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Abstract
Multi-winner social choice considers the problem of se-
lecting a slate of K options to realize some social objec-
tive. It has found application in the construction of po-
litical legislatures and committees, product recommen-
dation, and related problems, and has recently attracted
attention from a computational perspective. We address
the multi-winner problem when facing incomplete voter
preferences, using the notion of minimax regret to deter-
mine a robust slate of options in the presence of pref-
erence uncertainty. We analyze the complexity of this
problem and develop new exact and greedy robust opti-
mization algorithms for its solution. Using these tech-
niques, we also develop preference elicitation heuristics
which, in practice, allow us to find near-optimal slates
with considerable savings in the preference information
required vis-à-vis complete votes.

1 Introduction
Social choice deals with the aggregation of individual prefer-
ences over a set of alternatives in order to select a suitable
consensus option. While considerable research in compu-
tational social choice has focused on single-winner choice
problems, only recently has much attention been paid to
the algorithmic aspects of multi-winner choice [Potthoff and
Brams, 1998; Procaccia et al., 2008; Meir et al., 2008; Lu and
Boutilier, 2011a; Skowron et al., 2013; Betzler et al., 2011;
Lucier and Oren, 2012]. Multi-winner problems are of criti-
cal importance in many settings, the classic being election of
legislatures and committees using proportional representation
[Chamberlin and Courant, 1983; Monroe, 1995]. However,
they are also appropriate for resource allocation, product rec-
ommendation, and consumer segmentation problems where:
a limited number of options can be offered; budget constraints
preclude personalized recommendations; or budget can be
traded off against group satisfaction [Kleinberg et al., 2004;
Lu and Boutilier, 2011a].

As with any social choice problem, practical deployment of
multi-winner choice faces the challenge of preference elicita-
tion: requiring individuals to specify a full preference ranking
over the option space poses high, and often unnecessary, costs
with respect to cognitive burden, communication and privacy.
Furthermore, in settings such as consumer choice, prefer-
ence information is often limited to revealed choice data (e.g.,
which products have been purchased) or surveys, in which

case complete preference information may simply be unavail-
able. Recent work in vote elicitation has begun to address this
problem [Kalech et al., 2011; Lu and Boutilier, 2011b; 2011c;
Oren et al., 2013] by designing schemes that effectively elicit
only relevant preference information; and constructing meth-
ods for winner selection with only partial preferences. In this
work, we address the same problem in the context of multi-
winner choice, addressing two problems: (a) how to select
a bounded slate of (at most) K options given partial prefer-
ence information; and (b) how to elicit additional preference
information incrementally to improve the quality of the slate.

Specifically, we consider the problem of proportional rep-
resentation using positional scoring functions [Chamberlin
and Courant, 1983] under partial preferences. We adapt the
minimax regret-based approach of Lu and Boutilier [2011b]
for single-winner problems to the problem of choosing a
slate of K options, we show that robust optimization is
NP-hard, but that robust greedy optimization (i.e., selecting
the next best option for the partial slate) can be computed
effectively—indeed, the model generalizes regret-based opti-
mization for single-winner voting. We then address the prob-
lem of elicitation, adapting the current solution heuristic [Lu
and Boutilier, 2011b] to multi-winner choice. Empirical re-
sults show that very good slates of options can be found with
relatively little preference information.

2 Background
We begin with a brief review of relevant concepts from social
choice, outline the Chamberlin-Courant proportional repre-
sentation scheme, and briefly describe our model of partial
preference information.

Preference Profiles. We assume a set of agents (or vot-
ers) N = {1, . . . , n} and a set of alternatives (or options)
A = {a1, . . . , am}. Let Γ be the set of rankings (or votes)
overA (i.e., permutations overA). Alternatives represent any
outcome space over which the voters have preferences (e.g.,
products, elected officials, public projects). Agent i’s prefer-
ences are represented by a ranking vi ∈ Γ, where i prefers a
to a′, denoted a �i a

′, if vi(a) < vi(a
′). The collection of

votes v = (v1, . . . , vn) ∈ Γn is a preference profile.
A positional scoring function (PSF) α : {1, . . . ,m} 7→

R≥0 maps ranks onto scores such that α(1) ≥ · · · ≥ α(m) ≥
0. We write αi(a) = α(vi(a)), which can be interpreted as



a measure of i’s satisfaction with option a. In what follows,
we focus on the Borda score, where α(i) = m − i, but most
of our results generalize to arbitrary scoring rules.

Proportional Representation. In single-winner social
choice, the goal is to select a single option a that reflects
some notion of consensus. For example, the Borda winner
is the option a with the greatest total Borda score

∑
i αi(a)

in profile v. Our focus here is on the selection of a set of
options a ⊆ A where |a| ≤ K, allowing voters to derive
satisfaction from their most preferred candidate. Specifically,
given a preference profile v, we define the score of a K-set
and the optimal K-set as follows:

S(a,v) =
∑
i∈N

max
a∈a

αi(a) =
∑
i

Si(a), (1)

a∗v = argmax
|a|≤K

S(a,v). (2)

(We suppress dependence of S on α since the PSF will be
fixed.) When α is the Borda PSF, this corresponds to the pro-
portional representation scheme of Chamberlin and Courant
[1983]. It can be viewed as a segmentation problem [Klein-
berg et al., 2004]; and it is also a special case of budgeted so-
cial choice, specifically, the limited choice form of the prob-
lem [Lu and Boutilier, 2011a]. More general forms of pro-
portional representation [Monroe, 1995] and budgeted social
choice [Lu and Boutilier, 2011a] allow for assignment func-
tions that map voters to specific options (e.g., to ensure bal-
anced representation, or budget feasibility); but here we as-
sume that the only constraint is on the number of options se-
lected. Sets of size less than K offer no advantage over those
of size K in this case.

Partial Preferences. To represent partial information about
the preferences of voters, we let a partial ranking for a voter
i be a partially ordered set over A, or equivalently (the tran-
sitive closure of) a collection of consistent pairwise compar-
isons of the form a �i a

′. Most natural constraints on pref-
erences, including the responses to natural queries (e.g., pair-
wise comparison, top-t preferences) can be represented this
way. Let pi be i’s partial ranking. We will simply write
a �i a

′ to indicate that this preference can be inferred from
pi when the partial ranking is clear from context. A comple-
tion of pi is any vote vi that extends pi. Let C(pi) denote the
set of completions of pi. When preferences are uncertain, we
write αi(a, vi) to emphasize the dependence of voter i’s score
on her vote. A partial profile is a collection of partial votes
p = 〈p1, . . . , pn〉. Let C(p) = C(p1) × . . . × C(pn) be the
set of completions of p.

Related Work. Multi-winner problems of the form Eq. 2
were proposed by Chamberlin and Courant [1983] as a form
of proportional representation (PR). Monroe [1995] consid-
ered a variant of this model in which representatives on the
winning slate must have roughly balanced numbers of vot-
ers, requiring the use of assignment functions (so certain vot-
ers may not be “represented” by their most preferred op-
tion). Lu and Boutilier [2011a] generalize the model fur-
ther by considering both fixed and unit costs. Comput-
ing optimal slates, even in the simple PR/limited choice

model given by Eq. 2, is NP-hard [Lu and Boutilier, 2011a;
Meir et al., 2008] (also see parameterized complexity results
[Betzler et al., 2011]). But optimal slates in the PR model
(and also in Monroe’s scheme) can be computed greedily
with a 1 − 1

e approximation ratio [Lu and Boutilier, 2011a;
Skowron et al., 2013]; see [Potthoff and Brams, 1998;
Procaccia et al., 2008; Lucier and Oren, 2012] for additional
computational results on the problem (including online vari-
ants). Segmentation [Kleinberg et al., 2004], facility location
[Hajiaghayi et al., 2003] and maximum coverage problems
[Cohen and Katzir, 2008] all bear close connection to the gen-
eral budgeted problem (see [Lu and Boutilier, 2011a]).

While multi-winner problems with partial preferences have
not been addressed in the literature to the best of our knowl-
edge, winner determination in standard single-winner elec-
tions with partial preferences has received attention, both in
the form of possible and necessary winners [Konczak and
Lang, 2005; Xia and Conitzer, 2008], and using minimax
regret [Lu and Boutilier, 2011b] to provide quality guaran-
tees. We define the latter notion below and draw heavily
on this approach in our work. Recent work on incremen-
tal vote elicitation has shown strong promise for reducing
the informational requirements of various voting schemes
in single-winner problems (including Borda and other PSF-
based methods), despite seemingly discouraging worst-case
communication complexity results [Conitzer and Sandholm,
2005]. Kalech et al. [2011] develop schemes based on the
notion of possible and necessary winners. Lu and Boutilier
[2011b; 2011c] use minimax regret to determine appropriate
queries, an approach we generalize below.

3 Robust Multi-winner Optimization
We first consider the problem of selecting an optimal K-set
of options when we have only a partial preference profile p
rather than a complete profile v. Partial preferences may be
common in applications involving limited surveying, partial
customer purchase or rating data, or situations in which voters
can complete partial ballots. Just as importantly, reasoning
with partial profiles is vital for incremental vote elicitation.

Following Lu and Boutilier [2011b], we adopt minimax re-
gret as a robustness criterion for making decisions with in-
complete information. We first present definitions (for sets of
fixed size K) then explain the intuitions:

Regret(a,v) = max
|w|≤K

S(w,v)− S(a,v) (3)

PMR(a,w,p) = max
v∈C(p)

S(w,v)− S(a,v) (4)

MR(a,p) = max
v∈C(p)

Regret(a,v) = max
|w|≤K

PMR(a,w,p) (5)

MMR(p) = min
|a|≤K

MR(a,p) (6)

a∗p ∈ argmin
|a|≤K

MR(a,p) (7)

Given a vote profile v, Regret(a,v) describes the loss in
satisfaction associated with offering set a rather than the op-
timal K-set. Give a partial profile p, the pairwise max regret
PMR(a,w,p) is the worst-case loss that could be incurred,
under all possible realizations of voter preferences, by offer-
ing a rather thanw. Note that our definition of PMR does not



impose constraints on set sizes, a fact we exploit below. The
max regret MR(a,p) of set a is the worst-case loss relative
to the optimal K-set under all preference realizations: this
bounds the loss associated with a given our preference uncer-
tainty. Finally, a minimax optimal set a∗p is one with minimal
max regret or minimax regret MMR(p).

Observation 1. If MMR(p) = 0, then a∗p is an optimal slate
of alternatives for any v ∈ C(p).

3.1 Computing Minimax Optimal Sets
Before discussing computation of minimax regret, we begin
with the simpler problem of computing pairwise max regret.
From Eqs. 4–6, we see that the regret-optimal slate a∗p can
be determined by first computing PMR(a,w,p) for all pairs
of K-sets a,w, maximizing over w to determine MR(a,p),
then minimizing over these terms to compute MMR(p). IfK
is small, then robust optimization is efficient if PMR can be
computed effectively, a problem to which we now turn. (We
discuss an approach for large K in the next subsection.)

One can show PMR is additively decomposable:

PMR(a,w, pi) = max
vi∈C(pi)

Si(w, vi)− Si(a, vi)

PMR(a,w,p) =
∑
i∈N

PMR(a,w, pi) (8)

Thus we can compute the contributions of each voter i to
PMR individually. When i is presented with slate a, she will
choose her most preferred element form a and similarly for
slate w. Define the undominated elements in any set a to be:

ui(a) = {a ∈ a : ¬∃a′ ∈ a s.t. a′ �i a}.

Only undominated elements in a set can be chosen in any
completion of i’s preferences. In the ranking vi ∈ C(pi)
that maximizes pairwise regret, only one element in w will
be chosen by i (the most preferred), which defines PMR:

PMR(a,w, pi) = max
w∈ui(w)

PMR(ui(a), {w}, pi). (9)

Given this, there are two cases to consider in determin-
ing the adversarial completion vi ∈ C(pi) that maximizes
PMR(ui(a), {w}, pi).

Case 1. Suppose there is an a ∈ a such that a �i w. This
means in there is no completion in which i would choose w,
so PMR is negative. Maximizing pairwise regret requires
reducing the “gap” between the most preferred a∗ ∈ a and w.
The only options that must lie between the most preferred a
and w are undominated elements ui(a) of a that dominate w,
or those b known to lie between such an a and w. Define

ui(a)+w = {a ∈ ui(a) : a �i w},
Bi(a,w) = {b ∈ A : ∃a ∈ ui(a)+w , a �i b �i w}.

Bi(a,w) includes all options that must lie between the best
a ∈ a and w (the specific choice or placement of the ele-
ments in these two sets has no impact on PMR). Every other
option can consistently be ordered above the best a or below

Case 1 Case 2

Figure 1: Adversarial completions of pi regret
PMR(ui(a), {w}, pi), Cases 1 and 2.

w depending on constraints in pi.1 Thus we have:
PMR(ui(a), {w}, pi) = −|ui(a)+w | − |Bi(a,w)|. (10)

See Fig. 1(case 1) for an illustration.
Case 2. Now suppose that for voter i, no element in

a ∈ a is known to be preferred to w. If w ∈ ui(a) then
PMR(ui(a), {w}, pi) = 0, since any adversarial completion
can place w above all items in ui(a) \ {w} (otherwise regret
would be negative). Otherwise the desired completion must
maximize the gap between w and any item in ui(a). The fol-
lowing options can be placed between w and a:
B′i(a,w) = {b ∈ A \ a : b 6�i w and ∀a ∈ ui(a), a 6�i b}.

The relative ordering of these items does not impact regret.
With B′i(a,w) placed below w, some item from ui(a) must
lie immediately below the last element of this set (becoming
the most preferred a ∈ a). Thus, we have:

PMR(ui(a), {w}, pi) =

{
1 + |B′i(a,w)| if w 6∈ ui(a),

0 otherwise.
(11)

See Fig. 1(case 2) for an illustration (where w 6∈ ui(a)).
In both cases, the undominated sets ui(a) and ui(w) can

be computed in O(K2) time. In case 1, ui(a)+w can be com-
puted in O(K) time once ui(a) is known, and Bi(a,w) can
be computed inO(mK) time by checking if each b ∈ A satis-
fies the constraints w.r.t. ui(a)+w and w. For case 2, B′i(a,w)
can be found in timeO(mK) by checking each b ∈ A with w
and the options in ui(a). Using Eqs. 9 and 8, PMR(a,w,p)
can be computed inO(n(K2+K(K+mK))) = O(nmK2)
time. Note that for K = 1, the approach is identical to PMR
computation proposed by Lu and Boutilier [2011b]. Putting
this together we have:
Theorem 2. PMR(a,w,p) is given by:

∑
i∈N

max
w∈ui(w)


−|ui(a)

+
w| − |Bi(a,w)| if ∃a ∈ a : a �i w,

1 + |B′i(a,w)| o.w., and w 6∈ ui(a),

0 o.w.,

and is computable in O(nmK2) time.
1For “nonlinear” scoring rules, where the score difference for

two options depends not just on relative, but also absolute rank po-
sition, placement of options above or below a and w requires more
care, but is straightforward in most cases.



The minimax optimal slate a∗p can be computed by com-
puting max regret MR(a,p) for each size K slate a (and
selecting the slate a∗p that minimizes regret); and in turn
MR(a,p) can be computed by determining its pairwise max
regret for each size K witness set w. Hence:

Proposition 3. The minimax regret optimal slate a∗p can be
found in time O(nm2K+1K2).

The additive decomposability of PMR has the nice com-
putational consequence that, during the course of incremental
elicitation (see Sec. 4), one need only update the contributions
to PMR of those agents who have their partial preferences
updated by responding to a query.

For slates of small bounded size K, enumeration of op-
tion sets may be practical—with bounded K, slates can be
computed in polynomial time (in n,m). However, since
this form of proportional representation and budgeted social
choice is an NP-hard optimization problem [Lu and Boutilier,
2011b] (as are related forms [Procaccia et al., 2008]), find-
ing the minimax optimal slate is also NP-hard (simply let p
be a full preference profile). Indeed, even simply computing
MR(a,p) is NP-hard:

Theorem 4. Given threshold r ≥ 0, partial profile p, set size
K, and set a of size at mostK, deciding if MR(a,p) ≥ r (i.e.,
does some set w of size at mostK satisfy PMR(a,w,p) ≥ r)
is NP-hard.

Proof. This is easy to see using a simple reduction from from
the limited choice (LC) problem (with Borda scoring), which
is NP-hard [Lu and Boutilier, 2011a]. Given any LC instance
with budgetK and complete profile v overm items, we trans-
form it into a partial profile p withm+K items (them origi-
nal items plus K “dummy” items). Set a to be the dummy
items. Define each partial pi to be identical to vi on the
top-m ranked items, while the rest of the ranking is unspeci-
fied. Computing whether some slate w of size at most K has
PMR(a,w,p) ≥ r can then be used to determine if there is a
slate w′ with score above a threshold in the LC instance.

3.2 A Greedy Algorithm
Due to the lack of a (general) efficient algorithm to compute
a∗p, we develop a heuristic approach that will be practical for
large K. It turns out that a relatively simple greedy optimiza-
tion procedure can be used for this purpose. To this end, de-
fine the following problem, which we call the additional op-
tion problem: assume a partial profile p and a fixed set a of
k − 1 options; if one can add a kth option to the set, which
next option minimizes maximum regret under the PR/limited
choice model? We define this problem in the obvious way:

PMR(a,w,p|a) = PMR(a ∪ {w}, a ∪ {a},v)
MR(a,p|a) = max

w∈A
PMR(a,w,p|a) (12)

MMR(p|a) = min
a∈A

MR(a,p|a) (13)

a∗a,p ∈ argmin
a∈A

MR(a,p|a).

(Note that setting k = 1 gives the (single-winner) robust
voting problem of [Lu and Boutilier, 2011b].)

The additional option problem can be solved in polyno-
mial time. We can explicitly compute the pairwise max re-
gret PMR(a,w,p|a) of all m2 pairs of alternatives (a,w)
(where a is a proposed additional option and w is an adver-
sarial witness), using intuitions very similar to those above
(as we discuss below). Note that while we can apply our pre-
vious algorithm for finding the pairwise max regret for ar-
bitrary pairs of slates (a,w), the algorithm and analysis for
PMR(a,w,p|a) that we provide below provides a factor k
speedup. With PMR in hand, we can readily determine min-
imax regret using Eqs. 12 and 13. We need only show that
PMR can be computed in polynomial time. As above, we can
compute each voter’s i’s contribution PMR(a,w, pi|a) inde-
pendently. We again consider two cases.

Case 1. If a �i w, then PMR(a,w, pi|a) ≤ 0 since adding
w to a cannot improve i’s score any more than adding a. As-
suming a �i w, if there is some b ∈ a such that a 6�i b,
then b can be ordered over a and PMR(a,w, pi|a) = 0.
However, if a �i b for all b ∈ a, regret must be negative.
PMR(a,w, pi|a) is then maximized (or negative regret min-
imized) by placing as few options as possible between a and
the best element of a ∪ {w}. For any a �i b, define

Ti(a, b) = {b′ : a �i b
′ �i b}.

Then regret is maximized by ordering the options in ui(a ∪
{w}) such that the element with the fewest possible options
between it and a is ranked first. This gives:

PMR(a,w, pi|a) = max
b∈ui(a∪{w})

−|Ti(a, b)| − 1.

Case 2. If a 6�i w, then PMR(a,w, pi|a) ≥ 0. In this
case, if there is some b ∈ a such that b �i w, then w
can never be selected; but since w can be ordered over a,
PMR(a,w, pi|a) = 0. However, if there is no b ∈ a with
b �i w, then regret is maximized by maximizing the gap be-
tween w and the best element of a ∪ {a}. In particular, the
options B′i(a ∪ {a}, w), as defined above, can all be ordered
between w and the best such option. This gives us:

PMR(a,w, pi|a) = |B′i(a ∪ {a}, w)|+ 1.

Taken together, this shows that PMR(a,w, pi|a) for the ad-
ditional option problem can be computed in polynomial time.
This gives rise to a very simple greedy algorithm for approx-
imating a minimax optimal K-set: starting with the empty
slate a0 = ∅, at each of iteration k ≤ K we add option
a∗k = a∗ak−1,p

, i.e., the option with least max regret given
the prior items, to slate ak−1. The method is detailed in Al-
gorithm 1. While this algorithm comes with no strong ap-
proximation guarantees (but see below), we show in Sec. 5
that it works extremely well in practice.

In terms of run time, Case 1 takes O(mk) time (at the kth
iteration) and Case 2, as discussed previously, takes O(k2 +
mk) = O(mk) time. Computing pairwise max regret for
all pairs (a,w), across all agents, and finding the next best
item a∗ak,p for each of the K spots on slate a results in a total
running time of O(nm3K2).

There are two reasons the greedy algorithm cannot guar-
antee that we find the minimax optimal slate. The first is



Algorithm 1 Greedy algorithm
1: a← ∅
2: for k = 1 to K do
3: MMR←∞
4: for a ∈ A do
5: MR← −∞
6: for w ∈ A : w 6= a do
7: for i ∈ N do
8: if a �i w then
9: PMR← PMR+maxb∈ui(a∪{w})−|Ti(a, b)| − 1

10: else
11: PMR← PMR+|B′i(a ∪ {a}, w)|+ 1
12: end if
13: end for
14: if PMR > MR then
15: MR← PMR
16: end if
17: end for
18: if MR < MMR then
19: MMR←MR
20: a∗ ← a
21: end if
22: end for
23: a← a ∪ {a∗}.
24: end for

unrelated to preference uncertainty: even with complete pref-
erence information, the greedy algorithm is unable to provide
an optimal K-slate. In other words, it can produce a slate
that has positive max regret. However, the greedy algorithm
does provide a 1 − 1

e approximation in the full information
setting. It is not hard to see that if we have sufficient informa-
tion to make the “optimal greedy choice” at each stage, then
the regret-based approach will correspond to the exact greedy
algorithm described by Lu and Boutilier [2011a]:
Proposition 5. If MR(a∗k,p|ak−1) = 0 for all k ≤ K, then
the greedy-MMR set aK is identical to the set produced by
the (full-information) greedy algorithm given any v ∈ C(p).

If the last element added has non-zero max-regret, we are
assured that true minimax regret is also nonzero:
Observation 6. If MR(a∗K ,p|aK−1)>0, then MMR(p)>0.

However, we cannot be sure that if only the last element
has zero regret that we have found the greedy-optimal slate.
But even if the minimax-optimal option a∗i does not have zero
max regret, we can still obtain bounds on the quality of the
solution. Based on known results for “approximate” greedy
optimization [Goundan and Schulz, 2007], we obtain:
Proposition 7. Let v be an (unknown) complete preference
profile. Let mk be any lower bound on the marginal value of
the kth item added to the slate by the full information greedy
algorithm. That is, mk ≤ S(ak−1 ∪ {a∗k},v) − S(ak−1,v)
where ak−1 consists of the first k− 1 greedily selected items.
If MR(a∗k,p|ak−1) ≤ mk/(1 − α) for all k ≤ K, for some
α ≥ 1, then the greedy-MMR set aK is within a factor of
1− 1

e1/α
of the optimal (full-information) option slate.

4 Preference Elicitation
We now turn our attention to the question of incremental elic-
itation of voter preferences. With a partial preference profile

p, we cannot guarantee that an optimal slate can be obtained
(regardless of whether we resort to greedy or exact optimiza-
tion): specifically, if MMR(p) > 0, no slate can be guaran-
teed to be optimal. To improve the quality of the slate, further
information must be elicited from one or more voters. Our
goal is to reduce relevant uncertainty, i.e., find those queries
that have the greatest potential to reduce minimax regret. To
do this we adopt a general technique known as the current
solution strategy (CSS). This has been used effectively in
both (single-agent) robust optimization [Boutilier et al., 2006;
Braziunas and Boutilier, 2010], voting [Lu and Boutilier,
2011b] and stable matching [Drummond and Boutilier, 2013]
settings, and relies on eliciting information that helps assess
the relative degree of preference between the minimax opti-
mal solution and the adversarial witness. We focus here on
pairwise comparison queries, in which some voter i is asked
whether a �i a′; but the basic principles can be applied
to other forms of queries (e.g., top-t queries, where a voter
is asked to reveal their tth-most preferred alternative if they
have already provided their top t− 1).

In our model, the use of CSS differs depending on whether
we are using the greedy heuristic or optimal MMR computa-
tion to determineK-sets. We present our approach in the con-
text of greedy MMR computation since it is the more practical
method for problems involving slates of reasonable size. The
general principles can be readily adapted to optimal MMR
computation as well. Our elicitation scheme works by using
the greedy algorithm to compute an (approximately) mini-
max optimal slate a∗p = 〈a∗1, . . . , a∗K〉 given the current par-
tial profile p. If MR(a∗K ,p|a∗K−1) = 0, we treat this as an
(approximately) minimax optimal slate and stop. Otherwise,
we know that MMR(p) > 0, so we select a voter i and pair-
wise comparison query a �i a

′ with the greatest potential to
reduce MR(a∗K ,p|a∗K−1), using CSS. Let a∗K be the last item
added to the slate and wK be the witness option (i.e., where
MR(a∗K ,p|a∗K−1) = PMR(a∗K , wK ,p|a∗K−1). CSS identi-
fies the appropriate query (and its potential) for a particular
voter i based on several specific cases/sub-cases.

Case 1: Suppose a∗K �i wK . Then i’s contribution PMRi

to PMR(a∗K , wK ,p|a∗K−1) must be PMRi ≤ 0. If PMRi =
0, then either: (i) a∗K is dominated in i’s partial order pi by
some aj ∈ a∗K−1, or (ii) a∗K is not dominated by any such
aj . In case (i), no query can reduce MR(a∗K ,p|a∗K−1) since
voter i would never select either of a∗K or wK given the rest
of the slate a∗K−1, so no query is asked of i. In case (ii), the
adversary can set PMRi = 0 by ordering some option aj ∈
a∗K−1 over a∗K (if no such option were possible, PMRi would
have to be negative). In this case, any query that prevents aj
from being orderable above ak can reduce PMRi (by making
it negative). Specifically, any query of the form b �i c for
b ∈ a∗K ∪ {a : a∗K �i a} and c ∈ aj ∪ {a : a �i aj}
will suffice. Since the degree of PMRi is determined by the
relationship of a∗K to wK and not the gap with aj , we choose
query a∗K �i aj since it is implied by any other.

If PMRi < 0, then (iii) a∗K dominates each aj ∈ a∗K−1
as well as wK . Queries that can extend the advantage over
the best item of w∗ ∈ ui({wK} ∪ a∗K−1) (i.e., make PMRi

even smaller) take two forms: learning that a∗K �i c for some
ancestor c of w∗ (since we do not know w∗, we choose an
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Figure 2: Performance of Greedy/CSS on (a) Sushi (20 trials),
(b) Irish (20 trials) and (c) Mallows datasets (20 trials).

arbitrary item in ui({wK}∪a∗K−1)); or learning that d �i w
∗

for some descendant d of a∗K . The query with the greatest

potential is that with the largest number of descendants (resp.
ancestors) lying between it and c (resp. d) in pi.

Case 2: Suppose a∗K 6�i wK . Then i’s contribution
PMRi to PMR(a∗K , wk,p|a∗K−1) must be PMRi ≥ 0. (i)
If PMRi = 0, then we must have wK dominated by some
aj ∈ a∗K−1. In this case we ask no query. (ii) If PMRi > 0,
then wK is not dominated by any aj ∈ a∗K (i.e., by none of
the K items). Then regret can be reduced only by asking a
query that removes elements from the set B′i(a

∗
K , wK) by ei-

ther placing wK (or one of its ancestors) below some aj (it
is only necessary to consider those in ui(a

∗
K)); by placing

some aj ∈ ui(a∗K) (or one of its descendants) above wK ; or
placing some element that is incomparable to both a∗K and
wK either above wK (hence placing its ancestors above as
well) or below a∗K (hence placing its descendants below as
well). In the case that wK dominates all of a∗K , one can ask
queries that either (a) move a descendant d of wK , where d
is not an ancestor of some aj ∈ a∗K , below such an aj ; or (b)
move an ancestor c of some aj , where c is not a descendent
of wK , above wK . The potential of a query to reduce PMRi

is measured by the number of elements it removes from the
set B′i(a

∗
K , wK).

We note that if PMR(a∗K , wk,p|a∗K−1) > 0, then one of
the query-generating cases above must hold for at least one
voter. As a consequence, CSS cannot “stall” as long as the
last item added to the slate has non-zero max regret.

5 Experimental Evaluation
We present a set of experiments designed to test the ability
of greedy slate optimization method described in Sec. 3.2,
coupled with the CSS elicitation strategy, to find good (or
even optimal) slates of options with few voter queries. We
evaluate the approach on two real datasets as well as on
more systematically generated random data. The Sushi data
set [Kamishima et al., 2005] consists of 5000 complete user
preference rankings over 10 varieties of sushi. We consider
aggregation problems (or elections) of 100 users, drawing
full preference profiles at random from this set. The Irish
dataset consists of partial (top-t) preferences of voters from
the 2002 Dublin West constituency elections, involving nine
candidates and 29,988 voters; we consider elections of 100
voters by drawing random profiles from among the 3800 full
rankings in the dataset. In the Sushi experiment we set slate
size to be K = 3 and in Irish, K = 4. To test our meth-
ods more systematically, we generate random profiles of 100
voter rankings over 10 items, using the Mallows distribution
to generate the preferences of each voter [Mallows, 1957;
Marden, 1995]. The Mallows model is quite flexible: the
dispersion parameter φ ∈ (0, 1] controls how concentrated
preferences are: when φ = 1, we obtain uniformly random
preferences, or impartial culture, while we approach a distri-
bution where all mass is placed on a single-ranking (i.e., all
voters have identical rankings) as φ→ 0. In the Mallows ex-
periments, we set K = 3 and analyze elicitation performance
as we vary φ.

Experimentally, each instance consists of a full profile. We
start with no vote information then, using CSS to generate
queries, elicit pairwise comparisons from voters (who re-
spond accurately based on their underlying preference). After



each query or round, we use the greedy algorithm to compute
an (approximately) optimal K-slate. Elicitation terminates
once the conditional max regret (CondMR) of the Kth item
added to the slate, MR(a∗K ,p|a∗K−1), is zero. We also com-
pare this to the use of exact minimax regret computation at
each iteration to determine the truly optimal K-slate.

Results in Fig. 2 (a) and (b) show performance for the
Sushi and Irish data. The plots show, for the slate pro-
duced by Greedy after each query, its conditional max regret
(CondMR), its true max regret and two dotted lines of one
standard deviation above and below its max regret (results are
averaged over 20 randomly drawn profiles). We also show the
performance of CSS when exact MMR is computed and the
optimal slate is generated at each iteration. We also compare
CSS with a baseline random strategy that randomly picks a
voter and pairwise query (ensuring this query is not implied
by that voter’s partial ranking), using Greedy to compute a
slate at each round and measuring its max regret. Dotted lines
above and below indicate a range of one standard deviation.
We see that CSS works very well: it finds a slate with zero
max regret “per voter” with only about 20 queries per user
in Sushi (resp., 15 in Irish), even with the relatively large ra-
tio of K to m in each setting (30% and 44%, resp.). CSS
also reaches near-zero regret in about 10 queries (resp., 8)
per user; thus, its anytime profile is very encouraging for set-
tings where approximately optimal solutions that reduce elic-
itation burden are permissible. Note that the true regret may
be zero even if max regret is not. We contrast the number of
queries needed by CSS with the demands of complete sort-
ing to provide a full ranking, which requires O(m log(m))
pairwise comparisons using methods with good average case
performance, or equivalently 34 (resp., 29) queries. Random
requires 25 (resp., 22) queries per user to reach zero regret,
and has a much worse anytime profile.

Notice that the greedy algorithm itself works extremely
well: it almost always finds the minimax optimal slate—the
MR Greedy and MMR curves coincide almost exactly—and
in the rare cases that it does not, Greedy MR is very close to
true MMR. MR may not decrease monotonically, as prefer-
ence updates may “mislead” Greedy into choosing an inferior
slate (by contrast, true MMR is non-increasing). CondMR is
also a good proxy for true max regret: in Sushi, the per-voter
difference is at most 0.41 and in Irish at most 0.24. Thus,
CondMR—which can be computed efficiently—is an excel-
lent surrogate for MR—which is NP-hard—as a quality mea-
sure and a stopping criterion for elicitation.

Mallows results in Fig. 2 (c) show how the same quantities
change as a function of the total number of queries, for dif-
ferent dispersion values φ. The results show that, unsurpris-
ingly, more concentrated preference distributions (smaller φ)
require fewer queries to find good slates. This is consistent
with observations in single winner voting [Lu and Boutilier,
2011b].

Table 1 shows wall clock runtimes of Greedy for different
values ofm (candidates) andK (slate size) on a 3.0GHz Intel
Xeon processor. Results are averaged over “complete” CSS
elicitation runs (i.e., elicitation proceeds until CondMR is
zero), on random profiles of n = 40 voters drawn from a Mal-
lows distribution with φ = .7. Average runtime increases sig-

m K = 2 K = 3 K = 4 K = 6 K = 8
10 0.015 0.020 0.023 0.028 0.033
20 0.105 0.152 0.194 0.275 0.345
30 0.342 0.508 0.642 0.987 1.282
50 1.577 2.042 2.247 4.439 6.344

Table 1: Avg. Greedy runtime (sec.), on random Mallows pro-
files.

nificantly with the number of candidates m, but less dramat-
ically with K. This is consistent with the “quadratic in K”
and “cubic in m” computational results above. Still, Greedy
is very practical, taking only 6.3s. to find optimal slates for
m = 50 and K = 8.

6 Conclusion
We have provided a new model for analyzing the quality of
slates of options with incomplete preference profiles, and de-
veloped algorithms for the exact and greedy optimization of
K-slates with minimax regret. The greedy method has been
shown to be quite practical. We also adapted the CSS elici-
tation heuristic to this setting and demonstrated that—when
coupled with the greedy method for producing slate, and the
efficiently computable conditional max-regret criterion as a
proxy for max regret—it finds optimal slates while requiring
relatively little preference information from voters. More-
over, it has an excellent anytime profile, finding slates with
very low max regret very quickly, and important property in
low-stakes domains where decision quality may be sacrificed
for increased informational, cognitive, and communication
efficiency or privacy.

This work raises a number of interesting questions for
future research. Developing regret-based methods for ad-
ditional scoring/voting rules and other multi-winner criteria
would be of significant value. Theoretical analysis of the
communication complexity for multi-winner social choice
would advance our understanding of elicitation methods. Fi-
nally, developing elicitation and optimization methods that
exploit preference distributions could further reduce informa-
tion requirements.
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Lang. Voting procedures with incomplete preferences. In
IJCAI-05 Workshop on Advances in Preference Handling,
pages 124–129, Edinburgh, 2005.

[Lu and Boutilier, 2011a] Tyler Lu and Craig Boutilier. Bud-
geted social choice: From consensus to personalized de-
cision making. In Proceedings of the Twenty-second
International Joint Conference on Artificial Intelligence
(IJCAI-11), pages 280–286, Barcelona, 2011.

[Lu and Boutilier, 2011b] Tyler Lu and Craig Boutilier. Ro-
bust approximation and incremental elicitation in voting
protocols. In Proceedings of the Twenty-second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
11), pages 287–293, Barcelona, 2011.

[Lu and Boutilier, 2011c] Tyler Lu and Craig Boutilier. Vote
elicitation with probabilistic preference models: Empiri-
cal estimation and cost tradeoffs. In Proceedings of the
Second International Conference on Algorithmic Decision
Theory (ADT-11), pages 135–149, Piscataway, NJ, 2011.

[Lucier and Oren, 2012] Brendan Lucier and Joel Oren. On-
line (budgeted) social choice. In Proceedings of the Fourth
International Workshop on Computational Social Choice
(COMSOC-2012), Kraków, Poland, 2012.

[Mallows, 1957] Colin L. Mallows. Non-null ranking mod-
els. Biometrika, 44:114–130, 1957.

[Marden, 1995] John I. Marden. Analyzing and Modeling
Rank Data. Chapman and Hall, London, 1995.

[Meir et al., 2008] Reshef Meir, Ariel D. Procaccia, Jef-
frey S. Rosenschein, and Aviv Zohar. Complexity of
strategic behavior in multi-winner elections. Journal of
Artificial Intelligence Research (JAIR), 33:149–178, 2008.

[Monroe, 1995] Burt L. Monroe. Fully proportional rep-
resentation. The American Political Science Review,
89(4):925–940, 1995.

[Oren et al., 2013] Joel Oren, Yuval Filmus, and Craig
Boutilier. Efficient vote elicitation under candidate un-
certainty. In Proceedings of the Twenty-third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
13), Beijing, 2013. to appear.

[Potthoff and Brams, 1998] Richard F. Potthoff and Steven J.
Brams. Proportional representation: Broadening the op-
tions. Journal of Theoretical Politics, 10(2):147–178,
1998.

[Procaccia et al., 2008] Ariel D. Procaccia, Jeffrey S. Rosen-
schein, and Aviv Zohar. On the complexity of achieving
proportional representation. Social Choice and Welfare,
30:353–362, 2008.

[Skowron et al., 2013] Piotr Skowron, Piotr Faliszewski, and
Arkadii Slinko. Achieving proportional representation is
easy in practice. In Proceedings of the Twelfth Interna-
tional Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-13), St. Paul, MN, 2013. To ap-
pear.

[Xia and Conitzer, 2008] Lirong Xia and Vincent Conitzer.
Determining possible and necessary winners under com-
mon voting rules given partial orders. In Proceedings
of the Twenty-third AAAI Conference on Artificial Intel-
ligence (AAAI-08), pages 202–207, Chicago, 2008.


