the incentive for q to switch from partner
r to partner r′ to be the improvement in rank position in �q
attained by the switch. For any total order �q over Rq , let
sq(r,�q) = n − rank(r,�q) be the Borda score of r in q’s
ranking. For any q ∈M ∪W , preference ordering�q , partial
ranking Pq and r, r′ ∈ Rq , define:

Regret(q, r′, r,�q) = sq(r
′,�q)− sq(r,�q) (1)

PMR(q, r′, r, Pq) = max�q∈C(Pq)sq(r
′,�q)− sq(r,�q) (2)

Regret(q, r′, r,�q) is the degree to which r′ is preferred to
r by q given known preference �q . When only partial prefer-
ences Pq are known, pairwise max regret PMR(q, r′, r, Pq)
is the greatest degree to which r′ might be preferred to r over
all possible preference realizations.
Example 2. Using the partial profile described in Example 1,
we have PMR(m0, w1, w2, Pm0

) = 3: m0’s Borda score for
w1 could up to 3 greater than his score for w2 in some com-
pletion of his partial ranking (indeed, this is so in the comple-
tion described in Example 1).

Using rank improvement to measure the incentive for an
individual to deviate from one partner to another gives us the
ability to measure the degree of instability of a blocking pair.1

Definition 3. Given a SMP and matching µ, the (degree of)
instability of pair (m,w) (resp. µ) is:

Inst(m,w, µ,�m,�w) = (3)
min{PMR(m,w, µ(m),�m),PMR(w,m, µ(w),�w)}

Inst(µ,�) = max
(m,w)

Inst(m,w, µ,�m,�w) (4)

With complete preferences, (m,w) is a blocking pair iff
Inst(m,w, µ,�m,�w) > 0 and µ is stable iff Inst(µ,�) ≤
0. In this sense, our definition generalizes that of stability on
the full information sense.

Notice that we assume the incentive of a pair to deviate is
that of the least willing partner. This is sensible under the
usual assumption of non-transferable utility. But other defi-
nitions are possible, including the summing the PMR values
of both members of the pair. Similarly, we equate the in-
stability of a matching with that of the maximally unstable
pair. The main reason to adopt this definition is that defec-
tion of a single pair is often sufficient to cause a cascade of

1Pini et al. [2011] develop several notions of degree of stabil-
ity using real-valued preferences, and our full (but not our partial)
information definition is a special case of their notion of α-stability.



deviations and unravel the matching. Furthermore, these def-
initions reduce to the usual notion of stability in SMPs given
full preferences (which is not generally the case for other def-
initions, e.g., summing the pairwise max-regret of each indi-
vidual). However, other definitions of instability require no
substantive changes to our underlying conceptual framework
or definitions (though the details and analysis of our algorith-
mic approach below may be sensitive to such changes).

With full information, we are assured a stable matching
exists with Inst(µ,�) ≤ 0. With only a partial profile P, the
stability of any matching µ may not be known for sure. To
provide guarantees on the quality of a matching, we define the
maximum regret of µ by considering its worst-case instability
over all possible preference completions.
Definition 4. Given a PP-SMP with partial profile P, the
max regret of matching µ and the minimax regret of P are:

MR(µ,P) = max
�∈C(P)

Inst(µ,�) (5)

MMR(P) = min
µ

MR(µ,P); µ∗P ∈ argmin
µ

MR(µ,P). (6)

MR(µ,P) reflects the worst-case degree of instability
over possible preference realizations. A minimax optimal
matching µ∗P has the best such stability guarantee, namely
MMR(P): for any other matching µ there is some comple-
tion of preferences for which µ is at least as unstable as the
maximum possible instability of µ∗P. As such, µ∗P represents
a robust matching in the face of preference uncertainty.

Our goal in solving a PP-SMP is as follows: given a partial
preference profile P, find the minimax regret optimal match
µ∗P. Notice that if MMR(P) ≤ 0, then matching µ∗P is in fact
stable in the traditional sense, despite the fact that we have a
partial profile, a fact we will exploit below to terminate the
elicitation process. If the partial profile is complete, then any
stable matching has max regret no greater than 0.

Example 5. In Example 1 we see that MMR(P) = 1.
Several minimax-regret optimal matchings exist: any match-
ing that pairs each of {m0,m1} with one of {w0, w1}, and
each of {m2,m3} with one of {w2, w3}, suffices. The sta-
ble matching for the true underlying preferences, µ0(mi) =
wi, ∀i, is one such matching (though it is not “known” to be
stable given only the partial profile P).

3.2 Computing Approximately Stable Matchings
The decision variant of computing a minimax-optimal match-
ing with partitioned preferences—and by extension, with ar-
bitrary partial preferences—is NP-complete:

Theorem 6. Given partitioned partial profile P, deciding if
some matching µ∗P has MR(µ∗P,P) < k is NP-complete.

Proof Sketch. PP-SMP is easily seen to be in NP: checking if
a match has max regret k takes at most 2n3 pairwise max-
regret calculations, which can be computed in polynomial
time using techniques for finding ranking completions to de-
termine minimax regret in Borda voting with partial votes [Lu
and Boutilier, 2011b].

We use a reduction from SMP-ILT (see Sec. 2) to show PP-
SMP is NP-hard. Assume an arbitrary SMP-ILT instance of
size n, where k is the size of the largest “tie” (group of equally

Algorithm 1 IP for Minimax-optimal Matching
Objective: minimize δ
Subject to:
δ ≥ PMR(m,w,m′, w′)(µm′,w+µm,w′−1), ∀m,m′, w, w′∑
w∈W µwm = 1,∀m ∈M∑
m∈M µwm = 1, ∀w ∈W

µwm ∈ {0, 1}, ∀w ∈W, ∀m ∈M

preferred partners) in some preference order. We create a cor-
responding instance of PP-SMP with 2n + j + 1 individuals
on each side of the market, with j ≤ n2. Men and women are
broken into three groups, each with distinct partitioned pref-
erences. We describe the men (women are analogous). Group
O: the original n men in SMP-ILT; Group I: n+ 1 additional
men Im, used to guarantee that no one is matched to an un-
acceptable partner; Group T: j additional men Tm, used to
ensure weak stability.

Men in Om have a partition for each of their tied groups
(including singletons) in SMP-ILT, and a partition for all un-
acceptable partners; these are ordered as in SMP-ILT. All par-
titions are padded to have size k using women in Tw (arbi-
trarily). Finally, a partition with all women in Iw is inserted
between the least-preferred acceptable and unacceptable par-
titions (any unused Tws are placed in this partition as well).

Each man in Im has the set Ow as his favorite partition.
Then he has a unique woman from Iw as his next preferred,
with the remaining women in Iw women ordered arbitrarily
after this. Women in Tw are ordered arbitrarily below Iw.

Each man in Tm has a unique woman from Tw woman as
his favorite, with the remaining women in Tw women ordered
arbitrarily below this woman. An arbitrary ordering of Iw
follows this, and finally all ofOw comprises a single partition
at the bottom of his preference.

It is straightforward to verify that this construction of a par-
tial preference profile P leads to a PP-SMP problem where a
matching µ∗P has MR(µ∗P,P) < k iff the original SMP-ILT
instance admits a weakly stable matching (we omit details for
space reasons). Since finding a weakly stable matching for
SMP-ILT in NP-hard, the hardness of PP-SMP follows.

Despite its computational complexity we consider several
methods for both exact and heuristic solution of PP-SMP. We
first observe that PP-SMP can be formulated as a polynomi-
ally sized integer program (IP). Given a matching µ and po-
tential defecting pair (m,w), we can compute the relevant
completions of their partial preferences (w.r.t. their partners
µ(m), µ(w)) that maximize their instability Inst(m,w, µ) in
polynomial time. Given a partial profile P, define:

PMR(m,w,m′, w′) = min{PMR(m,w,w′, Pm),

PMR(w,m,m′, Pw)}.

The O(n3) preference completions needed to compute these
O(n4) constants can each be determined in polynomial time.
With these constants in hand, we formulate the minimax-
optimal matching as the IP in Algorithm 1, using 0-1 match-
ing variables µm,w.

The IP performs reasonably well for small values of n, but
becomes impractical beyond n = 30 (see Sec. 4). Because
PP-SMP is NP-complete, the LP-relaxation tends to produce



highly fractional matchings, in contrast to IPs for SMP [Roth
et al., 1993]. Our IP works with arbitrary partial profiles;
when partial preferences have structure (e.g., partitioned, top-
k) we believe more compact IP formulations are possible.

Since our goal is to use minimax regret to support incre-
mental elicitation, we need not compute minimax regret ex-
actly to effectively reach stable matchings, as we will see be-
low. Instead consider a set of related alternative strategies
that provide us with an upper bound on minimax regret and
can be computed very quickly. Given a partial profile P, let
� ∈ C(P) be some completion. Notice that we can readily
use GS to compute a stable matching µ for this complete pro-
file � and compute its max regret MR(µ,P) in O(n2) time.
The max regret of the matching so produced provides us with
an upper bound on MMR(P), and specifically, if MR(µ,P)
is no greater than zero, µ is in fact a stable matching for any
completion of P.

The value of this upper bound depends on the completion
used to generate the matching µ. We consider several dis-
tinct ways of generating a completion, leading to different
variants of the partial preference Gale-Shapley (PPGS) algo-
rithm for approximating minimax regret. PPGS-R (random)
chooses a completion of each user q’s partial preference uni-
formly at random from the set C(Pq). PPGS-k is the same
as PPGS-R except that the process is repeated k times and
the matching with minimal max regret is returned. If some
probabilistic preference model is given, PPGS-ML uses this
model to determine the maximum likelihood completion of
each user’s preferences and runs GS on the resulting profile.
Finally, PPGS-F is much like PPGS-ML except that an ar-
bitrary fixed reference ranking is used to find a maximally
consistent completion.

As with exact MMR, special structure in partial prefer-
ences can be exploited to approximate MMR. For example,
MMR can be bounded quickly with partitioned preferences:

Observation 7. Given partitioned preferences with largest
partition of size p, there is a matching with max regret at most
p− 1. This matching can be found in polynomial time.

By treating each partition as if they represented “ties” in
a full information setting, we can compute a weakly stable
matching in polynomial time [Roth et al., 1993] and bound
its max regret by p − 1. Tighter post-hoc bounds on max
regret can be easily computed given the resulting matching µ.
We discuss the computational effectiveness of these schemes
in the next section.

4 Preference Elicitation
We now turn to interactive elicitation of preferences as a
means of reducing cognitive burden. We present a general
method that uses minimax regret to drive the elicitation pro-
cess and empirically compare it to GS in terms of number
of queries and rounds required to reach a stable (or approxi-
mately stable) matching.

4.1 Elicitation Schemes
We expect preferences in naturally occurring problems to ex-
hibit correlations. Elicitation schemes that exploit this fact
can substantially ease the cognitive burden on users, the

Algorithm 2 Regret-based Halving: Elicitation
Require: Partitioned preference profile P, threshold τ

loop
1: Compute (approximate) µ = µ∗(P), compute MR(µ,P).
2: if MMR(P) ≤ τ , done.
3: for each q ∈ RI (µ) s.t. q not queried this round
4: if r and µ(q) are in the same block B of
5: Pq for some r ∈ BP(q)
6: Ask q to split B.
7: else
8: for each r ∈ BP(q) s.t. r not queried this round
9: if q and µ(r) are in the same block B of Pr

10: Ask r to split B.
11: if @Pj ∈ P s.t. Pj was updated this round
12: for each Pj ∈ P
13: Ask j to split j’s largest partition Bjm s.t. |Bjm| > 1.

amount of preference information revealed, and communica-
tion costs. Consider again the extreme case where all user
preferences are identical (e.g., as illustrated in Example 1):
stability requires that the kth-ranked man be matched with the
kth-ranked woman. If GS is used for elicitation, low-ranked
women (proposers) and men (acceptors) will specify their en-
tire preference ranking, even though only the bottom of their
ranking is actually needed. While half of all potential part-
ners are ranked (on average) using GS, a user q using “binary
search” can identify the kth-ranked element of Rq without
reasoning about her precise ranking. Well-designed queries
could further lessen the burden on users, as some queries are
intrinsically easier than others.

This example, while suggestive, is unrealistic. Apart from
assuming extreme correlation, it presumes the ability to iden-
tify the kth-ranked person on each side of the market. In
general, knowing which parts of a user’s ranking need to be
refined requires some prediction of the matching that will re-
sult. However, this motivates a new elicitation method, the
regret-based halving (RBH) strategy, outlined in Alg. 2. RBH
works by maintaining a partial profile P in the form of parti-
tioned preferences for each user q: i.e., a rank-ordered set of
blocks Bq1 , . . . , B

q
k, where partners within a block have not

yet been compared to each other. At each round of elicita-
tion, RBH asks one or more users q to split a single block Bqj
into an upper block U and lower block L of (roughly) equal
size such that r �q r′ for all r ∈ U, r′ ∈ L. For instance,
Fig. 1 shows the evolution of partitioned preferences discov-
ered using RBH for one of the women in Example 1.

To identify appropriate queries at each round, RBH com-
putes (or approximates) the minimax-optimal matching µ rel-
ative to P. Users whose preference imprecision is “contribut-
ing” to max regret MR(µ) are queried so as to reduce im-
precision in the relevant partition. More specifically, let the
regret-inducing individuals RI (µ) be those q ∈ M ∪W for
which there is an r ∈ Rq , s.t. PMR(q, r, µ(q), Pq) = MR(µ)
and PMR(r, q, µ(r), Pr) ≥ MR(µ): intuitively, q is a user
whose potential preference for new partner r (who poten-
tially reciprocates at least as strongly) determines the max
regret of the matching. We call any such r a blocking part-
ner for q, and denote the set of such as BP(q) (see Fig. 1
for an illustration). RBH will ask queries only of such in-
dividuals, or their potential partners, in a direct attempt to
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Figure 1: Evolution of preferences forw1 in Example 1 using RBH.

reduce MR(µ); see line 4 of Alg. 2. This can be viewed as
a form of current solution elicitation [Boutilier et al., 2006;
Braziunas and Boutilier, 2007; Lu and Boutilier, 2011b],
where queries are driven by the regret-optimal solution.

The selection of individuals for querying occurs in lines
4–10. Intuitively, querying the regret-inducing individuals q
and their blocking partners has the greatest potential to lower
the max regret of the current matching. Lines 4–6 ask q to
split the block containing both its current partner µ(q) and
blocking r ∈ BP(q) when they are in the same block. This
will either confirm µ(q) or r as preferred by q, or will reduce
their PMR by a half. If q’s blocking partner r is not in the
same block as µ(q), we instead query r, asking him to split
the block containing q and µ(r) if they are in the same block
for similar reasons (lines 8–10): note that r’s PMR for q is
at least as great as that of q for r. In both cases, queries are
targeted toward individuals where a single block contains the
“relevant” uncertainty required to identify the optimal “attain-
able” partner, in some loose sense simulating binary search.
If neither of these conditions holds for any q ∈ RI (µ), we
resort to asking each individual to split their largest block to
ensure that elicitation does not stall.
Cognitive Costs. Asking a person to “split a block” based on
preferences is a very different form of query than those asked
by GS. Furthermore, not all splitting queries are equally diffi-
cult, since the sizes of the blocks that are split varies (and may
contain potential partners that are either very close of very
distant from each other in terms of preference). To mean-
ingfully compare RBH with GS, we measure the number and
cognitive difficulty of the pairwise comparisons required to
answer their queries. We show that, in practice, RBH out-
performs GS with respect to the total cognitive complexity of
queries, as well as the number of queries itself.

One natural measure for comparing how difficult queries
are would be to simply consider the number of pairwise
comparisons required. Using a Quickselect-style algorithm
[Hoare, 1961], a block of size z can be split using O(z) com-
parisons (assuming reasonable pivot choices). For GS, pro-
posers can select the next best partner to propose to using
O(z) comparisons when selecting from z unproposed candi-
dates; and acceptors similarly must make comparisons linear
in the number of received proposals. Of course, not all pair-
wise comparisons are equally difficult. Intuitively, comparing
two partners widely separated in one’s ranking is easier than
comparing two that are close, a fact reflected in many psycho-
metric and behavioral economics models of choice [Louviere
et al., 2000; Camerer et al., 2003]. To reflect this, we measure
the difficulty of a comparison using the Luce-Shepard choice
model [Luce, 1959; Shepard, 1959], in which the probability
of choosing a lower ranked item over a higher ranked item
decreases exponentially with their separation or difference in

Avg. Queries per Person
φ Proposers Acceptors # Rounds

0.2

GS-elicit 10.07 (0.16) 3.33 (0.35) 23.7 (1.7)
IP 8.82 (3.03) 8.80 (3.03) 17.8 (6.7)
PPGS-R 4.25 (0.27) 4.24 (0.21) 14.2 (2.7)
PPGS-k 4.09 (0.22) 4.12 (0.19) 11.6 (2.4)
PPGS-F 4.08 (0.20) 4.09 (0.20) 13.8 (3.3)
PPGS-ML 3.95 (0.18) 3.97 (0.15) 7.7 (1.7)

1.0

GS-elicit 3.15 (0.95) 1.97 (0.97) 24.2 (18.3)
IP 7.26 (2.02) 7.31 (2.11) 17.5 (4.8)
PPGS-R 4.06 (0.33) 3.76 (0.37) 21.1 (4.7)
PPGS-k 3.84 (0.30) 3.38 (0.37) 15.3 (4.3)
PPGS-F 3.84 (0.36) 3.50 (0.37) 17.2 (4.9)
PPGS-ML 3.84 (0.32) 3.42 (0.33) 17.6 (4.6)

Table 1: Average number of queries (std. dev.) until max regret 0,
Mallows models: n = 20, 30 trials.
utility. Equating degree of difficulty with choice error, given
an underlying ranking �q for person q, temperature γ ≥ 0,
and threshold τ , the cost of comparing r with r′ is:

c(r, r′) = eγ(n−min(|sq(r,�r)−sq(r′,�r)|,τ)) (7)

(Note: γ = 0 makes all comparisons equally difficult.) We
assess the cognitive complexity of both RBH and GS below.

4.2 Empirical Results
We now describe experiments that test the effectiveness of our
elicitation schemes. We draw preference profiles from spe-
cific preference distributions, and measure the average num-
ber of queries and rounds needed to reach a stable match-
ing (i.e., max regret zero), the cognitive complexity of those
queries, and their anytime performance w.r.t. approximate
stability. We also assess their computational performance.
Number of queries. We first consider small instances
with n = 20 (i.e., 20 men, 20 women) to allow use of
the IP (Alg. 1) to compute true minimax regret. Table 1
shows the average number of queries (over 30 trials) per
proposer/acceptor and number of rounds required by dif-
ferent schemes using a Mallows models to generate pref-
erences with φ = 1 (impartial culture) and φ = 0.2
(strongly correlated preferences). GS marginally outperforms
all RBH schemes when preferences are completely uncorre-
lated, but except for IP, the differences are not statistically
significant for proposers, and the advantage for acceptors is
quite small. With strongly correlated preferences, the RBH
schemes (apart from IP) reach a stable matching with far
fewer queries per proposer, and differ from GS by less than
one query per acceptor. In all cases, the RBH schemes (ex-
cluding IP) ask fewer than log n queries per person; thus they
even outperform binary search for a known target partner (of
course, the target is not known a priori). The IP scheme
works surprisingly poor. This is, in large part, due to the fact
that the matchings computed by the IP often do not match in-
dividuals to partners in the partitions that they ultimately end
up being matched in.

For these small instances, the IP requires roughly 0.5 sec.
to compute the MMR matching (and hence generate queries
in a given round), but becomes impractical beyond n = 30.
We do not consider IP further on the larger instances below.
The other RBH schemes require 0.01–0.06 sec. on average
to generate a matching, compute its max regret, and generate
queries. GS is much faster, but does not compute max regret;
thus it offers no anytime guarantees (as we discuss below).



Avg Queries per Person
φ Proposers Acceptors # Rounds

0.2

GS-elicit 125 (0.04) 11.49 (0.45) 273 (5.7)
PPGS-R 8.62 (0.12) 8.63 (0.14) 258 (28.2)
PPGS-k 8.28 (0.11) 8.27 (0.14) 141 (13.9)
PPGS-F 7.92 (0.11) 7.92 (0.10) 93.1 (9.8)
PPGS-ML 7.49 (0.06) 7.49 (0.06) 31.8 (6.7)

1.0

GS-elicit 5.76 (1.12) 4.52 (1.10) 370 (207)
PPGS-R 8.07 (0.16) 9.26 (0.34) 700 (44.1)
PPGS-k 7.62 (0.13) 7.70 (0.29) 393 (46.9)
PPGS-F 7.30 (0.18) 6.40 (0.15) 342 (28.3)
PPGS-ML 7.28 (0.19) 6.36 (0.13) 331 (26.9)

Table 2: Average number of queries (std. dev.) until max regret 0,
Mallows models: n = 250, 30 trials.
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Figure 2: Average number of queries per person: n = 250, 20
trials, Solid: proposers, Dashed: acceptors; Circles: GS-elicit, Tri-
angles: RBH-PPGS-ML.

Table 2 shows similar results for n = 250, and Fig. 2 shows
the performance of PPGS-F and GS as φ varies. On these
much larger matching problems, PPGS-F and PPGS-ML of-
fer superior performance (both averaging fewer than log(n)
queries per person). With correlated preferences (φ = 0.2)
all RBH schemes dramatically outperform GS. Notice that
GS is also unbalanced or “unfair,” asking proposers 10 times
as many queries as acceptors. PPGS-ML has slightly (but
statistically significant) better query performance than PPGS-
F. It offers much better performance in terms of rounds—an
important measure of latency in interactive elicitation—and
uses only 31.8 rounds (cf. 272.8 for GS). With completely
random preferences, GS has a query advantage over the other
schemes, but it is slight (about 1.5 queries for proposers, un-
der 2 for acceptors), and also has much higher variance. GS
still requires more rounds than PPGS-ML in this case.

Anytime performance. Computationally, GS takes neg-
ligible time per round to compute queries, while PPGS-ML
and PPGS-F take approximately 27s. per round when n =
250. Of course, the RBH schemes must compute max re-
gret, specifically PMR for alternative partners for each per-
son. However, since the PMR values for person q are inde-
pendent of those for q′, these computations can be fully paral-
lelized. Computing preference completions for each q is the
most time-consuming aspect of RBH, so full parallelization
can reduce real-time latency by a factor of roughly 2n. More
importantly, computing the max regret of the current match-
ing allows one to determine approximately stable matchings
at any time and terminate the querying process when max re-
gret reaches an acceptable level. We compare this anytime
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Figure 3: Max regret vs. number of queries (per person): n = 250,
φ = 0.2, 20 trials, with error bars (low std. dev.).

performance of PPGS-ML and GS in Fig. 3.2
PPGS-ML displays very desirable behavior, on average

roughly halving max regret with each (per person) query, in-
ducing rapid convergence to a stable matching. Critically,
it admits early termination of elicitation with high quality
matchings. By contrast, GS reduces max regret at an ex-
tremely low rate, providing almost no ability to quickly find
matchings with low max regret. The ability to determine ap-
proximately stable matchings so quickly is a key reason to
use our regret-based approaches to elicitation.
Cognitive costs. Simply measuring the number of queries
does not consider how difficult each query is, which may be
misleading. We thus analyze the cognitive complexity of each
query (see Eq. 7). We set γ = 0.5 and τ = 5 (and normalize
costs by eγn for clarity); results are qualitatively similar for
other cost parameters. In the (n = 250, φ = 0.2)-instances
above, the cognitive cost of full sorting is 310.34 (per person),
assuming Quicksort with perfect pivots. Proposers average a
cognitive cost of 1,830.89 using GS, so we instead assume
that proposers fully (and perfectly efficiently) sort their lists
ahead of time when using GS, giving a cost of 310.34. (This
is itself unrealistic, since using GS as elicitation is unlikely
to result in proposers sorting their entire list, so true cogni-
tive cost will exceed 310 but fall short of 1830.) Acceptors’
average cost for GS is only 13.08, since they make fewer
decisions and their comparisons are often widely separated.
PPGS-ML’s results are much more egalitarian, with proposers
and acceptors having cognitive costs of 53.80 and 53.77, re-
spectively. Its average cost of 53.79 is much lower than that
of GS—even with perfect sorting by proposers—which av-
erages 161.71 per person. Even with φ = 1, while GS asks
slightly fewer queries per person, its average cognitive cost is
60.8 (men 121.10, women 0.43) remains greater than the 57.8
for PPGS-ML (54.99 proposers, 57.68 acceptors). This is a
compelling reason to use regret-based elicitation.
Riffle models. We now consider a more complicated riffle
model of preferences. This model makes the realistic assump-
tion that certain (either latent or observable) features correlate
user preferences. We assume that every man is one of two

2Note that GS does not compute intermediate matchings at each
round, so we use the PPGS-ML scheme to find a matching using
the information elicited by the GS queries. Other RBH schemes are
excluded, but perform similarly to PPGS-ML.



Avg Queries per Person
φ Proposers Acceptors # Rounds

0.0
GS-elicit 86.79 (1.32) 33.61 (1.32) 324.9 (39.3)
PPGS-F 8.57 (0.16) 8.57 (0.21) 232.4 (21.2)

0.1
GS-elicit 86.77 (1.68) 34.46 (1.55) 333.0 (31.0)
PPGS-F 8.44 (0.26) 8.46 (0.29) 227.0 (22.1)

0.2
GS-elicit 86.37 (1.46) 33.98 (1.38) 312.0 (29.4)
PPGS-F 8.41 (0.13) 8.41 (0.13) 237.1 (22.9)

1.0
GS-elicit 5.96 (0.99) 4.72 (0.97) 408.4 (172.7)
PPGS-F 7.41 (0.26) 6.42 (0.21) 338.1 (47.6)

Table 3: Average number of queries (std. dev.) until max regret 0,
Gaussian riffle model: n = 250, 20 trials.

“types” corresponding to some (for ease of exposition) ob-
servable characteristic. For each type, we assume a distinct
Mallows model over the men of each type. A woman’s pref-
erence for men is generated by first drawing a ranking from
each of these models, then interleaving them using a riffle
process, with a parameter p reflecting the woman’s bias to-
ward each type: the full ranking is generated by iteratively
placing the top “remaining” item from the Type 1 ranking
into the next spot in her full ranking with probability p, and
the top item from the Type 2 ranking with probability 1 − p,
until all men have been inserted into the ordering. The bias p
towards one type of the other is drawn from an equal-weight
mixture of two Gaussians (truncated over [0, 1]) with variance
σ = 0.1 and means of 0.25 and 0.75 (so women are unlikely
to be “indifferent” between the two types of men). Men’s
preferences are generated in the same way.

We compare PPGS-F to GS in terms of number of queries
to reach a stable matching in this model, using three differ-
ent dispersion parameters for the underlying Mallows models.
(We don’t use PPGS-ML since maximum likelihood estima-
tion is less straightforward in this mixture process.) Results
in Table 3 show that PPGS-F vastly outperforms GS, when
φ = 0, 0.1, 0.2; and it remains competitive with GS when
φ = 1. It always requires fewer rounds as well.
MovieLens Models. We next consider matching problems
in which preferences are generated from the MovieLens col-
laborative filtering data set.3 The MovieLens data set consists
of 100,000 ordinal ratings (1–5 scale) of 1682 movies by 943
users. We convert this into preference rankings of users for
each other by generating an affinity score between pairs of
users based on the similarity of their movie ratings.

Let M(a) denoted the set of movies rated by user a, and
ra her rating vector. Given two users a and b, we define their
affinity score to be s(a, b) =

∑
m∈M(a)∩M(b) 5 − |ra(m) −

rb(m)|, where 5 reflects the maximum rating. This scores
creates very correlated preferences: individuals who rate a
larger number of movies will tend to be viewed as more de-
sirable across the population. We also create somewhat less
correlated affinities by normalizing scores by the number of
movies rated in common: sN (a, b) = s(a, b)/|M(a)∩M(b)|.
With these affinities, we create random matching problems by
drawing 250 “men” and 250 “women” uniformly at random,
and generating preference rankings for the appropriate side
of the market using these real-valued affinities to order poten-
tial partners (breaking ties arbitrarily). As expected, the Un-
normalized Movie Matching (U-MM) problems using score s

3See http://www.grouplens.org/node/73, the 100K data set.

Avg Queries per Person
Data Set Proposers Acceptors # Rounds

U-MM
GS-elicit 43.52 (2.07) 26.62 (1.25) 324.9 (39.3)
PPGS-F 6.36 (0.12) 6.37 (0.14) 249.7 (22.9)

N-MM
GS-elicit 13.23 (1.09) 10.07 (0.99) 255.5 (47.8)
PPGS-F 8.11 (0.13) 8.09 (0.15) 349.6 (22.3)

Table 4: Average number of queries (std. dev.) until max regret 0,
MovieLens Matching Models: n = 250, 20 trials.

exhibit more correlation than their unnormalized counterparts
(N-MM) generated using sN .4

Table 4 shows the performance of GS and PPGS-F for both
U-MM and N-MM, averaged over 20 random matching in-
stances. PPGS-F outperforms GS with respect to number of
queries in both settings, but requires more rounds in N-MM.
Not surprisingly the performance gap is greater in when pref-
erences are more correlated. PPGS-F similarly outperforms
GS with respect to cognitive cost (setting γ = 0.5, τ = 5 as
above). In U-MM, average cognitive cost per person for GS is
788.52 for proposers, and 3.56 for acceptors. Using PPGS-F,
average costs are 55.31 and 55.40 for proposers and accep-
tors, respectively. Again, note that the cost of fully sorting all
alternatives is 310.34 per person. PPGS-F also outperform
GS on N-MM problems: GS has an average cognitive cost
of 250.04 and 1.35 for proposers and acceptors, respectively,
while PPGS-F has costs of 58.84 and 58.59, respectively.

5 Conclusions and Future Work

We have proposed the use of minimax regret as a robustness
criterion for stable matching with incomplete information,
and developed several heuristic elicitation schemes designed
to quickly reduce regret. These schemes compare favorably
to the use of Gale-Shapley for interactive elicitation, espe-
cially when preferences exhibit some correlation: they reach
stable matching with fewer queries, fewer rounds of elicita-
tion, and with lower cognitive cost. Critically for domains
where approximate stability is desirable (e.g., when elicita-
tion/interviewing costs or switching/defection costs are high),
our elicitation schemes demonstrate vastly superior anytime
performance to GS, allowing approximately stable matchings
to be found with very little preference information.

Many interesting research directions remain, including:
improved procedures for exact MMR computation; new algo-
rithms tuned to specific forms of partial preferences; analysis
of additional probabilistic preference models and the use of
priors to further improve elicitation performance; the assess-
ment of our methods for different measures of approximate
stability; and the extension to other stable matching problems.
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4Using Kendall’s τ -statistic, the average correlation statistics for
U-MM are 0.4539 (proposers) and 0.4653 (acceptors); while for N-
MM, they are 0.1462 (proposer) and 0.1184 (acceptors).
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