
Approximate Solution Techniques for Factored First-order MDPs

Scott Sanner
Department of Computer Science

University of Toronto
Toronto, ON M5S 3H5, CANADA
ssanner@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3H5, CANADA
cebly@cs.toronto.edu

Abstract

Most traditional approaches to probabilistic planning in
relationally specified MDPs rely on grounding the prob-
lem w.r.t. specific domain instantiations, thereby incur-
ring a combinatorial blowup in the representation. An
alternative approach is to lift a relational MDP to a first-
order MDP (FOMDP) specification and develop solu-
tion approaches that avoid grounding. Unfortunately,
state-of-the-art FOMDPs are inadequate for specify-
ing factored transition models or additive rewards that
scale with the domain size—structure that is very natu-
ral in probabilistic planning problems. To remedy these
deficiencies, we propose an extension of the FOMDP
formalism known as afactored FOMDP and present
generalizations of symbolic dynamic programming and
linear-value approximation solutions to exploit its struc-
ture. Along the way, we also make contributions to
the field of first-order probabilistic inference (FOPI) by
demonstrating novel first-order structures that can be
exploited without domain grounding. We present em-
pirical results to demonstrate that we can obtain solu-
tions whose complexity scales polynomially in the log-
arithm of the domain size—results that are impossible
to obtain with any previously proposed solution method.

Introduction
There has been a great deal of research in recent years
aimed at exploiting structure in order to compactly represent
and efficiently solve decision-theoretic planning problems in
the Markov decision process (MDP) framework (Boutilier,
Dean, & Hanks 1999). While traditional approaches to solv-
ing MDPs typically used an enumerated state and action
model, this approach has proven impractical for large-scale
AI planning tasks where the number of distinct states in a
model can easily exceed the limits of primary and secondary
storage on modern computers.

Fortunately, many MDPs can be compactly described in
a propositionally factored model that exploits various in-
dependences in the reward and transition functions. And
not only can this independence be exploited in the prob-
lem representation, it can often be exploited in exact and
approximate solution methods as well (Hoeyet al. 1999;

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

St-Aubin, Hoey, & Boutilier 2000; Guestrinet al. 2002).
However, while recent techniques for factored MDPs have
proven effective, they cannot generally exploit first-order
structure. Yet many realistic planning domains are best rep-
resented in first-order terms, exploiting the existence of do-
main objects, relations over these objects, and the abilityto
express objectives and action effects using quantification.

These deficiencies have motivated the development of
the first-order MDP (FOMDP) framework (Boutilier, Re-
iter, & Price 2001) that directly exploits the first-order
representation of MDPs to obtain domain-independent so-
lutions. While FOMDP approaches have demonstrated
much promise (Kersting, van Otterlo, & de Raedt 2004;
Karabaev & Skvortsova 2005; Sanner & Boutilier 2005;
2006), current formalisms are inadequate for specifying both
factored actions and additive rewards in a fashion that allows
reasonable scaling with the domain size.

To remedy these deficiencies, we propose a novel exten-
sion of the FOMDP formalism known as afactoredFOMDP.
This representation introduces product and sum aggregator
extensions to the FOMDP formalism that permit the spec-
ification of factored transition and additive reward models
that scale with the domain size. We then generalize sym-
bolic dynamic programming and linear-value approximation
techniques to exploit product and sum aggregator structure,
solving a number of novel problems in first-order probabilis-
tic inference (FOPI) in the process. Having done this, we
present empirical results to demonstrate that we can obtain
effective solutions on the well-studied SYSADMIN problem
whose complexity scales polynomially in the logarithm of
the domain size—results that are impossible to obtain with
any previously proposed solution method.

Markov Decision Processes
Factored Representation

In a factored MDP, states will be represented by vectors~x
of lengthn, where for simplicity we assume the state vari-
ablesx1, . . . , xn have domain{0, 1}; hence the total num-
ber of states isN = 2n. We also assume a set of actions
A = {a1, . . . , an}. An MDP is defined by: (1) a state transi-
tion modelP (~x′|~x, a) which specifies the probability of the
next state~x′ given the current state~x and actiona; (2) a re-
ward functionR(~x, a) which specifies the immediate reward

...

C1

C2

C3

C i

Cm

...

(a) Line

...

1

C3

Cn C2

C

(b) Uni-Ring

m

C3
2

C1
3

C1
2

C2
2

C0 C1
1 C1

2

...

...
...

C3

C2

1

m

m

C

(c) Star

Figure 1:Diagrams of the three example SYSADMIN connection
topologies that we will focus on in this paper.

obtained by taking actiona in state~x; and (3) a discount fac-
tor γ, 0 ≤ γ < 1. A policy π specifies the actionπ(~x) to
take in each state~x. Our goal is to find a policy that maxi-
mizes the value function, defined using the infinite horizon,
discounted reward criterion:V π(~x) = Eπ[

∑∞
t=0 γ

t · rt|~x],
wherert is the reward obtained at timet (assuming start
state~x).

Many MDPs often have a natural structure that can be ex-
ploited in the form of a factored MDP (Boutilier, Dean, &
Hanks 1999). For example, the transition function can be
factored as a dynamic Bayes net (DBN)P (x′i|~xi, a) where
each next state variablex′i is only dependent upon the ac-
tion a and its direct parents~xi in the DBN. Then the tran-
sition model can be compactly specified asP (~x′|~x, a) =
∏n

i=1 P (x′i|~xi, a). And often, the reward can be factored
additively asR(~x, a) =

∑m
i=1Ri(~x, a) where eachRi are

typically dependent upon small subsets of~x.
We define abackupoperatorBa for actiona as follows:1

Ba[V (~x)] = γ
∑

~x′

n
∏

i=1

P (x′i|~xi, a)V (~x′) (1)

If π∗ denotes the optimal policy andV ∗ its value func-
tion, we have the fixed-point relationshipV ∗(~x) =
maxa∈A {

∑m
r=1Ri(~xr, a) +Ba[V ∗(~x)]}.

Example 1 (SYSADMIN Factored MDP). In the SYSAD-
MIN problem (Guestrinet al. 2002), we haven com-
putersc1, . . . , cn connected via a directed graph topology
(c.f. Fig. 1). Let variablexi denote whether computer
ci is up and running (1) or not (0). LetConn(cj , ci)
denote a connection fromcj to ci. We haven actions:
reboot(c1), . . . , reboot(cn). The CPTs in the transition
DBN have the following form:

P (x′i = 1|~xi, a) =

a = reboot(ci) : 1
a 6= reboot(ci) : (0.05 + 0.9xi)

·
|{xj |j 6=i∧xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

If a computer is not rebooted then its probability of running
in the next time step depends on its current status and the
proportion of computers with incoming connections that are
also currently running. The reward is the sum of comput-
ers that are running at any time step:R(~x, a) =

∑n
i=1 xi.

An optimal policy in this problem will reboot the computer
that has the most impact on the expected future discounted
reward given the network configuration.

1Technically, this should be written(BaV)(~x), but we abuse
notation for consistency with subsequent first-order MDP notation.

Solution Methods
Value iteration(Bellman 1957) is a simple dynamic pro-
gramming algorithm for constructing optimal policies. It
proceeds by constructing a series oft-stage-to-go value
functionsV t. SettingV 0(~x) = maxa∈AR(~x, a), we define

V t+1(~x) = max
a∈A

{

R(~x, a) +Ba[V t(~x)]
}

(2)

The sequence of value functionsV t produced by value iter-
ation converges linearly to the optimal value functionV ∗.

Approximate Linear Programming (ALP)(Schuurmans &
Patrascu 2001) is a technique for linearly approximating a
value function. In a linear representation, we representV as
a linear combination ofk basis functionsbj(~x) where each
bj are typically dependent upon small subsets of~x:

V (~x) =

k
∑

j=1

wjbj(~x) (3)

Our goal is to find weights that approximate the optimal
value function as closely as possible. One way of doing this
is to cast the optimization problem as a linear program (LP)
that directly solves for the weights of anL1-minimizing ap-
proximation of the optimal value function:

Variables:w1, . . . , wk

Minimize:
∑

~x

V (~x) (4)

Subject to:0 ≥ R(~x, a) +Ba[V (~x)] − V (~x) ; ∀a, ~x

We can exploit the factored nature of the basis functions
to simplify the objective to the following compact form:
∑

~x V (~x) =
∑

~x

∑k
j=1 wjbj(~x) =

∑k
j=1 wjyj whereyj =

2n−|~xj |
∑

~xj
bj(~x). We also exploit the linearity property

of theBa operator to distribute it through the sum of basis
functions to rewrite the constraints (note themax~x):

0 ≥ max
~x

(

m
X

i=1

Ri(~xi, a) +

k
X

j=1

wjB
a[bj(~x)] −

k
X

j=1

wjbj(~x)]

)

; ∀a

(5)

This permits us to applyBa[·] individually to each fac-
tored basis function and provides us with a factoredmax-
∑

(i.e., cost network) form of the constraints. This factored
form can then be exploited by LP constraint generation tech-
niques (Schuurmans & Patrascu 2001) that iteratively solve
the LP and add the maximally violated constraint on each it-
eration. Constraint generation is guaranteed to terminatein
a finite number of steps with the optimal LP solution.

Factored First-order MDPs
Factored Actions and the Situation Calculus
The situation calculus (Reiter 2001) is a first-order language
for axiomatizing dynamic worlds; in this work, we assume
the logic is partially sorted (i.e., some, but not all variables
will have sorts). Its basic ingredients consist of parame-
terizedaction terms,situation terms, and relationalfluents
whose truth values vary between states. A domain theory is

axiomatized in the situation calculus; among the most im-
portant of these axioms aresuccessor state axioms (SSAs),
which embody a solution to the frame problem for determin-
istic actions (Reiter 2001). Previous work (Boutilier, Reiter,
& Price 2001) provides an explanation of the situation calcu-
lus as it relates to first-order MDPs (FOMDPs). Here we just
provide a partial description of the SYSADMIN problem:

• Sorts: C (read: Computer); throughout the paper, we as-
sumen = |C| so the instances of this sort arec1, . . . , cn.2

• Situations: s, do(a, s) (read: the situation resulting from
doing actiona in situations), etc...

• Fluents: Up(c, s) (read:c is running in situations)

When the stochasticaction reboot(ci) is executed in
SYSADMIN , the status of each computer may evolve inde-
pendently of the other computers. To model these indepen-
dent effects and to facilitate the exploitation of DBN-like
independence, we begin by specifying deterministicsub-
actionsets with each set encapsulating orthogonal effects:

• Sub-action Sets:A(ci) = {upS (ci), upF (ci)} ; ∀ci ∈ C

Here,upS (ci) andupF (ci) are sub-actions thatonly affect
the status of computerci. From these sub-action sets, we
can then specify the set of all deterministicjoint actions:

• Joint action Set:A = {A(c1) × · · · ×A(cn)}

We specify a deterministic joint action as the associative-
commutative◦ composition of its constituent sub-actions,
e.g., if n = 4 then one joint deterministic actiona ∈ A
could bea = upS (c1) ◦ upF (c2) ◦ upF (c3) ◦ upS (c4).

Why do we model our deterministic actions in this fac-
tored manner? We do this in order to use DBN-like princi-
ples to specify distributions over deterministic joint actions
in terms of a compact factored distribution over determin-
istic sub-actions. This permits us to exploit the indepen-
dence of sub-action effects to substantially reduce the com-
putational burden during FOMDP backup operations to be
defined shortly. And in general, we note that once one has
identified sub-action sets that capture orthogonal effects, the
rest of the factored FOMDP formalization follows from this.

Rather than enumerate the explicit set of effects for each
joint action and compile these into SSAs, we can use an
equivalent compact representation of SSAs that test directly
whether a joint action contains a particular sub-action. We
do this with the⊒ predicate that tests whether the term on
the LHS is a compositional superset of the RHS term. For
example, givena above for the case ofn = 4, we know that
a ⊒ upS (c1) is true, buta ⊒ upF (c4) is false. Now we can
compactly write the SSA for SYSADMIN :
• Successor State Axiom:

Up(ci,do(a, s)) ≡ a ⊒ upS(ci) ∨ Up(ci, s) ∧ ¬a ⊒ upF (ci)

We do not yet consider thereboot(ci) action as we treat it
as a stochastic action chosen by the user and thus defer its
description until we introduce stochasticity into our model.

The regression of a formulaψ through a joint actiona
is a formulaψ′ that holdsprior to a being performed iff

2Throughout this paper, we will often omit a variable’s sort if
its first letter matches its sort (e.g.,c, c1, c∗ are all of sortC).

ψ holds aftera. We refer the reader to (Reiter 2001) for
a discussion of theRegr [·, ·] operator3 and how it can be
efficiently computed given the SSAs. For the SYSADMIN
example, we note the result is trivial:

Regr [Up(ci, s); · · · ◦ upS(ci) ◦ · · ·] ≡ ⊤ (6)

Regr [Up(ci, s); · · · ◦ upF (ci) ◦ · · ·] ≡ ⊥ (7)

Case Representation and Operators
Prior to generalizing the situation calculus to permit a first-
order representation of MDPs, we introduce acase nota-
tion to allow first-order specifications of the rewards, tran-
sitions, and values for FOMDPs (see (Boutilier, Reiter, &
Price 2001) for formal details):

t =
φ1 : t1
: : :
φn : tn

≡
W

i≤n{φi ∧ t = ti}

Here theφi arestate formulae(whose situation term does
not usedo) and theti are terms. Often theti will be con-
stants and theφi will partition state space.

Intuitively, to perform abinary operation on case state-
ments, we simply take the cross-product of their partitions
and perform the corresponding operation on the resulting
paired partitions. Letting eachφi andψj denote generic
first-order formulae, we can perform the “cross-sum”⊕ of
two case statements in the following manner:

φ1 : 10
φ2 : 20

⊕
ψ1 : 1
ψ2 : 2

=

φ1 ∧ ψ1 : 11
φ1 ∧ ψ2 : 12
φ2 ∧ ψ1 : 21
φ2 ∧ ψ2 : 22

Likewise, we can perform⊖ and ⊗ by, respectively,
subtracting or multiplying partition values (as opposed to
adding them) to obtain the result. Some partitions resulting
from the application of the⊕, ⊖, and⊗ operators may be
inconsistent and should be deleted.

We use threeunaryoperators on cases (Boutilier, Reiter,
& Price 2001; Sanner & Boutilier 2005):Regr , ∃~x, max.
RegressionRegr [C; a] and existential quantification∃~xC
can both be applied directly to the individual partition for-
mulaeφi of caseC. The maximization operationmaxC
sorts the partitions of caseC from largest to smallest, ren-
dering them disjoint in a manner that ensures each portion
of state space is assigned the highest value.

Sum and Product Case Aggregators
We introduce sum4 and product case aggregators that per-
mit the specification of indefinite-length sums and products
over all instantiations of a case statement for a given sort (or
multiple sorts if nested). The sum/product aggregators are
defined in terms of the⊕ and⊗ operators as follows (where
n = |C|):

X

c∈C

case(c, s) = case(c1, s) ⊕ · · · ⊕ case(cn, s)

Y

c∈C

case(c, s) = case(c1, s) ⊗ · · · ⊗ case(cn, s)

3For readability, we abuse notation and write
Regr(φ(do(a, s))) instead asRegr [φ(s); a].

4These are similar in purpose and motivated by the count ag-
gregators of (Guestrinet al. 2003).

While the sum and product aggregator can be easily ex-
panded forfinite sums, there is generally no finite represen-
tation for indefinitely largen due to the piecewise constant
nature of the case representation (i.e., even if⊕ and⊗ are
explicitly computed, there may be an indefinite number of
distinct constants to represent in the resulting case).

Since the sum aggregator is defined in terms of the⊕ case
operator, the standard properties of commutativity and asso-
ciativity hold. Likewise, commutativity, associativity,and
distributivity of ⊗ over⊕ hold for the product aggregator
due to its definition in terms of⊗. Additionally, we know
thatRegr[·, ·] distributes through the⊕/⊗ operators (San-
ner & Boutilier 2005), so we can also infer that it distributes
through

∑

c and
∏

c.

Stochastic Joint Actions and the Situation Calculus
In the factored FOMDP framework, we must specify how
stochastic actionsU(~x) (e.g.,reboot(x)) under the control
of the “user” decompose according to Nature’s choice prob-
ability distribution (Boutilier, Reiter, & Price 2001) into
joint deterministic actions so that we can use them within
the deterministic situation calculus. Recalling our previous
discussion, letA(ci) denote a set of deterministic sub-action
outcomes and define the random variablea(ci) ∈ A(ci). We
motivated the definition of sub-actions by the fact that they
represented independent outcomes, so let us specify the dis-
tribution over these outcomes as independent probabilities
conditioned on the joint stochastic action and current situa-
tion: P (a(ci)|U(~x), s) = pCaseU (ci, ~x, s). Now we easily
express the distribution over the joint deterministic actions
a ∈ A in a factored manner using the product aggregator:

P (a|U(~x), s)=
Y

ci

P (a(ci)|U(~x), s)=
Y

ci

pCaseU (ci, ~x, s) (8)

It is straightforward to see that this defines a proper prob-
ability distribution over the decomposition of joint stochas-
tic actions into joint deterministic actions. This distribution
makes an extreme independence assumption of sub-action
outcomes, but this can be relaxed by jointly clustering small
sets of sub-actions into joint random variables.

Formalizing SYSADMIN as a Factored FOMDP
Now that we have specified all of the ingredients of a fac-
tored FOMDP, let us specify the remaining aspects of the
SYSADMIN problem. In addition to an axiomatization of
the deterministic situation calculus aspects of a factored
FOMDP (already defined for SysAdmin), we must specify
the reward and transition function:

Example 2(SYSADMIN Factored FOMDP). The reward is
easily expressed using sum aggregators:

rCase(s) =
X

ci

Up(ci, s) : 1
¬Up(ci, s) : 0

!

(9)

Next we specify the components of Nature’s choice probabil-
ity distributionpCasereboot(c, x, s) over deterministic sub-
action outcomes of the user’s actionreboot(x):

P (upS(ci)|reboot(x) ∧ x = ci, s) = ⊤ : 1 (10)

P (upS(ci)|reboot(x) ∧ x 6= ci, s) = (11)

Up(ci, s) : 0.95
¬Up(ci, s) : 0.05

⊗

1 +
P

d

Conn(d, ci) ∧ Up(d, s) : 1
¬Conn(d, ci) ∨ ¬Up(d, s) : 0

!

1 +
P

d

Conn(d, ci) : 1
¬Conn(d, ci) : 0

!

Here we see that the probability that a computer will be
running if it was explicitly rebooted is 1. Otherwise, the
probability that a computer is running depends on its pre-
vious status and the proportion of computers with incoming
connections that are running. The probability of the failure
outcomeupF (ci) is just the complement of the success case:

P (upF (ci)|U(ci)) = ⊤ : 1 ⊖ P (upS(ci)|U(ci)) (12)

We can easily combine theP (a(c)|U(x), s) into a joint
probabilityP (a|U(~x, s)) based on Eq. 8.

Symbolic Dynamic Programming
Exploiting Irrelevance
An important aspect of efficiency in the dynamic program-
ming solution of propositionally factored MDPs is exploit-
ing probabilistic independence in the DBN representation of
the transition distribution. The same will be true for fac-
tored FOMDPs except that now we must provide a novel
first-order generalization of probabilistic independence:

Definition 1. A set of deterministic sub-actionsB is irrele-
vantto a formulaφ(s) (abbreviatedIrr[φ(s), B]) iff

∀b ∈ B. Regr [φ(s), b] ≡ φ(s) . (13)

In general, we can prove case equivalence by converting
the case representation to its logical equivalent and query-
ing an off-the-shelf theorem prover. Most often though, a
simple syntactic comparison will allow us to show structural
equivalence without the need for theorem proving.

To make use of this axiom, we must impose additional
constraints on the definition of deterministic sub-actions:

Assumption 1. For all joint deterministic actionsa ∈ A
and deterministic sub-actionsa ⊒ b anda ⊒ c whereb 6= c,
no ground fluent can be affected by bothb andc.

Effectively we are claiming here that the effects of all
sub-actions of a joint action are orthogonal and do not in-
terfere with each other. While this may seem like a strong
assumption, it is only a modeling constraint andany sub-
action that violates this assumption can be decomposed into
multiple correlated sub-actions that obey this constraint—
an idea similar to joining variables connected by sychronic
arcs in DBNs. Nonetheless, it is easy to see that this assump-
tion holds directly for SYSADMIN because each stochastic
sub-action outcomea ∈ A(ci) affects onlyUp(ci, s) and no
otherUp(cj , s) whencj 6= ci. With this, we arrive at the
following axiom that will allow us to simplify our represen-
tation during first-order decision-theoretic regression:

Irr[φ(s), B] ⊃
{

∀b ∈ B.∀a ∈ A.∀c. (a = b ◦ c) ⊃ (14)

Regr [φ(s), b ◦ c] ≡ Regr [φ(s), c]
}

Backup Operators
Now that we have specified a compact representation of Na-
ture’s probability distribution over deterministic actions, we
will exploit this structure in the backup operators that arethe
building blocks of symbolic dynamic programming.

In the spirit of theBa backup operator from proposition-
ally factored MDPs, we begin with the basic definition of the
backup operatorBU(~x)[·] for stochastic joint actionU(~x) in
factored FOMDPs:

B
U(~x)[vCase(s)] = γ

M

a∈A

h

P (a|U(~x)) ⊗Regr[vCase(s), a]
i

This is the same operation as first-order decision-theoretic
regression (FODTR) (Boutilier, Reiter, & Price 2001), ex-
cept with an implicitly factored transition distribution (recall
Eq. 8). We refer the reader to (Sanner & Boutilier 2005) for
details. We note thatBU(~x)[·] is a linear operator just like
Ba[·] and thus can be distributed through the⊕ case opera-
tor. We exploit this fact later when we introduce linear-value
approximation for factored FOMDPs, just as in the case of
propositionally factored MDPs.

We illustrate this notion with an example of the backup
BU

max(vCase(s)) for the SYSADMIN problem. Suppose we
start withvCase(s) = rCase(s) from Eq. 9. Then we ap-
ply the backup to this value function for stochastic action
reboot(x) and push theRegr in as far as possible to obtain:

B
reboot(x)[vCase(s)] = γ

M

a1∈A(c1),...,an∈A(cn)

h“

n
Y

i=1

P (ai|U)
”

⊗
X

ci

Regr [Up(ci, s), a1 ◦ · · · ◦ an] : 1
Regr [¬Up(ci, s), a1 ◦ · · · ◦ an] : 0

i

Now we distribute
∏

through
∑

and reorder
∑

with
⊕

:

B
reboot(x)[vCase(s)] = γ

X

ci

h

M

a1∈A(c1),...,an∈A(cn)

“

n
Y

i=1

P (ai|U)
”

⊗
Regr [Up(ci, s), a1 ◦ · · · ◦ an] : 1
Regr [¬Up(ci, s), a1 ◦ · · · ◦ an] : 0

i

This last step is extremely important because it captures
the factored probability distribution

∏

inside a specificci
being summed over. Thus, for all SYSADMIN problems,
we now exploit the othogonality of sub-action effects from
Assumption 1 to proveIrr[Up(ci, s), A(cj)] for all i 6= j.
This gives substantial simplification via Axiom 14:

B
reboot(x)[vCase(s)] =

γ
X

ci

h

M

a∈A(ci)

P (a|U) ⊗
Regr [Up(ci, s), a] : 1
Regr [¬Up(ci, s), a] : 0

i

Now we explicitly perform the
⊕

over the sub-actions:

B
reboot(x)[vCase(s)] =

γ
X

ci

h

P (upS(ci)|U(x))) ⊗
Regr [Up(ci, s), upS(ci)] : 1
Regr [¬Up(ci, s), upS(ci)] : 0

⊕ (1 − P (upF (ci)|U(x))) ⊗
Regr [Up(ci, s), upF (ci)] : 1
Regr [¬Up(ci, s), upF (ci)] : 0

i

Recalling the results of regression from Eqs. 6 and 7, we
see that the regressed top product simplifies to 1 and the re-
gressed bottom product simplifies to 0. Thus, recalling the

definition ofP (upS (c)|reboot(x)) from Example 2, we ob-
tain the final pleasing result:

B
reboot(x)[vCase(s)] = γ

X

ci

P (upS(ci)|reboot(x))

To complete the symbolic dynamic programming (SDP)
step required for value iteration (Boutilier, Reiter, & Price
2001), we need to add the reward and apply the unary∃x
case operator followed by the unarymax case operator (see
previous operator discussion). Doing this ensures (symbol-
ically) that the maximum possible value is achieved over
all possible action instantiations, thus achievingfull ac-
tion abstraction. In the special case of SYSADMIN where
reboot(x) is the only action schema, this completes one SDP
step whenvCase0 = rCase(s):

vCase
1(s) = rCase(s) ⊕ γmax ∃xBreboot(x)[vCase

0(s)] (15)

=
X

ci

„

Up(ci, s) : 1
¬Up(ci, s) : 0

«

⊕ γmax ∃x
X

ci

P (upS(ci)|reboot(x))

At this point, we have left two open questions:
Multiple Actions: We have discussed the solution for one
actionU(~x), but in practice, there can of course be many
action schemataUi(~x). It turns out that maximizing over
multiple actions can be achieved easily via the solution to
the next question.
Maximization and Quantification: So far, we have left the
max in symbolic form although it should be clear that doing
so prevents structure from being exploited in future backups.
What we really want to do is perform an explicit maximiza-
tion that gets rid of themax operator, however the indefinite
∑

c makes this much harder than simply pushing the∃~x into
each case statement as done for non-factored SDP (Boutilier,
Reiter, & Price 2001). However, we can do this indirectly
through the axiomatization of a policy for “choosing” the
optimal~x in every situations, this removing the need for the
explicitmax ∃~x. We note that it is a straightforward exercise
to generalize the policy extraction method of (Guestrinet al.
2002) to the first-order case.

We conclude our discussion of SDP by noting that in prac-
tice, the value function representation blows up uncontrol-
lably in only a few steps of value iteration due to the com-
binatorial effects of the case operators applied during value
iteration. The difficulty obtaining exact solutions leads us
to explore approximate solution techniques that need only
performonebackup in the next section.

Approximate Linear Programming
Linear-value Approximation
In this section, we demonstrate how we can represent a
compact approximation of a value function for a factored
FOMDP defined with rewards expressed using sum aggre-
gators. We represent each first-order basis function as a sum
of k basis functions much as we did for propositionally fac-
tored MDPs. However, using the sum aggregator, we can
tie parameters acrossk classesof basis functions given by a
parameterizedbCasei(c, s) statement:

vCase(s) =
k
M

i=1

wi

X

c

bCasei(c, s) (16)

The following value function representation accounts for
the single (unary) and pair (binary) basis functions com-
monly used in the SYSADMIN literature (Guestrinet al.
2002; Schuurmans & Patrascu 2001) if the parameters are
tied for each of the unary and pair basis function classes:

vCase(s) =w1

X

c

Up(c, s) : 1
¬Up(c, s) : 0

⊕ w2

X

c

Up(c, s) ∧ ∃c2Conn(c, c2) ∧ Up(c2) : 1
¬(Up(c, s) ∧ ∃c2Conn(c, c2) ∧ Up(c2)) : 0

There are a few motivations for this value representation:
Expressivity: Our approximate value functionshould be
able to exactly represent the reward. Clearly the sum over
the first basis function above allows us to exactly represent
the reward in SYSADMIN , while if it were defined with an
∃c as opposed to a

∑

c, it would be impossible for a fixed-
weight value function toscale proportionallyto the reward
as the domain size increased.
Efficiency: The use of basis function classes and parame-
ter tying considerably reduces the complexity of the value
approximation problem by compactly representing an indef-
inite number of ground basis function instances. While cur-
rent ALP solutions scale with the number of basis functions,
we will demonstrate that our solutions scale instead with the
number of basis functionclasses.

We note that regression-based techniques of (Gretton &
Thiebaux 2004; Sanner & Boutilier 2006) directly general-
ize to factored FOMDPs.

Factored First-order ALP
Now, we combine ideas from the previously described
approximate linear programming (ALP) approach to fac-
tored MDPs (Guestrinet al. 2002; Schuurmans & Pa-
trascu 2001) with ideas from first-order ALP (FOALP) for
FOMDPs (Sanner & Boutilier 2005) to specify the following
factored FOALP (fFOALP) solution for factored FOMDPs:

Variables:wi ; ∀i ≤ k

Minimize:
∑

s

vCase(s) (17)

Subject to:0 ≥ rCase(s) ⊕BU(~x)[vCase(s)]

⊖ vCase(s) ; ∀ U(~x), s

One can verify that this LP solution is in the spirit of the
ALP LP from Eq. 4. However, we have two problems: first,
we have infinitely many constraints (i.e., a constraint for all
possible groundings of actionsU(~x) and all situationss);
second, the objective is ill-defined as it is a sum over an infi-
nite number of situationss. Drawing on ideas from (Sanner
& Boutilier 2005) and exploiting commutativity of⊕ with
∑

, we approximate the above fFOALP objective as follows:

X

s

vCase(s) =

k
M

i=1

wi ·
X

s

X

c

bCasei(c, s)

∼
k
X

i=1

wi

X

〈φj ,tj〉∈bCasei

tj

|bCasei|
(18)

Here, |bCasei| represents the number of partitions in
bCasei and for each basis function, we sum over the valuetj
of each partition〈φj , tj〉 ∈ bCasei normalized by|bCasei|.
This gives an approximation of the importance of each
weightwi in proportion to the overall value function.

Constraint Generation
Now we turn to solving for maximally violated constraints
in a constraint generation solution to the first-order LP in
Eq. 17. We assume here that each basis function takes
the form

∑

c bCasei(c, s) and the reward takes the form
∑

c rCase(c, s) where the
∑

c in each refer to the same ob-
ject domain.

0 ≥
X

c

(rCase(c, s)) ⊕

k
M

i=1

wi

X

c

B
U(~x)[bCase(s)]

!

⊖
k
M

i=1

wi

X

c

bCasei(c, s)

!

; ∀ U(~x), s

As done for propositionally factored MDPs, we have ex-
ploited linearity of the first-orderBU(~x)[·] operator to dis-
tribute it through the⊕ and

∑

. Unsurprisingly, these con-
straints exhibit the same concise factored form that we ob-
served in Eq. 5. However, the one difference is the infinite
number of constraints mentioned previously. For now, we
resolve these issues with symbolicmax and∃~x case opera-
tors, ensuring each state is assigned its highest value:

0 ≥max
s

∃~x

(

X

c

(rCase(c, s)) ⊕

k
M

i=1

wi

X

c

B
U(~x)[bCase(s)]

!

⊖
k
M

i=1

wi

X

c

bCasei(c, s)

!)

; ∀ U

At this point, the constraint expression is quite clutteredal-
though we note that it has a simple generic form that is a sum
overp parameterized case statements that we can achieve af-
ter renaming and exploiting commutativity of

∑

with ⊕:

0 ≥max
s

∃~x
X

c

ˆ

case1(c, ~x, s) ⊕ . . .⊕ casep(c, ~x, s)
˜

(19)

This constraint form is very similar to that solved in (Sanner
& Boutilier 2005) with one exception—here we have the ad-
dition of the sum aggregator which prevents us from achiev-
ing a finite representation of the constraints in all cases (re-
call that

∑

c is an indefinitely large sum). We tackle this
problem next.

Solving Indefinite Constraints
While we could conceive of trying to find a finite number of
constraints that closely approximate the form in Eq. 19, it is
not clear how to ensure a good approximation for all domain
sizes. On the other hand, grounding these constraints for a
specific domain instantiation is clearly not a good idea since
this approach would scale proportionally to the domain size.

Fortunately, there is a middle ground that has received
a lot of research attention very recently—first-order proba-
bilistic inference (FOPI) (Poole 2003; de Salvo Braz, Amir,
& Roth 2005). In this approach, rather than making ado-
main closureassumption and grounding, a much less restric-
tive domain sizeassumption is made. This allows the solu-
tion to be carried out in a lifted manner and the solutions

Given: casei =

xi xi+1

⊥ ⊥ 1
⊥ ⊤ -5
⊤ ⊥ -5
⊤ ⊤ 0

r(2) :

x1 x3

⊥ ⊥ 2
⊥ ⊤ -4
⊤ ⊥ -4
⊤ ⊤ 0

r(4) :

x1 x5

⊥ ⊥ 4
⊥ ⊤ -2
⊤ ⊥ -2
⊤ ⊤ 0

r(8) :

x1 x9

⊥ ⊥ 8
⊥ ⊤ 2
⊤ ⊥ 2
⊤ ⊤ 0

r(16) :

x1 x17

⊥ ⊥ 16
⊥ ⊤ 10
⊤ ⊥ 10
⊤ ⊤ 4

Compute: r(n) = max
x2, . . . , xn

n
X

i = 1

casei Cost Network: ...X4

case4 n−1case

nX1

case1 case2

2X X

case3

3X X 5

case5

iX ...

Figure 2:An example oflinear elimination. Given identically structured, linearly connected case statements and the goal to compute the
max over all variables except the first and last, each previous solution can be used todoublethe size of the next solution due to the symmetry
inherent in the elimination (e.g.,r(2) = maxx2

P2
i=1 casei and is structurally identical tomaxx4

P4
i=3 casei modulo variable renaming,

thus leavingx3 to be eliminated from the sum to obtainr(4)). Thus, the elimination can be done inO(log n) space and time.

to be parameterized by the domain size. Recent work (de
Salvo Braz, Amir, & Roth 2006) has explicitly examined a
“first-order” max-

∑

cost network similar to Eq. 19 that we
would need to evaluate during constraint generation.

We now introduceexistential eliminationin order to ex-
ploit a powerful transformation for rewriting an∃~x in a con-
cise

∑

c case(c) format. We handle the case for a single∃x
since it can be applied sequentially for each variable in the
∃~x case. Assumingx’s sort isC andn = |C|, we know
(∃x ∈ C) ≡ (x = c1 ∨ . . .∨ x = cn). Let us now introduce
a new relationb(c) and a functionnext(c) that defines some
total order over allc ∈ C. Intuitively, we assign the meaning
of b(c) to be “x = d for somed comingbeforec in the total
order.” Now we define the following case statement:

eCase(c, s) =
b(c) ⊃ b(next(c)) : 0
b(c) ∧ ¬b(next(c)) : −∞

(20)

Given this definition, it should be clear that
∑

c eCase(c)
will only take the value0 whenb(c) ⊃ b(next(c)) for all
c ∈ C. Why are we doing this? Because now

∑

c eCase(c)
can be used to encode the∃c constraint in amax-

∑

set-
ting by specifying thatx is “chosen” to beexactly oneof
the c ∈ C. Clearly, the transition fromb(c) = ⊥ to
b(next(c)) = ⊤ can only occur once in a maximal con-
straint containing

∑

c eCase(c). So quite simply,(x = c) ≡
¬b(c) ∧ b(next(c)) and now any occurrence of(x = c) can
be replaced with¬b(c) ∧ b(next(c)). If we perform this
replacement, we obtain the final form of the constraints ex-
actly as we need them to apply to FOPI:

0 ≥max
s

X

c

`

case1(c, s) ⊕ ..⊕ casep(c, s) ⊕ eCase(c, s)
´

(21)

To complete the generation of maximally violated con-
straints for SYSADMIN without grounding, we use two spe-
cific FOPI techniques:inversion elimination(de Salvo Braz,
Amir, & Roth 2006) and a novel technique termedlinear
elimination that we briefly cover here. Inversion elimina-
tion exploits cost networks with identical repeated subcom-
ponents by evaluating the subcomponent once and multiply-
ing the result by the number of “copies”. Alternately, lin-
ear elimination exploits the evaluation of identical, linearly
connected case statements. Due to space limitations, we can
only provide an intuitive example in Fig. 2. We make two
important notes regarding linear elimination: (1) It requires
time and space logarithmic in the length of the chain. (2)

Extracting lifted assignments can be done efficiently due to
the known symmetry in the assignments.

To apply linear elimination to the specific SYSADMIN
problems from Fig. 1(a,b,c), we note the following elements
of the fFOALP constraints in Eq. 21 all exhibit the identi-
cal, but linearly translated structure observed in Fig. 2: (1)
the eCase(c, s) from Eq. 20, (2) the basis functions from
Eq. 16, and (3) the SDP backup of the basis functions from
Eq. 15. Thus, linear elimination can be applied to perform
constraint generation in time logarithmic in the domain size.

Empirical Results
We applied ALP and fFOALP solutions to the SYSAD-
MIN problem configurations from Fig. 1 using unary basis
functions; each of these network configurations represents
a distinct class of MDP problems with its own optimal pol-
icy. Solution times and empirical performance are shown in
Fig. 3. We did not tie parameters for ALP in order to let it
exploit the properties of individual computers; had we done
so, ALP would have generated the same solution as fFOALP.

The most striking feature of the solution times is the scala-
bility of fFOALP over ALP. ALP’s time complexity isΩ(n2)
since each constraint generation iteration must evaluaten
ground constraints (i.e.,n ground actions), each of lengthn
(i.e.,n basis functions). fFOALP avoids this complexity by
using one backup to handleall possible action instantiations
at onceandexploiting the symmetric relational structure of
the constraints by using existential and linear elimination
(plus inversion elimination for the star network) to evaluate
them inO(log(n)) time. Empirically, the fFOALP solutions
to these SYSADMIN problems generate a constant number
of constraints and since LPs are polynomial-time solvable,
the complexity is thus polynomial inlog(n).

In terms of performance, as the number of computers in
the network increases, the problem becomes much more dif-
ficult, leading to a necessary degradation of even the opti-
mal policy value. Comparatively though, the implicit pa-
rameter tying of fFOALP’s basis function classes does not
hurt it considerably in comparison to ALP; certainly, the dif-
ference becomes negligible for the networks as the domain
size grows. This indicates that tying parameters across ba-
sis function classes may be a reasonable approach for large
domains. Secondly, for completely symmetric cases like the
unidirectional ring, we see that ALP and fFOALP produce

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Log Domain Size (# of Computers)

S
ol

ut
io

n
T

im
e

(m
s)

Line Configuration

ALP
fFOALP

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

Log Domain Size (# of Computers)

S
ol

ut
io

n
T

im
e

(m
s)

Uni−Ring Configuration

ALP
fFOALP

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Log Domain Size (# of Computers)

S
ol

ut
io

n
T

im
e

(m
s)

Star Configuration

ALP
fFOALP

10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Domain Size (# of Computers)A
ve

ra
ge

 N
or

m
al

iz
ed

 D
is

co
un

te
d

R
ew

ar
d

ALP
fFOALP

10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Domain Size (# of Computers)A
ve

ra
ge

 N
or

m
al

iz
ed

 D
is

co
un

te
d

R
ew

ar
d

ALP
fFOALP

10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Domain Size (# of Computers)A
ve

ra
ge

 N
or

m
al

iz
ed

 D
is

co
un

te
d

R
ew

ar
d

ALP
fFOALP

Figure 3:Factored FOALP and ALP solution times (top) and average normalized discounted reward (bottom) sampled over 200 trials of 200
steps vs. domain size for various network configurations (left:line, middle:unidirectional-ring, right:star) in the SYSADMIN problem.

exactly the same policy—albeit with fFOALP having pro-
duced this policy using much less computational effort.

Related Work and Concluding Remarks
We note that all other first-order MDP formalisms (Boutilier,
Reiter, & Price 2001; Sanner & Boutilier 2005; 2006;
Hölldobler & Skvortsova 2004; Karabaev & Skvortsova
2005; Kersting, van Otterlo, & de Raedt 2004) cannot rep-
resent factored structure in FOMDPs. Other non first-order
approaches (Fern, Yoon, & Givan 2003; Gretton & Thiebaux
2004; Guestrinet al. 2003) require sampling where in the
best case these approaches could never achieve sub-linear
complexity in the sampled domain size.

In summary, we have contributed the sum and product ag-
gregator language extension for the specification of factored
FOMDPs that were previously impossible to represent in a
domain-independent manner. And we have generalized so-
lution techniques to exploit novel definitions of first-order
independence and sum/product aggregator structure, includ-
ing the introduction of novel FOPI techniques for existen-
tial and linear elimination. We have shown empirically that
we can solve the SYSADMIN factored FOMDPs in time and
space that scales polynomially in the logarithm of the do-
main size—results that wereimpossibleto obtain for previ-
ous techniques that relied on grounding.

Invariably, the question arises as to the practical signifi-
cance of an efficient solution to SYSADMIN . While the for-
malization discussed here is sufficient for the general specifi-
cation of FOMDPs with factored transitions and additive re-
wards, it remains an open question as to what structures lend
themselves to efficient solution methods. While this ques-
tion is beyond the scope of the paper, our advances in solv-
ing SYSADMIN hold out the promise that future research on
these and related methods may permit the efficient solution
of a vast range of factored FOMDPs.

References
Bellman, R. E. 1957.Dynamic Programming. Princeton, NJ:
Princeton University Press.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
JAIR11:1–94.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order MDPs. InIJCAI-01.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. InIJCAI-05.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2006. Mpe and partial
inversion in lifted probabilistic variable elimination. InAAAI-06.
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate policy
iteration with a policy language bias. InNIPS-03.
Gretton, C., and Thiebaux, S. 2004. Exploiting first-order regres-
sion in inductive policy selection. InUAI-04.
Guestrin, C.; Koller, D.; Parr, R.; and Venktaraman, S. 2002.
Efficient solution methods for factored MDPs.JAIR19:399–468.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in RMDPs. InIJCAI-03.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic planning using decision diagrams. InUAI-99.
Hölldobler, S., and Skvortsova, O. 2004. A logic-based approach
to dynamic programming. InIn AAAI-2004 Workshop on Learn-
ing and Planning in Markov Processes.
Karabaev, E., and Skvortsova, O. 2005. A heuristic search algo-
rithm for solving first-order MDPs. InUAI-2005, 292–299.
Kersting, K.; van Otterlo, M.; and de Raedt, L. 2004. Bellman
goes relational. InICML-04. ACM Press.
Poole, D. 2003. First-order probabilistic inference. InIJCAI-03.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Sanner, S., and Boutilier, C. 2005. Approximate linear program-
ming for first-order MDPs. InUAI-2005.
Sanner, S., and Boutilier, C. 2006. Practical linear-value approx-
imation techniques for first-order MDPs. InUAI-2006.
Schuurmans, D., and Patrascu, R. 2001. Direct value approxima-
tion for factored MDPs. InNIPS-2001, 1579–1586.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD: Ap-
proximate policy construction using decision diagrams. InNIPS-
2000, 1089–1095.

