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Abstract

We develop a new framework for social choice problems, budgeted social choice, in which a
limited number of alternatives can be recommended/prescribed to a population of agents. This
limit is determined by some form of budget. Such problems naturally arise in a variety of
contexts. Our model is general, spanning the continuum from pure consensus decisions (i.e.,
standard social choice) to fully personalized recommendation. Our results show that standard
rank aggregation rules are not appropriate for such tasks and that good solutions typically
involve picking diverse alternatives tailored to different agent types. The corresponding opti-
mization problems are shown to be NP-complete, but we develop fast greedy algorithms with
some theoretical guarantees. Experimental results on real-world datasets (APA election and
sushi) show some interesting patterns and the prove the effectiveness of our greedy algorithms.

1 Introduction
Social choice has received considerable attention in AI and computer science in recent years [10, 13,
7]. This is in part due to technological advances that have facilitated an explosion in the availability
of (sometimes implicit) ranking or preference data. Users can, with increasing ease, rate, compare
or rank products (e.g., movies, consumer goods, neighborhoods) and information (e.g., clicking on
search responses or ads, linking to data sources in social media). This has allowed a great degree of
personalization in product recommendation and information provision.

Despite this trend, tailoring the alternatives presented or recommended to specific users can be
difficult for any of a number of reasons, among them privacy concerns (actual or perceived), scarce
data, or the infeasibility of complete personalization. For example, decisions regarding certain types
of public projects (such as highway placement, or park design) may force the choice of a single
option: one cannot build different projects to meet the desires of different individuals. Similarly, a
company designing a product to meet consumer demand must find a single product that maximizes
consumer satisfaction across its target market (assuming sufficient correlation between satisfaction
and revenue/profit). In such settings, a single “consensus” recommendation must be made for the
population as a whole. If such consensus recommendations are made in a way that is sensitive to the
preferences of individuals, we land squarely in the realm of social choice.

There is, of course, a middle ground between pure personalization and pure consensus recom-
mendation. For example, suppose the company can configure its manufacturing facility to produce
three variants of the product in question. Then its aim should be to determine three products that
jointly maximize consumer satisfaction. In the case of public projects, perhaps a small number
of projects can be chosen. In domains like web search, if one has insufficient data about an indi-
vidual making a query (or is reluctant to use it because of privacy concerns), a small number of
responses can be presented if browser “real estate” is limited. In the design of pension plan options,
there are many reasons to limit the number of offerings available to encourage meaningful choice.
In these and numerous other examples, we fall somewhere between making a single consensus
recommendation and making fully personalized recommendations for individuals. Some (perhaps
implicit) aggregation of users must take place—we cannot offer fully personalized offerings to each
individual—placing us in the realm of social choice; but at the same time, we have an opportunity
to do some tailoring of the decisions to the preferences of the aggregated groups, and indeed, make
choices about the precise form of this aggregation to optimize some social choice function.

In this paper, we develop a general model for just such settings. We call the problem at hand
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one of budgeted social choice. Unlike the usual social choice models, in which a single outcome is
selected (or single consensus ranking determined), we allow for the possibility that more than one
option can be offered, and assume that each user will benefit from the best option, according to her
own preferences, among those presented. However, the number of options offered is constrained
by a budget; this is the key factor that prevents us from exploiting pure personalization to meet
the desires of individual users. This budget can take a variety of forms, and we explore several of
them in this work. The budget could be a strict limit on the number of options (e.g., at most three
products can be manufactured, or at most 10 web links can be presented on a page), or on their cost
(e.g., the total expenditure on city parks cannot exceed $3M). We can also adopt a more nuanced
perspective in which the cost of allowing additional options is traded off against the benefit to the
target population (e.g., add a fourth product option if increase in consumer satisfaction outweighs
the cost of a fourth production line; or extend the city parks budget if increase in social welfare is
sufficiently high). Finally, we can consider settings in which the budget is not just a function of the
options “created,” but also of their overall usage or uptake in the population. Our general framework
allows for a fixed charge (e.g., configuring and staffing an assembly line) and per-unit cost (e.g., the
marginal cost of producing a unit of product for a specific individual).

Though the motivations are different, multiple-winner models in voting theory [4, 20] can be
viewed as an instance of our model. In such systems, the goal is to determine a collection of can-
didates (e.g., a parliament) that best represents the “collective interests” of the voters (e.g., based
on principles of proportional representation). Indeed, our “limited choice” model with Borda scor-
ing corresponds directly to Chamberlin and Courant’s [4] proportional representation scheme; in this
way, our budgeted choice model can be used to motivate the application of such proportional models
to ranking and recommendation, under certain assumptions. Also related is the combinatorial public
project problem [19] where given each agent’s valuation over all subsets of alternatives, a limited
number of alternatives must be chosen for everyone. The focus is more on the tension between
approximating social welfare and incentivizing truthfulness (requiring payments from agents).

We begin by outlining a simple model of budgeted social choice in which there is a strict limitK
on the number of candidates that can be made available. We do this to illustrate the general principles
and intuitions underlying our approach and draw connection to proportional representation schemes.
We show that for various social choice objectives, computing the optimal set of K candidates for
a set of preferences in this limited choice model is NP-hard. However, the induced objective is
submodular, and a simple greedy algorithm produces candidate sets whose deviation from optimal is
bounded. Computational experiments on various preference data sets show that the greedy algorithm
is, in fact, very close to optimal in practice.

We then present our general model in which adding alternatives to the available set is costly
(allowing both fixed and per-unit charges) and subject to some form of budget. The limited choice
model is a special case of this costly choice model. The costly choice model with only fixed charges
remains submodular, but when per-unit costs are included, submodularity vanishes. We develop
an integer programming formulation of the general optimization problem (which applies directly to
the limited choice model). We again provide a greedy heuristic algorithm for solving the general
problem which runs in polynomial time. Computational experiments verify its efficacy in practice,
but we have no theoretical bounds on its performance currently.

2 Background
We first review some basic concepts from social choice before defining the class of budgeted social
choice problems (see [11] for further background). We assume a set of agents (or voters) N =
{1, . . . , n} and a set of alternatives (or candidates) A = {a1, . . . , am}. Let ΓA be the set of
rankings (or votes) overA (i.e., permutations overA). Alternatives can represent any outcome space
over which the voters have preferences (e.g., product configurations, restaurant dishes, candidates
for office, public projects, etc.) and for which a single collective choice must be made. Agent `’s
preferences are represented by a ranking v` ∈ ΓA, where ` prefers ai to aj , denoted as ai �v` aj , if
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v`(ai) < v`(aj). We refer to a collection of votes V = (v1, . . . , vn) ∈ ΓnA as a preference profile.
Given a preference profile, there are two main problems in social choice. The first is selecting a

consensus alternative, requiring the design of a social choice function f : ΓnA → A which selects
a “winner” given voter rankings/votes. The second is selecting a consensus ranking [2], requiring a
rank aggregation function f : ΓnA → ΓA. The consensus ranking can be used for many purposes;
e.g., the top-ranked alternative can be taken as the consensus winner, or we might select the top k
alternatives in the consensus ranking in settings where multiple candidates can be chosen (say, par-
liamentary seats, or web search results [10]). Plurality is the simplest, most common approach for
consensus alternatives: the alternative with the greatest number of “first place votes” wins (various
tie-breaking schemes can be adopted). However, plurality fails to account for a voter’s relative pref-
erences for any alternative other than its top ranked (assuming sincere voting). Other schemes, e.g.,
Borda count or single transferable vote, produce winners that are more sensitive to relative prefer-
ences. Among schemes that produce consensus rankings, the Borda ranking [8] and the Kemeny
consensus [15] are especially popular.

Definition 1. Given a ranking v, the Borda count of alternative a is β(a, v) = m − v(a). The
Borda count of a relative to preference profile V is β(a, V ) =

∑
v∈V β(a, v). A Borda ranking

r∗β = r∗β(V ) is any ranking that orders alternatives from highest to lowest Borda count.

One can generalize the Borda count by assigning arbitrary scores to the rank positions:

Definition 2. A positional scoring function (PSF) α : {1, . . . ,m} → R≥0 maps ranks onto scores
s.t. α(1) ≥ · · · ≥ α(m) ≥ 0. Given a ranking v` and alternative a, let α`(a) = α(v`(a)). The
α-score of a relative to profile V is α(a, V ) =

∑
v`∈V α`(a). An α-ranking r∗α = r∗α(V ) is any

ranking that orders alternatives from highest to lowest α-score.

Definition 3. Let 1 be the indicator function, sgn the sign function and r, v two rankings. The
Kendall-tau metric is τ(r, v) =

∑
1≤i<j≤m 1[sgn[(v(ai) − v(aj))(r(ai) − r(aj))] < 0]. Given a

profile V , the Kemeny cost of a ranking r is κ(r, V ) =
∑
v`∈V τ(r, v`). The Kemeny consensus is

any ranking r∗κ = r∗κ(V ) that minimizes the Kemeny cost.

Intuitively, Kendall-tau distance measures the number of pairwise relative misorderings between
an output ranking r and a vote v, while the Kemeny consensus minimizes the total number of such
misorderings across profile V . While positional scoring is easy to implement, much work in com-
putational social choice has focused on NP-hard schemes like Kemeny [10, 3].

Rank aggregation has interesting connections to work on rank learning, much of which concerns
aggregating (possibly noisy) preference information from agents into full preference rankings. For
example, Cohen et al. [6] focus on learning rankings from (multiple user) pairwise comparison data,
while label ranking [13] considers constructing personalized rankings from votes. Often unanalyzed
is why specific rank aggregations should be chosen for particular settings such as these. One can
think of some schemes as a maximum likelihood estimator of some underlying objective ranking
(e.g., for Kemeny [22] and positional scoring rules [7]).

3 The Limited Choice Model
While the use of social choice techniques in applications like web search and recommender systems
is increasingly common, the motivations for producing consensus recommendations for users with
different preferences often varies. Consider, for instance, the motivation for “budgeted” consensus
recommendation discussed in our introduction. If a decision maker can provide a limited set of
K choices to a population of users to best satisfy their preferences, methods like Kemeny, Borda,
etc. could be used to produce an aggregate ranking from which the top K alternatives are taken.
However, there is little rationale for doing so without a deeper analysis of what it means to “satisfy”
the preferences of the user population. In the spirit of our recent work on rank aggregation [17],
we develop a precise decision-theoretic formulation of the budgeted social choice problem. Rather
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than applying existing social choice schemes directly, we derive optimal consensus decisions from
decision-theoretic principles and show how these differ (and relate to) classic aggregation rules.

We first introduce the limited choice problem, a simple version of budgeted social choice in
which one must choose a slate of K alternatives that maximizes some notion of total satisfaction
among a group of agents. We develop the more general budgeted model in the next section. Assume
a set of n voters with preferences over alternatives A as above. Rather than selecting a single con-
sensus alternative, a decision maker is allowed to recommend K alternatives. Each voter realizes
benefit commensurate with its most preferred alternative among the K recommended. For example,
a company may be limited to offeringK products to its target market, where the products are substi-
tutes (so no consumer will use more than one); or a municipality may have budget for K new parks
and citizens draw enjoyment from their most preferred park.

While our goal is to find the best set of K alternatives, the formalization of this model depends
on two key choices: how voter satisfaction with a slate is measured; and how we measure social
welfare. Our general framework can accommodate many measures of utility and social welfare, but
for concreteness we focus on (a) positional scoring (such as Borda) to quantify voter satisfaction;
and (b) the sum of such voter “utilities” as our social welfare metric. In other words, our aim is to
find a slate of size K that maximizes the sum of the positional scores of each voter’s most preferred
candidate in the slate:

Definition 4. Given alternatives A, preference profile V , and PSF α, a K-recommendation set is
any set of alternatives Φ ⊆ A of size K. The α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

max
a∈Φ

α`(a) . (1)

The optimal K-recommendation set w.r.t. α is:

Φ∗α = argmax
|Φ|=K

Sα(Φ, V ) . (2)

We use Sα(Φ, v) to denote the score w.r.t. a single vote/ranking v. We drop the subscript α from
Sα when it is evident from the context, and use Sβ to denote the special case of Borda scoring.

The objective in Eq. 2 is identical to the Chamberlin and Courant [4] scheme of proportional
representation and results for that scheme apply directly to this variant of the limited choice model,
as we discuss below. While we focus on total positional scoring as our optimization criterion, the
general budgeted framework allows other measures of utility and social desiderata. For example, we
can use maximin-fairness (w.r.t. positional scoring) encoded as:

Φ∗fair = argmax
|Φ|=K

min
`∈N

Sα(Φ, v`) . (3)

Setting α(i) = 1[i = 1] corresponds to a binary satisfaction measure in which a voter is satis-
fied with Φ only if its top alternative is made available. In this case, the optimal Φ∗α corresponds
to selecting the K alternatives with the highest “plurality” score (i.e., greatest number of first-place
“votes”). However, choosing the top K candidates from a consensus ranking using positional scor-
ing is, in general, not appropriate. For any ranking r, let r|K denote the K top-ranked alternatives
in r. The Borda ranking r∗β can produce slates r∗β |K that are a factor of 2 from optimal using our
limited-choice measure, while the α-ranking for arbitrary PSFs can be as much as a factor of K
from optimal.

Proposition 5. For any K we have: (a) inf(m,n,V )
Sβ(r∗β |K,V )

Sβ(Φ∗,V ) = 1/2; and (b)

inf(α,m,n,V )
Sα(r∗α|K,V )
Sα(Φ∗,V ) ≤ 1/K.
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Fig. 1: Example showing that r∗β |K can be factor of 2 worse than optimal. Assume q items {0, 1, . . . , q − K −
1, β1, . . . , βK}, and n = K(q − K − 2) votes. The votes are divided into K blocks, each containing q − K − 2
votes. For each block j ≤ K, item j − 1 is always the top alternative in each vote, and item j (mod K) is the worst. This
means the optimal recommendation set is Φ∗ = {0, . . . ,K − 1}, with Sβ(Φ∗, V ) = (q− 1)n. The jth block of votes has
a structure illustrated in the figure, with two example votes shown: the items j and j (mod K) are fixed in the top/bottom
spots and items β1, . . . , βK are also fixed in positions q/2 − K + 1, . . . , q/2. (Fixed items are shaded.) The remaining
items are arranged in the other positions in the first vote (the non-shaded positions). Starting with one such arrangement
(e.g., the top vote in the figure), each candidate is “rotated downward” one non-shaded position (with wrap around) to pro-
duce the next vote in the block. This is repeated until q −K − 2 votes are constructed for block j (i.e., one vote for each
non-shaded position). Thus, any non-fixed item occupies each non-shaded rank position in exactly one vote in this block

j. Thus, the average score of a non-shaded item is
P
i∈[q−2]\{q/2,...,q/2+K−1} i = −q2+3 q−2+qK+K2−K

−2q+2K+4
< q/2

(whenever q > K + 2, which always holds). Hence the average score of any item in {K, . . . , q −K − 1} (which occupy
only unshaded positions in all blocks) across all blocks is less than q/2. Also observe that the average score of any item in
Φ∗ is less than q/2: item j−1 has score q−1 in block j but has score 0 in block j−2 (mod K) (giving average (q−1)/2
in these two blocks) and has average less than q/2 across all other blocks (since it is an unshaded item in those blocks). But
the average score of βi is at least q/2 (since its position is fixed in all blocks ). Hence the top K items of the Borda ranking
r∗β are β1, . . . , βK . But Sβ(r∗β |K,V ) = (q/2 +K− 1)n, so S(r∗β |K,V )/S(Φ∗, V ) = (q/2 +K− 1)/(q− 1), which
approaches 1/2 from above as q →∞.

Proof Sketch. (a) To obtain a lower bound, we note that the total Borda score of all alternatives is∑
a∈A β(a, V ) = n(0 + 1 + 2 + · · ·+m−1) = nm(m−1)/2. The item a∗β with the highest Borda

count must have a count at least the average, over the alternatives, nm(m−1)/2/m = n(m−1)/2.
Since a∗β is the highest-ranked element in r∗β , we have Sβ(r∗β |K,V ) ≥ n(m − 1)/2. By contrast,
the score of the optimal set Φ∗ is at most n(m − 1). Hence r∗β |K has score that is no worse than a
factor of [n(m− 1)/2]/[n(m− 1)] = 1/2 from optimal. We demonstrate an upper bound realizing
this worst-case error using the example described in Fig. 1.

(b) An upper bound can be demonstrated using an example somewhat similar in spirit to that for
the Borda count as in (a); we omit it due to lack of space. It remains open whether r∗α|K can indeed
be worse than a factor of K from optimal.

These results illustrate that care must be taken in the application of rank aggregation methods to
novel social choice problems. In our limited choice setting, the use of positional scoring rules (e.g.,
Borda) to determine the K most “popular” alternatives can perform extremely poorly. Intuitively,
the optimal slate appeals to the diversity of the agent preferences in a way that is not captured
by “top K” methods. Indeed, this is one of the motivations for the proportional schemes [4, 20].
More importantly, the underlying preference aggregation scheme is defined relative to an explicitly
articulated decision criterion. We defer a detailed discussion for lack of space, but we note that
STV, often used for proportional representation [21] can perform poorly w.r.t. our criterion as well.
Specifically, we can show that the slate produced by STV can be a factor of 2 worse than optimal.

The examples above suggest that determining optimal recommendation sets in the limited choice
model may be computationally difficult. This is the case: the problem is NP-complete even for in
the specific case of determining voter satisfaction using Borda scoring:1

1The NP-hardness of a variant of the Chamberlin and Courant [4] proportional scheme is shown in [21], but the variant
allows for arbitrary misrepresentation scores. The added flexibility in the reduction used means that it does not imply the
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Theorem 6. Given preference profile V , integer K ≥ 1, and t ≥ 0, deciding whether there exists a
K-recommendation set Φ with (Borda) score Sβ(Φ, V ) ≥ t is NP-complete.

Proof Sketch. Membership in NP is easily verified. For hardness, we reduce an arbitrary hitting
set instance to our problem: given E = {e1, . . . , ep}, a set {B1, . . . , Bq} of subsets of E, and
integer h ≥ 1, is there a C ⊆ E of size at most K such that ∀i ∈ {1, . . . , q}, C ∩ B 6= ∅? We
reduce this to our decision problem, with voters N = {1, . . . , q}, alternatives A = E ∪ {zij : i ∈
[q], j ∈ [

∑q
`=1 |B`|]}, m = |A|, and t = qm −

∑q
`=1 |B`|. Each voter ` has a preference ordering

with elements in B` at the top (in arbitrary order), followed by z`1z`2 · · · z`t, and with remaining
alternatives A\B` (in arbitrary order) at the bottom.

Any positive hitting set instance (say, with certificate C) corresponds to positive instance for in
our problem. We simply take Φ = C, and have Sβ(Φ, V ) ≥

∑q
`=1m − |B`| since, for each voter

`, there is an e ∈ C that is in B` by definition of a hitting set. Summing the scores of the most
preferred alternatives, maxa∈Φm− v`(a) ≥ m− |B`|, over all voters, gives Sβ(Φ, V ) ≥ t.

Suppose we have a negative hitting set instance. Consider any Φ that maximizes Sβ(·, V ). If
Φ does not hit some B` then let a′ = argmina∈Φ v`(a). If a′ 6= z`j for any j then m − v`(a′) <
m −

∑q
`=1 |B`| and Sβ(Φ, V ) < t. Otherwise a′ = z`1; but this implies that we can replace each

such z`1 ∈ Φ by some b ∈ B`, which further implies that Φ hits every such B` and is thus a hitting
set solution (contradiction). Hence, Sβ(Φ, V ) < t.

We can formulate this NP-hard problem as an integer program (IP) with m(n+ 1) variables and
1 + mn + n constraints. We note that [20] provide a similar IP for the Chamberlin and Courant
proportional scheme. Let xi ∈ {0, 1}, i ≤ m denote whether alternative ai appears in the recom-
mendation set Φ, and let y`i ∈ {0, 1}, ` ≤ n, i ≤ m denote whether ai is the most preferred element
in Φ for voter `. We then have:

max
xi,y`i

∑
`∈N

m∑
i=1

α`(ai) · y`i (4)

subject to
m∑
i=1

xi ≤ K, (5)

y`i ≤ xi, ∀` ≤ n, i ≤ m (6)
m∑
i=1

y`i = 1, ∀` ≤ n. (7)

Constraint (5) limits the slate to at most K alternatives (a optimal set of size less than K can be
expanded arbitrarily to size K, since score is nondecreasing in size). Constraints (6) and (7) ensure
voters benefit only from alternatives in Φ, and benefit from exactly one such element. The objective
is simply Sα(Φ, V ). An optimal solution will always have y`i = 1 where ai is `’s most preferred
alternative in the set defined by the xi.

The IP may not scale to large problems. Fortunately, this is a constrained submodular maximiza-
tion, which admits a simple greedy algorithm with approximation guarantees [18].

Algorithm Greedy. We receive inputs α, V and integer K > 0. Initially Φ0 ← ∅. We then update
Φ iteratively K times, each time updating the recommendation set by adding the item that increases
score the most, i.e., Φi ← Φi−1 ∪ {argmaxa∈A S(Φi−1 ∪ {a}, V )}. We output ΦK .

Theorem 7. For any given preference profile V , the function S(·, V ) defined over 2A, with
S(∅, V ) = 0, is submodular and non-decreasing. Consequently, the constrained maximization of
Eq. (2) can be approximated within a factor of 1− 1

e by Greedy. That is, S(Greedy,V )
S(Φ∗,V ) ≥ 1− 1

e .

NP-hardness of our limited choice model.
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Proof. Let Φ ⊆ Φ′ ⊆ A, a ∈ A and v ∈ V . It is clear that S(Φ, v) ≤ S(Φ′, v). Since S(·, v) is
non-decreasing for any vote v v, it is non-decreasing over profiles V , i.e., S(Φ′, V ) ≥ S(Φ, V ).

If a is v’s strictly most preferred alternative among those in Φ′, then S(Φ ∪ {a}, v) = S(Φ′ ∪
{a}, v) = α(v(a)). Since S(Φ, v) ≤ S(Φ′, v), this implies S(Φ ∪ {a}, v) − S(Φ, v) ≥ S(Φ′ ∪
{a}, v)− S(Φ′, v). If a is not strictly most preferred by v within the set Φ′, then S(Φ′ ∪ {a}, v) =
S(Φ′, v), hence S(Φ′ ∪ {a}, v) − S(Φ′, v) = 0. Since S(Φ ∪ {a}, v) ≥ S(Φ, v), again we have
S(Φ∪{a}, v)−S(Φ, v) ≥ S(Φ′∪{a}, v)−S(Φ′, v). This implies, by definition, the submodularity
of S(·, v) for any vote v. Since the sum of submodular functions is also submodular, S(·, V ) is
submodular for profiles V . The 1− 1

e approximation ratio follows from [18].

Constructing a slate of K alternatives maximizing total positional score is similar to the K-
medians problem, where at most K facilities (alternatives) need to be located to serve their near-
est customers (voters) while minimizing the total distance between customers and their nearest
facility. Distance corresponds to voter dissatisfaction with alternatives in the slate (i.e., negated
α-score). Most work on K-medians focuses on metric settings—our problem does not have such
an interpretation—and little work has been done on non-metric settings (see, e.g., [1]) especially
w.r.t. ordinal preferences. Facility location is another related problem, though the aim is usually to
minimize the total cost of opening facilities and serving the nearest customers, with no constraints
on the number of facilities. In our setting, the tradeoff between a positional score and the cost of
alternatives is not well-defined unless the score is a surrogate for profit/cost.

Experiments on APA Dataset The American Psychological Association (APA) held a presiden-
tial election in 1980, where roughly 15,000 members expressed preferences for 5 candidates—5738
votes were full rankings. Members roughly divide into “academics” and “clinicians,” who are on
“uneasy terms,” with classes of voters tending to favor one group of candidates over another (candi-
date groups {1, 3} and {4, 5} appeal to different voters, with candidate 2 somewhere in the middle)
[9]. We apply our model to the full-ranking dataset with K = 2 and Borda scoring. We expect
our model to favour “diverse” pairings (with academic-clinician pairings scoring highest). Indeed,
this is what we obtain—the optimal recommendation set is {3, 4} with Sβ = 18182. In fact, the
for highest scoring pairings are all diverse in this sense. Greedy outputs the diverse set {1, 5} with
score 17668, whereas selecting the top two candidates from the Borda or Kemeny rankings gives
{1, 3} with score 17352, an inferior (and non-diverse) pairing. The quality of the Borda/Kemeny
approximations is even worse with more “dramatic” positional scoring (i.e., with scoring functions
that exaggerate the score difference between different positions as discussed below).

Experiments on Sushi Dataset We experiment with a sushi dataset consisting of 10 varieties
of sushi, and 5000 full preference orderings elicited across Japan [14]. In our budgeted (limited
choice) setting, we might imagine a banquet in which only a small selection of sushi types can be
provided to a large number of guests. Table 1 shows the approximation ratios of various algorithms
for different slate sizes K, using an exponentially decreasing PSF αexp(i) = 2m−i. CPLEX was
used to solve IP (4) to determine optimal slates (computation times are shown in the table). We
evaluate our greedy algorithm, random sets of size K (avg. over 20 instances for each K), and
Borda and Kemeny (where we use the top K candidates as the recommendation set). We see that
the Greedy algorithm always finds the optimal slate (and, in fact, does so for all K ≤ 9), yet does
so very quickly (under 1s.) relative to CPLEX optimization. Borda and Kemeny provide decent
approximations, but are not generally optimal. Unsurprisingly, for large K (relative to |A|) random
subsets do well, but perform poorly for small K. Results using Borda scoring are similar except
that, unsurprisingly, random sets yield better approximations, since Borda count penalizes less for
recommending lower-ranked alternatives than the exponential PSF.

In both the APA and sushi dataset, Borda and Kemeny rankings offer good approximations,
though this is likely due, in part, to correlation effects: items that are highly preferred by an agent
of one type are also reasonably preferred by agents of other types. This is in contrast to a situation
(cf. Fig. 1) where one group’s highly ranked candidate is strongly dispreferred by other groups.
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K Greedy Borda Kemeny Random CPLEX (sec.)
2 1.0 1.0 0.932 0.531 49.1
3 1.0 0.986 0.949 0.729 90.38
5 1.0 0.989 0.970 0.813 20.32
7 1.0 1.0 1.0 0.856 13.16

Table 1: Results on the sushi dataset with 10 alternatives and 5000 full rankings. Four algorithms are shown in the columns
along with their approximation ratio for each K. CPLEX solution times are shown in the last column.

4 General Budgeted Social Choice
In the limited choice model, we assume the main bottleneck is the size of the recommendation set
Φ. Once Φ is determined, voters are free to choose their favourite alternative. We can generalize
the problem slightly by assigning costs to the alternatives and limiting the total cost of Φ (rather
than its size). A more significant generalization involves also assuming some cost associated with
each voter that benefits from an element in Φ. For example, a company that decides to manufacture
different product configurations must pay certain fixed production costs for each configuration (e.g.,
capital expenditures); in addition, there are per-unit costs associated with producing each unit of the
product (e.g., labour/material/transporation costs).2

For each alternative a ∈ A, let ta be its fixed cost and ua its unit cost. We assume a total budgetB
that cannot be exceeded by Φ. However, since unit costs vary across a ∈ Φ, a decision maker cannot
simply propose a recommendation set Φ: allowing agents to choose their most preferred alternative
freely may result in exceeding the budget (e.g., if voters all choose expensive alternatives). Instead,
the decision maker produces an assignment of alternatives to agents that maximizes social welfare.

Definition 8. A recommendation function Φ : N → A assigns agents to alternatives. Given PSF α
and profile V , the α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

α`(Φ(`)) . (8)

Let Φ(N) = {a : Φ−1(a) 6= ∅} be the set recommended alternatives. The cost of Φ is:

C(Φ) =
∑
a∈A

1[a ∈ Φ(N)] · ta +
∑
`∈N

uΦ(`) . (9)

The first component in the cost of Φ corresponds to the fixed costs of the recommended alterna-
tives, and second reflects the total unit costs. We now define the general budgeted problem:

Definition 9. Given alternatives A, profile V , PSF α and budget B > 0, the budgeted social choice
problem is:

max
Φ

Sα(Φ, V ) subject to C(Φ) ≤ B. (10)

We say that the problem is infeasible if every Φ has total cost exceeding B. As in the limited
choice model, we define the problem using PSFs to measure utility and total social welfare as our
optimization criterion; but other variants are possible. We mention a few interesting special cases:

• If we wish to leave some voters unassigned an alternative, we can model this using a dummy
item d with td = ud = 0. Voter preference for d can default to the bottom of each ordering or
can reflect genuine preference for being unassigned. All such problems are feasible.

2The possibility of extending proportional representation schemes to making tradeoffs between representativeness and
committee size is mentioned as an interesting possibility by Chamberlin and Courant [4].
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• When ta = t (i.e., fixed charges are constant) and ua = 0 for all a ∈ A, this corresponds to
the limited choice model for K = bB/tc. Since unit costs are zero, the optimal Φ will always
assign a voter to its preferred alternative, and a recommendation set of size B/t can be used.
If unit costs are constant as well, ua = u, similarly we have K =

⌊
B−nu
t

⌋
.

• When fixed costs vary, but unit costs u = ua are constant, we generalize the limited choice
model slightly: because unit costs are identical, agents can still select their preferred alterna-
tive from a slate (of varying size) whose total fixed cost does not exceed B − nu.

• If every recommendation function Φ satisfies C(Φ) ≤ B (e.g., if all charges are zero), we
are in a fully personalizable setting, and each agent is assigned their their most preferred
alternative.

Input: α, V , B, fixed costs t and unit costs u.
1: Φ← ∅ and A∗ ← ∅
2: Let NΦ denote {` : Φ(`) is undefined}
3: {PHASE 1 : ADD ITEMS WITH BEST SWEET SPOT}
4: loop
5: for a ∈ A\A∗ do
6: J ← {` : a �` r(`) and ua ≥ ur(`)}
7: Na = NΦ ∪ J
8: Ra =

h
α`(a)
ua

i
`∈NΦ

∪
h
α`(a)−α`(Φ(`))
ua−uΦ(`)

i
`∈J

9: SRa ← sort Ra to get (β1/γ1, . . . , β|Ra|/γ|Ra|)
{If γi = 0 then the “ratio” gets put in front of sorted
list. For another denominator γj = 0 we then compare
whether βi > βj .}

10: reorderNa to [`a1 , . . . , `
a
|Na|

] so `ai corresponds to βi/γi
11: Let r∗a and i∗a be the max and argmax over i of

{
Pi
j=1 βj

ta+
Pi
j=1 γj

: i ∈ |SRa| and ta +
Pi
j=1 γj ≤

B − C(Φ)} if ∅ then set to undefined.
12: end for
13: if a∗ ← argmaxa∈A\A∗ r

∗
a is undefined then

14: break {all r∗a is undefined—over budget}
15: else
16: append a∗ to A∗

17: update Φ with {(`a∗i , a∗) : 1 ≤ i ≤ i∗a}∪{(`, a∗) :
` ∈ N, a∗ �` Φ(`) and ua∗ ≤ uΦ(`)}

18: end if
19: end loop
20: {PHASE 2: BACKTRACKING}
21: while Φ incomplete do
22: a∗ ← pop A∗

23: remove {(`, a∗) : ` ∈ N,Φ(`) = a∗} from Φ
24: Ã← {a ∈ A : ta +

P
`∈NΦ

ua ≤ B − C(Φ)}
25: if Ã 6= ∅ then
26: a∗ ← argmaxa∈Ã

P
`∈NΦ

α`(a)

27: update Φ with {(`, a∗) : ` ∈ NΦ} and break
28: end if
29: end while
30: return INFEASIBLE if Φ = ∅, otherwise Φ

Fig. 2: The SweetSpotGreedy (SSG) algorithm.

We note that the general problem can
be modified in other ways. For instance,
we may ignore budget, and instead allow
an explicit tradeoff between social wel-
fare (voter happiness) and costs, and sim-
ply maximize total score less total cost of
Φ. In this way, unit cost would not pre-
vent assignment of some more preferred
alternative to a voter if the voter’s sat-
isfaction outweighed the unit cost (once
a fixed charge is incurred) or if it maxi-
mized surplus. This would better reflect
a profit maximization motive in some set-
tings (treating user satisfaction as a mea-
sure of willingness to pay). Our model as
defined above is more appropriate in set-
tings where users of a recommended alter-
native cannot be (directly) charged for its
use (e.g., as in the case of certain public
goods, corporate promotions or incentive
programs, etc.).

Our general budgeted social choice
problem is related to several problems
arising in operations research. When fixed
costs vary but unit costs are constant,
the problem is similar to budgeted maxi-
mum coverage [16], given by a set E of
weighted elements and a family of sub-
sets of E with costs, with the goal of
finding a covering with total cost under
a budget that maximizes total weight of
the covered elements. Our problem is
slightly different: viewing voters as ele-
ments and alternatives as the cover set, we
have a score for each element-alternative
pair. Our problem is more closely related
to the recently defined generalized maxi-
mum coverage problem [5], with a weight
and cost for each cover set-element pair (in

our model, the unit costs would be constant), and a cost for each cover set (i.e., fixed costs). Unlike
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budgeted social choice, coverage of all elements is not required. As discussed earlier, facility loca-
tion is also similar to our budgeted setting, though it typically places no restrictions on budget (it is
instead absorbed into the objective). Akin to unit costs in our model, [12] studies facility location
when facility costs include the cost of customers being served (cost is assumed concave in number
of customers).

We can formulate the general budgeted problem as an IP similar to IP (4) (with the same number
of variables and constraints):

max
xi,y`i

(4)

subject to

[
m∑
i=1

taixi

]
+

[∑
`∈N

m∑
i=1

uaiy`i

]
≤ B, (11)

and (6), (7).

An approximation algorithm for the general problem is complicated by the existence of unit costs.
We may need to limit the assignment of expensive alternatives, despite “demand” from many voters.
When unit costs are zero (or very low compared to fixed costs), the problem reduces to selecting a
subset of alternatives as discussed above.

Still we develop a greedy heuristic algorithm called SweetSpotGreedy (or SSG). The main
intuition behind our greedy heuristic is to successively “cover” or “satisfy” agents of a certain type
by selecting their most preferred alternative. For a given a ∈ A, we sort voters based on their
ranking of a and then compute the bang-per-buck ratio of assigning a to the first i voters—i.e., total
score divided by total cost of assigning a to these i voters. We pick the index i∗a that maximizes the
bang-per-buck ratio r∗a. This is the sweet spot since the marginal score improvement of assigning
more a to additional voters doesn’t justify the incremental cost of producing more of a. We then add
to the recommendation function Φ that a∗ with the greater ratio r∗a∗ and assign it to the i∗a∗ agents
who prefer it most. We repeat this procedure after removing the previously assigned a, each time
selecting a new a∗ and recommending it to the voters that maximize its bang per buck. See Fig. 2 for
further details. The first phase of the algorithm as described may not produce a feasible assignment
Φ: the budget may be exhausted before all agents are assigned an alternative. A second backtracking
phase produces a feasible solution by rolling back the most recent updates to Φ from Phase 1. Each
time an alternative is rolled back, we try to find an a ∈ A that can be assigned to all unassigned
agents without depleting the budget. If after full backtracking this can’t be achieved, the instance is
infeasible (see Proposition 10).

SSG has running time O(m2n log n). The intuition behind our algorithm is similar in spirit to
the 1 − 1

e − o(1) approximation algorithm for generalized maximum coverage [5]. However, that
algorithm is theoretical, requiring O(m2n) calls to a fully polytime approximation scheme for the
maximum density knapsack problem.

Proposition 10. SSG returns INFEASIBLE iff the instance is infeasible.

Proof. The if direction is obvious, since SSG always maintains feasibility of any solution Φ returned.
If it returns INFEASIBLE, the backtracking phase must be entered and exited with Φ = ∅. This
implies A∗ = ∅ since we have tried to roll back all additions to A∗ only to discover there is no
a ∈ A with ta + n · ua ≤ B; that is, there is no single item assignable to all agents that doesn’t
exceed budget. This obviously implies infeasibility of the instance, since assigning the aminimizing
ta + n · ua to all agents is the lowest cost Φ regardless of score.

As discussed above, when unit costs are zero our problem reduces to selecting a subset Φ ⊆ A
with total fixed cost less than B. When fixed costs are constant, this essentially reduces to the
limited choice problem. In fact, SSG outputs the same recommendation function as that outputted
by Greedy (converting the set to a function in the obvious way).
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Proposition 11. If ua = 0 and ta = 1 for all a ∈ A then SSG outputs the same recommendation as
Greedy. Hence, it has an approximation ratio 1− 1

e .

Proof. To see that SweetSpotGreedy reduces to Greedy notice that in the first iteration of Phase 1,
Φ is empty, and because unit costs are zero, the sweet spot for any a ∈ A is to recommend a to
all ` ∈ N . So Φ gets updated by assigning the alternative a∗1, which maximizes the gain in total
score, to all agents. On the next iteration, again because unit costs are zero, the sweet spot for any
a ∈ A − {a∗1} is to recommend a to all agents ` that prefer it over a∗1. Hence, Φ is updated by
including the best alternative a∗2. This observation holds in all subsequent iterations: the sweet spot
for any unused alternative a is to recommend it to all agents who prefer a over existing elements
of Φ. This is exactly what Greedy does, picking an alternative in each iteration (which is implicitly
recommended to all agents that prefer it over existing alternatives in Φ) that greedily maximizes the
gain in score. The 1− 1

e approximation ratio follows from Theorem 7.

Experiments on Sushi Data We experimented with SweetSpotGreedy on the sushi dataset. In our
first experiment, we randomly generate fixed costs while holding unit costs at zero. This corresponds
to the special case discussed above that only slightly generalized the limited choice model. Integer
fixed costs for the sushi varieties are chosen uniformly at random from [20, 50), while the budget
is set to 100. This means the recommendation set typically contains 2 to 5 items. We compared
the performance of SSG against the optimal solution (computed using the IP above, solved using
CPLEX) on 20 random instances (note that the preference profile is held fixed, corresponding to
the data set). Both Borda scoring and the exponential PSF αexp (see above) were tested and give
similar results. With Borda, SSG is within 99% of the optimal recommendation function on average
(it often attains the optimum, and is never worse than 94% of optimal). Its running times lie in the
range [1.91, 2.34] seconds (with a very simple Python implementation). Meanwhile, CPLEX has an
average solution time of 114 seconds (the range is [69s, 176s]).

In a second experiment, we varied both fixed and unit costs with fixed costs substantially larger
than unit costs. Specifically, integer unit costs were chosen uniformly at random from [1, 4] and
integer fixed costs from [5000, 10000]. We fixed the budget at 35000, which allows roughly 3
unique alternatives to be recommended. We again compare SSG to the optimal recommendation
function on 20 random instances. Using Borda counts, the greedy algorithm gives recommendation
functions that are, on average, within 98% of optimal, while taking 2–5s. to run. In contrast, CPLEX
takes 458s. on average (range [130s, 1058s]) to produce an optimal solution. We achieve similar
results using the exponential PSF, with greedy attaining average performance of 97% of optimal,
and taking 3–6s. while CPLEX averages 321s. (range [131s, 614s]). These experiments show that
SweetSpotGreedy has extremely strong performance, quickly finding excellent approximations to
the optimal recommendation sets, when fixed costs are much larger than unit costs.

5 Conclusion
We have introduced a new class of budgeted social choice problems that spans the spectrum from
genuine consensus (or “one-size-fits-all”) recommendation typically studied in social choice to fully
personalized decision-making. The key feature of our model—the fact that some customization to
the preferences of distinct groups of users may be feasible where complete individuation is not—is
characteristic of many real-world scenarios. Given a diverse array of user preferences, a decision
maker must offer/produce/recommend a limited number of alternatives for the user population. This
naturally leads to social welfare maximization goals whose solutions, crudely speaking, involve
grouping/clustering agents with similar preferences and selecting one alternative for each group.
Our model includes certain schemes for proportional representation as special cases, and indeed
motivates the possible application for proportional schemes to ranking and recommendation. Such
an objective often favours diversity, as opposed to popularity, of the chosen alternatives. This work
can be viewed, for example, as justifying from social choice and decision-theoretic principles, that
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the top few web search results should be diversified so as to appeal to a wide range of user interests.
We showed that the optimization induced by budgeted social choice is NP-hard; but we developed
fast, intuitive greedy algorithms that have, in the case of the special case of limited choice, theo-
retical approximation guarantees. Critically, our greedy algorithms empirically provide excellent
approximations on some real-world ordinal preference datasets.

Extensions of this work include the exploration of several variations of the budgeted model.
For example, one might impose separate budgets for fixed and unit costs. If social welfare acts
as a surrogate for the decision-maker’s revenue/profit or return on investment, and the decision-
maker has other investment options (e.g. a government considering public projects) one may wish
to relax the budget constraints and instead maximize the return on investment per unit cost. Deeper
connections to the proportional voting schemes is also being explored.
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