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Abstract

The increasing use of group discounts has provided oppor-
tunities for buying groups with diverse preferences to coor-
dinate their behavior in order to exploit the best offers from
multiple vendors. We analyze this problem from the view-
point of the vendors, asking under what conditions a ven-
dor should adopt a volume-based price schedule rather than
posting a fixed price, either as a monopolist or when com-
peting with other vendors. When vendors have uncertainty
about buyers’ valuations specified by a known distribution,
we show that a vendor is always better off posting a fixed
price, provided that buyers’ types are i.i.d. and that other ven-
dors also use fixed prices. We also show that these assump-
tions cannot be relaxed: if buyers are not i.i.d., or other ven-
dors post discount schedules, then posting a schedule may
yield higher profit for the vendor. We provide similar results
under a distribution-free uncertainty model, where vendors
minimize their maximum regret over all type realizations.

Introduction
Online services offering consumer group discounts repre-
sent an important and growing segment of online sales. De-
spite margin pressures, services such as Groupon, Google
Offers and hundreds of others remain successful, offer-
ing consumers a choice of multiple, competing offers from
vendors of identical or similar products. This abundance
presents difficult decisions for the buyer, since the optimal
purchase depends not only on her preferences, but also on
the choices of other buyers (which determine the triggered
price). Vendors too face complex decisions in the face of
strategic competitors and buyers (especially when the latter
coordinate their purchases using online services): they must
decide on a complete pricing strategy, setting volume-based
prices instead of a single posted price.

In this paper we assess the value of offering group dis-
counts from the perspective of the vendors, and take some
initial steps towards delineating conditions under which
such discounts may increase vendor revenue. Our starting
point is the group buying model recently proposed by Lu and
Boutilier (2012). In this model (henceforth, the LB model),
vendors of similar products each propose volume discounts
for their product, and buyers each seek a single product from
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this set. Each buyer has preferences for the distinct products
which, together with the final price—as triggered by pur-
chase volume—determine her utility. Lu and Boutilier study
various forms of stable assignment of buyers to specific ven-
dors in this model, with and without transferable utility, and
suggest corresponding algorithms. However, they assume
discounts to be fixed and given, modeling the interaction as
a (both a cooperative and non-cooperative) game among the
buyers themselves. As such, they do not address the incen-
tives for vendors to offer such discounts in the first-place,
nor strategic interactions involving the vendors.

Several models have been proposed that examine vendor
incentives for offering discounts (see Related work section
that follows) under a variety of utility and informational as-
sumptions. Most adopt a two-stage model of interaction
(along the lines of Stackelberg games), in which one or
more vendors first commit to a discount schedule (or pric-
ing strategy), and then buyers make individual or coordi-
nated purchasing decisions. The LB model reflects the co-
ordinated behavior of buyers in the presence of multiple
discount schedules, something that has become increasingly
feasible using online services to assess preferences and form
suitable buying groups. As such, it is natural to assess its
fit within the “standard” two-stage framework, and analyze
how such coordinated behavior affects vendors. Specifically,
we analyze the conditions under which a vendor can derive
value by using a discount schedule rather than a fixed price.

To extend the LB model into a game that reflects the
strategic interactions of both buyer and vendors, we must
specify the vendors’ utility structure, their beliefs about
buyer valuations, and the relation between the two. We
consider three natural models that differ in vendor infor-
mation structure: (a) a complete information model, where
vendors know buyer valuations (or types); (b) an expected
utility model, where vendor beliefs take the form of a dis-
tribution over the buyers’ types; and (c) a distribution-free
model, where vendors know only the set of possible buyer
types. In each model, vendor utility is linear in the number
of units sold.

To summarize our model, we study a two-stage game with
multiple vendors and multiple buyers. In the first stage, ven-
dors propose price schedules, exploiting available informa-
tion about buyer types, which varies in each model. Types
are then determined (if they were unknown) and buyers co-



ordinate their purchases using the LB mechanism. We as-
sume a non-cooperative model of buyer behavior in which
they have full information about offers and other buyers’
types, but cannot transfer payments or make binding agree-
ments. Thus buyers form stable partitions, where no single
buyer can benefit by switching to a different vendor.

Related work
Volume-based pricing has been studied extensively, but of-
ten using motivations different than ours. One line of re-
search focuses on the effect of volume discounts on pur-
chase management and the induced efficiencies in supply
chains (Monahan 1984; Lal and Staelin 1984; Wang 2002).
For instance, quantity discounts can increase order quanti-
ties from a single or multiple buyers. Reduced setup, inven-
tory and shipping costs can more than compensate suppliers
for their reduced margins, while saving buyers money. The
focus of such work is on optimizing pricing, though strategic
elements are sometimes assessed.

A different model was suggested by Anand and
Aron (2003), with motivations very similar to ours: buyer
utility is quasi-linear in price, and vendor utility is linear
in the number of units sold (as in our model). Volume dis-
counts are used to attract buyers that would otherwise refrain
from purchase. The main difference with our model is their
assumption of weak buyer coordination: buyers are uncer-
tain of the valuations of others and do not coordinate their
choices. Anand and Aron further limit their analysis to a
monopolist (single vendor) and several very specific classes
of buyers. Under a variety of conditions, they prove that a
monopolist with a fixed marginal production cost cannot in-
crease its profit by posting a discount schedule rather than a
fixed price. However a schedule may be the best strategy for
monopolist, for example when facing buyers whose types
are correlated by a signal on the quality of the product.

Somewhat less related (but still within the two-stage
framework) is the group buying auction model (Chen, Chen,
and Song 2007). Here a vendor posts a discount sched-
ule, then buyers arrive sequentially and can announce the
price at which they are willing to buy (rather than just join-
ing the group). These announcements, in turn, may af-
fect the estimates of other buyers regarding the eventual
price, and their decision to join the group. Chen et al.
show that a monopolist facing i.i.d. buyers cannot gain us-
ing discounts unless it is risk-seeking or has decreasing
marginal costs. More recently, Chen et al. (2010) have
shown how to derive the optimal discount schedule for a
vendor facing a particular class of (non-i.i.d.) buyers, both
as a monopolist and when competing against other (fixed-
price) vendors. Other discount-based auction mechanisms
have also been developed (Matsuo, Ito, and Shintani 2005;
Prashanth and Narahari 2008).

Different buyer coordination mechanisms have been sug-
gested assuming transferable utility (Yamamoto and Sycara
2001; Li et al. 2005; Lu and Boutilier 2012), which requires
the possibility of binding agreements. In our models, as in
(Anand and Aron 2003; Chen, Chen, and Song 2007) and
in the non-cooperative version of (Lu and Boutilier 2012),
we assume a non-cooperative setting that excludes mone-

tary transfer among buyers, and focus on (one-shot) vendor
revenue maximization.

One of the prime economic motivations for vendor dis-
counts in Groupon-like models is customer acquisition,
where (often steep) discounts incur a loss in the short-term,
but longer-term repeat business justifies this cost (Edelman,
Jaffe, and Kominers 2011). This is not reflected in any of
the models discussed here, ours included.

Our contribution. Our main contribution is the analysis
of the impact of buyer coordination (in the LB model) on
vendor pricing, in particular, in the presence of competing
vendors. We first show that with complete information there
is no reason to use group discounts. In the Bayesian (ex-
pected utility) model, we prove that if buyer valuations are
independent and identically distributed, and all other ven-
dors use fixed prices, then a fixed price is optimal. However,
if any of these conditions is relaxed, then a vendor may gain
by posting a discount schedule rather than a fixed price. We
provide a similar result in the distribution-free setting: a ven-
dor facing buyers with the same set of possible valuations,
with other vendors offering fixed prices, should also post a
fixed price in order to minimize regret.

Omitted proofs can be found in the full version of this
paper available online.1

Model and Notation
We use uppercase to denote row vectors of size m (or sets),
bold letters to denote column vectors of size n, and bold
uppercase to denote matrices.

Assume a set N of n buyers and a set M of m vendors.
Vendors each offer (an unlimited number of units of) a single
product, while each buyer i has a type Vi, i.e., a vector of
non-negative values vij for each vendor j’s product. Buyers
have unit demand. We let vj denote the vector of values for
vendor j (over all i ∈ N ) and V the full value matrix. Each
vendor has a fixed cost cj for producing one unit, which is
common knowledge among vendors.

Two-stage interaction. Vendors and buyers engage as fol-
lows: in the first stage of the game, each vendor posts a dis-
count schedule, a non-increasing vector pj : [n] → R+,
where pj(t) is the price offered if t buyers each purchase j’s
item (Anand and Aron 2003). LetP be the set of all discount
schedules and P = (p1, . . . ,pm) a profile of schedules, one
per vendor. A schedule with a single fixed price is a triv-
ial schedule, and is denoted pj ∈ R+. In the second stage,
each buyer selects a single vendor (or abstains). An outcome
(P,S) of the game is the set of schedules P = (pj), and an
assignment µ : N → M ∪ {0} of buyers to vendors parti-
tions them into S = (S0, S1, . . . , Sm), where Sj is the set of
buyers assigned to j (S0 are the abstainers). Given outcome
(P,S), a buyer i ∈ Sj pays pj(|Sj |).

We begin by defining the LB model, where buyers are
strategic but vendors are not, and the schedules posted by
vendors are fixed. We then extend this basic setting by

1Available from http://tinyurl.com/c3cerg3.



adding vendor utilities, strategies, and informational as-
sumptions to model the strategic interactions of vendors.

The LB model
We assume a profile of schedules P has been fixed by the
vendors. Once buyers are assigned to specific vendors, the
item prices are set by (P,S) as defined above. Buyer utility
is quasi-linear in price: the utility of i ∈ Sj is ui(P,S) =
vij − pj(|Sj |). For ease of exposition we assume buyers are
never indifferent between products (vendors); we assume a
predetermined vendor order for each buyer that is part of its
type, and is used to break ties across vendors who have the
same utility.

Buyer behavior. If P consists of fixed prices, every buyer
has a strongly dominant strategy (recall we assume strict
preferences). However, if there are non-trivial discount
schedules, optimal buyer decisions may depend on the de-
cisions of other buyers.

We assume that if buyer i switches from vendor j = µ(i)
in outcome (P,S) to some other vendor j′, she enjoys the
(potentially reduced) price pj′(|Sj′ |+1) induced by her de-
viation. Strong stability requires that no single buyer gains
from such a deviation. For any profile of discount sched-
ules P and type matrix V, there is some partition S that is
strongly stable (Lu and Boutilier 2012). We refer to such
a partition as a stable buyer partition (SBP).2 There may
be multiple SBPs in any game. We make no strong as-
sumptions about the chosen SBP, but assume only that the
buyers play a SBP that is efficient, i.e., that is not Pareto-
dominated by another SBP. From these partitions, we may
select arbitrarily in some pre-defined way. For example, Lu
and Boutilier (2012) describe a method for finding SBPs that
maximize social welfare, which could readily be adopted in
our model.

Thus for every schedule P and type matrix V there is a
unique outcome (P,S), where S is a SBP.

Vendors as agents
The utility of vendor j ∈ M is simply the revenue de-
rived from the buyers assigned to it: Uj(P,S) = |Sj | ·
(pj(|Sj |) − cj), where cj is the cost of a single product
to j. For any profile P ∈ Pm, let S(V,P) be the SBP
that is induced by the prices P. This allows us to write
Uj(P,V) ≡ Uj(P,S(V,P)).

Vendor behavior. Since the behavior of the buyers for any
set of vendor discount schedules is well-defined, we can
confine our analysis of the two-stage game to the first stage,
where vendors announce prices. The incentives facing ven-
dors in choosing their strategies depend critically on their
knowledge of buyers’ types, as well as on their objective
function. We consider three different models (formal defini-
tions appear in the sections that follow).

2An SBP is a pure Nash equilibrium in the second stage of our
game. However, we reserve the term equilibrium for the first stage
of vendor play.

In the full information model, vendors know the precise
buyer types and try to maximize utility. The Bayesian (or
expected utility) model adopts a standard Bayesian game
formulation: vendors have partial information in the form of
a commonly-known distribution D over (joint) buyer types,
and try to maximize expected utility. The strict uncertainty
model assumes even less information: vendors only know
the possible set of buyer types (i.e., only the support of the
distribution is known). In this model, expected utility is ill-
defined so we instead adopt a common approach for such
settings and assume vendors try to minimize their worst-case
regret over all possible type realizations.

Best response and equilibrium. Informally, an equilib-
rium is a profile of vendor strategies such that no vendor
prefers to use a different strategy, assuming buyers and ven-
dors behave as described above. Equivalently, a profile is
not in equilibrium if some vendor has a best response that it
(strictly) prefers when other vendors use that profile.

Best responses are in some sense a more fundamental
concept than equilibria, since analyzing equilibria depends
on full understanding of available best responses. Further-
more, even in settings where we do not expect equilibria to
emerge (or potentially when they do not exist, depending on
the solution concept) best-response dynamics provide natu-
ral insights into the likely outcomes of a game. Therefore,
the main focus of this paper is the nature of vendor best re-
sponses to the actions of other vendors, and specifically the
circumstances under which it is rational to respond with a
non-trivial discount schedule rather than a fixed price. While
not a focus of this work, all three models admit natural defi-
nitions of a vendor equilibrium, based on the corresponding
best-response concept.

The Full Information Model
A game G = 〈V, C〉 in the full information model is
given by a buyer type matrix V = (vi,j) and vendors costs
C = (cj). The full information model is not especially in-
teresting from our perspective. If the vendors have full in-
formation, then they know exactly which buyer partitions
will form given any profile of discounts. Thus if vendor j
expects to have t buyers under some nontrivial schedule pj ,
it can post a fixed price pj = pj(t) and induce identical
buyer behavior. This is not altogether surprising: the fact
that some uncertainty is required to justify group discounts
has previously been demonstrated, albeit in a somewhat dif-
ferent model (Anand and Aron 2003).

The Bayesian Model
One reason for posting volume discounts rather than fixed
prices is to hedge against uncertainty regarding the prefer-
ences (hence decisions) of the buyers. A vendor can “insure”
itself against the possibility that fewer buyers than expected
are drawn to its product. In the Bayesian model we assume
each buyer i has a set of possible types Ai ⊆ Rm

+ , and there
is some joint distribution over typesD = D(A1×A2×· · ·×
An) which is common knowledge among vendors. A game
takes the form G = 〈D, C〉. In the first stage of the game,



vendors choose discount schedules, not knowing the buy-
ers’ types. In the second stage, a type matrix V = (vij)ij is
drawn from D. The goal of vendor j is to set a schedule pj
that maximizes its expected utility:

Uj(P,D) = EV∼D[Uj(P,V)] = EV∼D[Uj(P,S(V,P))].

A special case we consider is the case of i.i.d. buyers: Ai =
A for all i ∈ N , each buyer’s type is distributed according
to a common distribution D̂(A), and D is the corresponding
product distribution.3

A single vendor
First consider the case of a single vendor: suppose a mo-
nopolist is faced with distribution D. The simple example
below demonstrates that a vendor can strictly increase its
revenue, relative to any fixed price, using a non-trivial dis-
count schedule. Assume two buyers, and a (discrete) type
distribution that assigns probability 0.5 to each of two type
matrices, (3, 0) and (2, 2). Note that buyers’ valuations are
correlated in D. The optimal fixed price is p = 2, which
guarantees revenue U(p,D) = 0.5 · 2 · 2 + 0.5 · 2 = 3.
However, consider a discount schedule with a base price
p(1) = 3, and a discounted price p(2) = 2. Its expected
revenue, U(p,D) = 0.5 · 2 · 2 + 0.5 · 3 = 3.5, is greater
than that of the optimal fixed price. Similar examples with
continuous distributions are easily constructed.

By contrast, if buyers are i.i.d., the monopolist is always
better off using a fixed price.

Proposition 1. Consider a single vendor facing n i.i.d. buy-
ers with distribution D. Let p∗ be the optimal fixed price for
the vendor.
For any discount schedule p, U(p,D) ≤ U(p∗,D).

Proof. W.l.o.g., the optimal fixed price p∗ can be set deter-
ministically (i.e., randomized pricing cannot do better). Let
r∗ = p∗ PrD(v > p∗) be the optimal expected revenue that
can be extracted from a single buyer. Applying the optimal
fixed price p∗ to all n buyers gives an expected revenue of
nr∗.

Assume, by way of contradiction, that some discount
schedule p = (p(1), . . . , p(n)) yields strictly greater rev-
enue than nr∗. Let ri be the expected revenue extracted
from buyer i using p. Then

∑
i ri > nr∗, i.e., there is

at least one buyer (w.l.o.g. assume buyer n) s.t. rn > r∗.
We now construct a pricing strategy that yields revenue rn
from buyer n. Independently sample n − 1 values from D,
simulating the first n − 1 buyers, and sort values so that
v1 ≥ · · · ≥ vn−1. Now select price p(1) iff v1 < p(1),
p(2) iff v2 < p(2) ≤ v1, and more generally p(k) iff
vk < p(k) ≤ vk−1. These events are pairwise disjoint and
cover the entire event space (since the union of events 1 to k
holds iff least n− k buyers have values below p(k)).

Let Ak denote the k’th event, and Bk the correspond-
ing event when actual buyer values are drawn from Dn−1.
Clearly Pr(Ak) = Pr(Bk). Moreover, when Bk occurs, ex-
actly k − 1 buyers have value at least p(k). Thus buyer n

3Within D̂(A), any buyer i’s preferences over different vendors
may be dependent (i.e., vij , vij′ can be correlated).

purchases iff vn ≥ p(k) as well, and pays p(k) if so. How-
ever, this is exactly the purchase probability and price paid
by a single buyer when the proposed price is p(k). Thus the
revenue is

∑n
k=1 Pr(Ak) Pr(v ≥ p(k)|Ak)p(k) (from the

single buyer), i.e.,
n∑

k=1

Pr(Bk) Pr(vn ≥ p(k)|Bk)p(k) = rn > r∗.

Thus p extracts more than r∗ from a single buyer (a contra-
diction).

Multiple vendors
We now consider the best response of a vendor to the offers
of other vendors. Suppose vendors other than j post sched-
ules p−j . The best response of j is :

brEU
j (p−j) = argmax

pj∈P
Uj((p−j ,pj),D), (1)

where EU stands for Expected Utility. Our main result in the
Bayesian model is that, assuming buyer types are indepen-
dent and drawn from the same distribution, a vendor cannot
benefit by using a discount schedule instead of a fixed price
unless other vendors also use schedules. Below we show
that these conditions are minimal: a non-trivial schedule can
be of value if any of these three conditions is relaxed.
Theorem 2. Let G = 〈D, C〉 be a game with i.i.d. buyers.
If all vendors except j are using fixed prices, then the best
response of vendor j is also a fixed price.

Proof sketch. W.l.o.g. we analyze vendor 1, and assume
q2, . . . , qm are the (fixed) prices of the other vendors. Given
distribution D over buyers’ types define a single parameter
distribution D′ s.t. for all x ∈ R,

Prv∼D′(v > x) ≡ Prv∼D(v1 − max
2≤j≤m

(vj − qj) > x).

When vendor 1 is a monopolist facing buyers sampled
i.i.d. from D′, it can attract k buyers at price p1 iff there
are k buyers for which vi,1 > p1 (i.e., D′ “simulates” the
multi-vendor state in which vendor 1 finds himself).

The revenue of any schedule p for vendor 1 under D′ is
equal to the revenue it accrues using p when other vendors
post prices q2, . . . , qm under distribution D (our assump-
tion that we select a Pareto-dominant SBP is required). By
Prop. 1, the best strategy for vendor 1 is to post a fixed price
p∗, i.e., br j(q2, . . . , qm) = p∗.

There are three main conditions underlying Thm. 2: (a)
all buyers have the same marginal distribution of values;
(b) buyer valuations are independent; and (c) all other ven-
dors use fixed prices. We now show that these are, in
a sense, minimal requirements for the optimality of fixed
prices. Specifically, relaxing any of the three admits non-
trivial schedules as best responses in some circumstances.
Proposition 3. For any pair of conditions taken from (a),
(b) or (c), there is a game with two vendors and two buy-
ers where the best response of one vendor is a non-trivial
discount schedule.



Relaxing condition (a). We first assume conditions (b)
and (c) hold, but allow buyers to have different marginal dis-
tributions. Consider a simple counterexample with two ven-
dors M = {1, 2} and two independent (but not i.i.d.) buyers
N = {a, b}. Both vendors have zero cost. Buyer a prefers
vendor 1: va1 = 10 + x, where x ∼ U(0, 1]; and va2 = 10.
Buyer b prefers vendor 2: vb1 = 10; and vb2 = 10 + y,
where y ∼ U(0, 1].

Consider the fixed price profile P ∗ = (1, 1). The ex-
pected revenue isU1(P

∗) = U2(P
∗) = 1 (in fact this occurs

w.p. 1, as every vendor keeps exactly one buyer). We argue
that if discounts are not allowed, then P ∗ is an equilibrium,
i.e. that no vendor can earn more than 1 by posting a fixed
price. Indeed, suppose that vendor 1 announces some price
q > 1, then it keeps client a w.p. (2− q), and

U1(q, 1) = (2− q)q + (1− q)0 = 2q − q2.
Similarly, if q < 1, then the vendor keeps client a for sure,

and gains client b w.p. 1− q, Thus

U1(q, 1) = (1− q)2q + q · q = 2q − q2.
In other words, in both cases U1(q, 1) = 2q− q2, which has
a maximum at q∗ = 1 = p∗1. The argument for the second
vendor is the same.

Nevertheless, if vendor 1 deviates to the non-trivial sched-
ule q′1 = (1, 3/4), then it can do better: Vendor 1 always
keeps buyer a as before. W.p. 1/4, buyer b has a preference
of less than 1/4 for vendor 2 (i.e. y < 1/4), and will select
vendor 1 in the unique SBP S(V, (q′1, p2)). Hence:

U1(q
′
1, p2) = 1/4(2q′2) + 3/4 · q′1 = 1/4(2 · 3/4) + 3/4 · 1

= 3/8 + 3/4 = 9/8 > 1 = U1(P
∗).

Relaxing condition (b). Our next example shows that re-
laxing independence, but retaining conditions (a) and (c),
also admits discounting as a best response. Consider the pre-
vious game, but with probability 1/2, swap the preferences
(types) of both buyers. This results in a symmetric distribu-
tion, but correlates their values. The fixed profile P = (1, 1)
remains a fixed price equilibrium. Moreover, since the best
response of vendor 1 to price 1 is q1 = (1, 3/4) regardless of
its type, it remains a best response in the new game.

Relaxing condition (c). Lastly, we describe a game with
two i.i.d. buyers, maintaining conditions (a) and (b), but
where the best response for vendor 1 to a discount sched-
ule posted by vendor 2 is itself a schedule (we omit the full
analysis due to space constraints). Let va1 = vb1 = 10,
va2 = 10 + xa, and vb2 = 10 + xb, where xa and xb are
sampled i.i.d. from D̂ = U [−1, 1]. As long as prices are
not too high (say, below 8) buyer i’s decision is determined
only by the value difference xi between her value for the two
vendors. It is not hard to verify that the profile P = (1, 1)
is a Nash equilibrium even if schedules are allowed. How-
ever, suppose vendor 2 posts schedule q2 = (1, 0.8). Ven-
dor 1’s best response is not a fixed price: it can be shown that
its optimal fixed price is p∗1 ∼= 0.922, yielding revenue of
0.93656, while the schedule q′1(0.93, 0.914) yields slightly
higher revenue of 0.93675.

The Strict Uncertainty Model
The assumption that vendors have distributional knowledge
of buyers’ types may not be viable in certain situations. In
this section, we consider an alternative model of uncertainty,
the strict uncertainty model, where vendors know only the
possible types that buyers may possess. The game is struc-
tured as in the Bayesian model, but rather than sampling
buyer types from a distribution, arbitrary types from the
type space A1 × · · · ×An are chosen. One plausible vendor
objective is to maximize worst-case utility, but such an ap-
proach is inappropriate in our setting. For example, if buyer
valuations can lie below a vendor’s cost, that vendor’s worst-
case utility is at most 0, regardless of its actions. We there-
fore consider a more natural objective, assuming each ven-
dor selects a strategy that minimizes its worst-case or maxi-
mum regret. The minimax regret approach has deep roots in
decision making (Savage 1972), and it has been applied in
various game-theoretic contexts (Hyafil and Boutilier 2004;
Ashlagi, Monderer, and Tennenholtz 2006).

Notation. We adapt the definitions of minimax regret from
(Hyafil and Boutilier 2004) to our model. Let Ai ⊂ Rm be
the set of possible types for buyer i, and A = ×i∈NAi.
Once vendors select strategies (prices) P, suppose real-
ized buyers’ types are V, resulting in the buyer partition
S = S(V,P). The regret Regj(P,V) of vendor j in this
outcome is the difference between its maximal profit in ret-
rospect, and its actual profit:

Regj(P,V) = max
p′j∈R

Uj((p
′
j ,p−j),S(V,P′))−Uj(P,S(V,P)),

where P′ = (p′j ,p−j). Note that w.l.o.g. p′j is a fixed price
and not a schedule.

Without a type distribution, vendors assume the worst-
case realization of types. The maximum regret over all pos-
sible types is:

MaxRegj(P) = max
V∈A

Regj(P,V).

The goal of each vendor is therefore the selection of a strat-
egy that minimizes its maximum regret. The best response
to strategy profile p−j is:

brMR
j (p−j) = argmin

pj∈P
MaxRegj(pj ,p−j).

Note that regret is minimized w.r.t. the types of the buyers,
not the actions of other vendors, which are assumed to be
known.4

Discounts and regret
We now assess the value of discounts in the strict uncertainty
model, assuming vendors mininize max-regret. We first ob-
serve:
Lemma 4. If all vendors use fixed prices, and buyer type
spaces are symmetric (i.e., Ai = A for all i), then maximum
regret for each vendor is realized when all buyers have the
same type.

4Minimax regret equilibrium can be naturally defined, as a pro-
file where the best response of every agent is its current action.



Our main result in the strict uncertainty model is similar
in spirit to Thm. 2.
Theorem 5. If all vendors except j use fixed prices, and
buyer type spaces are symmetric, then brMR

j (p−j) is a fixed
price.

Proof. Let qj be the schedule that is the best response to
p−j , i.e., MaxRegj(qj , p−j) is minimal. Let pj = qj(n),
i.e. the price for n buyers, and P = (pj , p−j). We will
show that MaxRegj(P ) = R is also minimal. Intuitively,
the proof shows that the only part of j’s strategy that is be-
ing used in practice (in the worst case) is the price for the
complete set N . Thus, fixed price pj = qj(n) is as good as
schedule qj .

Consider MaxRegj(pj , p−j) as a function of pj . For any
pj , there is some type matrix V∗ where max-regret under
P is realized, i.e., Regj(P,V

∗) = MaxRegj(P ) = R.
There is an optimal price p′j for V∗ s.t. Regj(P,V

∗) =
Uj((p

′
j , p−j),V

∗) − Uj(P,V
∗). By Lemma 4, w.l.o.g. all

buyers have the same type in V∗, denoted by V ∗ ∈ A. Thus
either Sj = Sj(P,V

∗) has all buyers or Sj is empty.
Suppose MaxRegj(qj , p−j) < R. By definition

Regj((qj , p−j),V) < R for any V, in particular for the
uniform profile V∗ = (V ∗, . . . , V ∗). However , in V∗

either |Sj | = n or |Sj | = 0 for any prices. Recall that
S = S(V∗, P ) and denote S′ = S(V∗, (p′j , p−j));T =
S(V∗, (qj , p−j)). In particular, |Tj | ∈ {0, n}.

If |Tj | = 0, then |Sj | = 0 as well since at price pj =
qj(n) vendor j does not attract any buyer of type V ∗. If
|Tj | = n then the vendor attracts all buyers of type V ∗ at
price pj and thus |Sj | = n = |Tj |, and

|Tj |(qj(|Tj |)− cj) = |Sj |(qj(|n|)− cj) = |Sj |(pj − cj).

Note that in either case |Tj |(qj(|Tj |)− cj) = |Sj |(pj − cj).
Thus for some p′j ,

Regj((qj , p−j),V
∗) = Uj(p

′
j , p−j ,V

∗)− Uj((qj , p−j),V
∗)

= |S′j |(p′j− cj)− |Tj |(qj(|Tj |)−cj)
= |S′j |(p′j−cj)− |Sj |(pj−cj)
= Uj((p

′
j , p−j),V

∗)− Uj(P,V
∗) = Regj(P,V

∗) = R,

i.e., a contradiction. Therefore

MaxRegj(pj , p−j) = R ≤ MaxRegj(qj , p−j),

i.e. pj ∈ brMR
j (p−j), as required.

Non-identical type spaces. With identical types spaces,
we see that discounts provide no value to a vendor if
other vendors use fixed prices. However, analogous to the
Bayesian model, if type spaces are distinct, then a single
vendor can derive value by posting a non-trivial schedule.

Consider a game with a single vendor having zero cost
and with and three buyers. The values for the buyers are
v1 ∈ [6, 12]; v2, v3 ∈ [0, 6]. In this game, the best fixed
price for the vendor is p∗ = 4, and MaxReg(p∗) = 8.
However by posting the discount schedule p = (6, 4, 4),
the vendor attains regret at most 6. This can be shown

by splitting the possible valuations into cases, and deriv-
ing the maximum regret for each case separately. For ex-
ample, if v2, v3 ≥ 4, then the realized price is 4, and
U(4, V ) ≥ 3 · 4 = 12. On the other hand, maximal util-
ity is 18, thus Reg(4, V ) ≤ 18 − 12 = 6. The other two
cases, where either one or both values are less than 4, are
treated similarly.

We conjecture that in the strict uncertainty model, fixed
prices are dominant even if the restriction on other vendors
is relaxed (in contrast to the Bayesian model).

Discussion
We have investigated conditions under which vendors may
benefit from posting group or volume discounts for groups
of buyers—assuming that buyers can coordinate their pur-
chasing activities—relative to the posting of fixed prices.
We showed that, when facing i.i.d. buyers that use the co-
ordination mechanism of Lu and Boutilier (2012), complex
discount schedules cannot yield greater revenue than that
generated using the optimal fixed price. This holds whether
vendors know the distribution of buyer types or simply the
support of this distribution; a finding that is consistent with
similar findings in other models of group buying (see the
Related work section). This robust result highlights the fact
that the design of effective pricing schemes for group buying
should focus on settings where group discounts provide ven-
dor value, including domains where buyers’ valuations are
correlated by unobservable factors (such as perceived qual-
ity or advertising impact), marginal production costs are de-
creasing, vendors are risk-seeking, or where discounts have
viral or long-term acquisition benefits.

Future work. A number of interesting directions for fu-
ture research remain. One interesting question is whether
similar results hold when buyers use stronger coordina-
tion mechanisms, such as those that allow transferable util-
ity (Yamamoto and Sycara 2001; Lu and Boutilier 2012).
Within our current model, further research is needed to un-
derstand the full impact of group discounts when buyer val-
uations are correlated by signals—such as product qual-
ity, vendor reputation, or advertising—and to develop algo-
rithms that compute optimal discounts for such settings.

Other important questions relate to the existence and
properties of equilibria in our model. We have derived some
preliminary results showing that pure vendor equilibria may
not exist in our model, either with or without discounts, even
in the complete information model (and even with a single
buyer!). Developing conditions under which such equilibria
exist is of great interest, especially in cases where all ven-
dors use group discounts.
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