
Regret-based Optimal Recommendation Sets in
Conversational Recommender Systems

Paolo Viappiani
Department of Computer Science

University of Toronto
Toronto, ON, Canada

paolo@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, Canada

cebly@cs.toronto.edu

ABSTRACT

Current conversational recommender systems are unable to offer
guarantees on the quality of their recommendations due to a lack of
principled user utility models. We develop an approach to recom-
mender systems that incorporates an explicit utility model into the
recommendation process in a decision-theoretically sound fashion.
The system maintains explicit constraints on user utility based on
preferences revealed by the user’s actions. We investigate a new
decision criterion, setwise minimax regret (SMR), for constructing
optimal recommendation sets: we develop algorithms for comput-
ing SMR, and prove that SMR determines choice sets for queries
that are myopically optimal. This provides a natural basis for gener-
ating compound critiques in conversational recommender systems.
Our simulation results suggest that this utility-theoretically sound
approach to user modeling allows much more effective navigation
of a product space than traditional approaches based on, for exam-
ple, heuristic utility models and product similarity measures.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Miscellaneous; H.5.2 [User Inter-

faces]: interaction styles

General Terms

Algorithms, Human Factors

Keywords

recommender systems, preference elicitation, critiquing, minimax
regret

1. INTRODUCTION
Recommender systems can help users navigate product spaces

and make decisions involving very large sets of alternatives. Con-
versational recommender systems rely on mixed-initiative interac-
tions, with both the user and the system taking an active role in the
navigation process. User feedback can be entered in many forms,
for instance, as direct answers to queries about preferred products,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 23–25, 2009, New York, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5/09/10 ...$10.00.

or critique of the options displayed by the system (e.g., by choosing
one of several options, or altering the features of an option).

Many conversational systems use some notion of the top-k items
based on an estimate of a user’s preferences: the k (estimated) high-
est rated items are presented either as the current recommendation,
or offered to the user for critique [6, 22]. However, such systems
often offer very little “choice” to the user, since these products are
likely to be similar, and potentially far from optimal if preference
estimates are crude. To overcome this, some recommender systems
employ some form of diversity to select a product set for presenta-
tion [14, 17]. This has two advantages, due to its coverage of a more
diverse range of preferences. First, it increases the odds of offering
a desirable option when a user is ready to terminate the navigation
process; and second, it admits greater value of information—by
distinguishing more diverse preference types—during critiquing.

While diversity-oriented recommender systems are generally mo-
tivated by trying to overcome imprecision in preference assess-
ment, most such systems either fail to maintain an explicit utility
model, or do not incorporate this in their judgement of diversity. In
contrast, following [15, 24, 4] we argue that explicit consideration
of the system’s beliefs about user preferences is vital in determin-
ing the most appropriate (diverse) recommendations. Specifically,
in this work we develop recommendation techniques that exploit
preference-based diversity: the set of recommended products will
be highly preferred choices for a wide range of user preferences
(consistent with preferences revealed by the user so far). When
a user must make a final choice from the set of presented prod-
ucts, this ensures that a good choice is available, no matter what
the user’s actual preferences are (again, consistent with what has
been revealed). And when the options are presented in the form of
a query, such sets tend to carry very high value of information.

In this paper, we adopt the minimax regret decision criterion [3,
20] for product recommendation under utility uncertainty and adapt
it to the case of set recommendations. Minimax regret has proven to
be an efficient, robust decision criterion and an effective means of
preference elicitation. But, to date, it has only been applied to sin-
gleton recommendations. We extend the criterion to set recommen-
dations, and develop computational procedures for its implementa-
tion. We also investigate its properties w.r.t. elicitation, proving that
minimax optimal recommendation sets provide us with myopically
optimal set-based comparison queries; i.e., if we view the user’s
choice as the answer to the query “Which of these products do you
prefer?” the minimax optimal recommendation set is the set-based
comparison query that refines utility function uncertainty most (i.e.,
reduces minimax regret the most).

Our regret-based approach is particularly suited to critiquing sys-
tems. User-controlled exploration in critiquing systems does not
offer guarantees of either sufficient or efficient exploration of the

product space—a user may cycle through a set of similar products
or converge on a far-from-optimal product [12]. Our regret-based
recommendation approach provides just such guarantees on deci-
sion quality. Furthermore, the fact that the same set of alternatives
comprises the optimal (final) recommendation and the (myopically)
optimal set-comparison query means that we can leave termination
decisions in the hands of the user without changing the interface, or
relying distinct decision/querying phases. Our simulations demon-
strate that regret-based critiquing can lead to much more efficient
exploration of the product space and better recommendations com-
pared to existing critiquing systems.

2. BACKGROUND
We begin by describing our basic model and briefly reviewing

approaches to preference assessment based on critiquing and ex-
plicit preference elicitation.

2.1 Underlying Decision Problem
We assume a recommendation system is charged with the task of

recommending an option to a user in some multiattribute space, for
instance, the space the possible product configurations from some
domain (e.g., computers, cars, apartment rental, etc.). Products are
characterized by a finite set of attributes X = {X1, ...Xn}, each
with finite domains Dom(Xi). Let X ⊆ Dom(X) denote the set
of feasible configurations. For instance, attributes may correspond
to the features of various apartments, such as size, neighborhood,
distance from public transportation, etc., with X defined either by
constraints on attribute combinations (e.g., constraints on computer
components that can be put together), or by an explicit database of
feasible configurations (e.g., a rental database).

The user has a utility function u : Dom(X) → R. In what
follows we will assume either a linear or additive utility function
depending on the nature of the attributes [10]. In both additive and
linear models, u can be decomposed as follows:

u(x) =
X

i

fi(xi) =
X

i

λivi(xi)

where each local utility function fi assigns a value to each element
of Dom(Xi). In classical utility elicitation, these values can be de-
termined by assessing local value functions vi over Dom(Xi) that
are normalized on the interval [0, 1], and importance weights λi

(
P

i λi = 1) for each attribute [9, 10]. This sets fi(xi) = λivi(xi)
and ensures that global utility is normalized on the interval [0, 1].
A simple additive model in the rental domain might be:

u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd)

When Dom(Xi) is drawn from some real-valued set, we often as-
sume that vi (hence fi) is linear in Xi.

1

Since a user’s utility function is not generally known, we write
u(x; w) to emphasize the dependence of u on user-specific param-
eters. In the additive case, the values fi(xi) over ∪i{Dom(Xi)}
serve as a sufficient parameterization of u (for linear attributes, a
more succinct representation is possible). The optimal product for
the user with utility parameters w is that x ∈ X that maximizes
u(x; w). Our goal is to recommend, or help the user find, an opti-
mal product, or one whose utility is near optimal.

1Our presentation relies heavily on the additive assumption, though
our approach is easily generalized to more general models such as
GAI [9, 5]. The assumption of linearity is simply a convenience;
nothing critical depends on it.

2.2 Critiquing-based Recommender Systems
Example critiquing is a common and effective technique for prod-

uct recommendation [6, 16, 17, 24]. In critiquing systems, a user is
presented with one or more product options and invited to critique

the displayed options, suggesting ways in which they could be im-
proved. Interactions based on critiquing are especially helpful for
users who are not familiar with the items available or their charac-
teristics: the process of critiquing assists users in both exploring the
space of possible options, and understanding (or even constructing
[21]) their own preferences.

A great variety of critiquing methods have been proposed, vary-
ing in several important dimensions. In many systems the user pro-
ceeds by tweaking the current example product (e.g., “I like this
product, but find me something cheaper;” or “This restaurant is
OK, but find something with French cuisine”) to make it conform
more accurately to her preferences. Such systems often work by
moving to a product that is similar to the current product, but re-
flects the new tweak (user preference). Examples of such systems
include FindMe [6] and dynamic critiquing [16]; incremental cri-
tiquing [17] extends this framework with a preference model con-
sisting of the critiques picked earlier in the process.

Unlike the preference elicitation techniques discussed below, most
systems do not maintain an explicit user utility model. Among
those systems that do (e.g., a linear utility model is used in [18]),
the model is updated heuristically in response to critiques, without
adopting an explicit semantics for the critique.

Other systems focus instead on user-generated critiques (the user
is free to suggest alterations of the current product) with an explicit
preference model [22, 24]. In FlatFinder [24] product sugges-
tions are produced based on an analysis of users’ current preference
model and their potential hidden preferences (a form of preference-
based diversity), stimulating the process of preference-awareness.

In this paper we choose to focus on system-generated critiques,
motivated by the fact that the existence of an explicit utility model
with a sound semantics gives the system the opportunity to suggest
the most appropriate and informative critiques.

2.3 Regret-based Preference Elicitation
Much work in AI, decision analysis and operations research has

been devoted to effective elicitation of preferences [19, 3, 7, 2, 23].
Adaptive preference elicitation generally differs from classical util-
ity assessment in the recognition is that good, even optimal, deci-
sions can often be recommended with very sparse knowledge of a
user’s utility function [3]; and that the value of information associ-
ated with specific elicitation actions (e.g., queries)—in terms of its
impact on decision quality—is often not worth the cost of obtaining
it [7, 2]. This means we must often take decisions in the face of an
incompletely specified utility function.

In this work, we adopt the notion of minimax regret [20] as our
decision criterion for robust decision making under utility function
uncertainty. Minimax regret has been advocated as a means for
robust optimization in the presence of data uncertainty [11], and has
more recently been used for decision making with utility function
(or objective function) uncertainty in optimization [19, 3]. Assume
that through some interaction with a user, and possibly using some
prior knowledge, we determine that her utility function w lies in
some set W . (The form of W will become clearer when we discuss
elicitation below). Following [3] we define:

Definition 1 Given a set of feasible utility functions W , define the
pairwise max regret MR(x,y; W) of x,y ∈ X; the max regret
MR(x;W) of x ∈ X; the minimax regret MMR(W) of W ; and

the minimax optimal configuration x∗
W as follows:

MR(x,y; W) = max
w∈W

u(y;w) − u(x; w) (1)

MR(x; W) = max
y∈X

MR(x, y; W) (2)

MMR(W) = min
x∈X

MR(x, W) (3)

x∗
W = arg min

x∈X
MR(x, W) (4)

Intuitively, MR(x; W) is the worst-case loss associated with rec-
ommending configuration x; i.e., by assuming an adversary will
choose the user’s utility function w from W to maximize the dif-
ference in utility between the optimal configuration (under w) and
x. The minimax optimal configuration x∗

W minimizes this poten-
tial loss. MR(x, W) bounds the loss associated with x, and is zero
iff x is optimal for all w ∈ W . Any choice that is not minimax
optimal has strictly greater loss than x∗

W for some w ∈ W .
Minimax regret relies on relatively simple prior information in

the form of bounds or constraints on user preferences (rather than
probabilistic priors); and exact computation is much more tractable
(in contrast with probabilistic models of utility that generally re-
quire reasoning with densities that have no closed form [2, 7]). In
configuration problems, optimization over product space X is of-
ten formulated as a CSP or mixed integer program (MIP). In such
domains, minimax regret computation can be formulated as a MIP,
and solved practically for large problems using techniques such as
Bender’s decomposition and constraint generation [3, 5].

Minimax regret has proven to be an effective tool in utility elici-
tation in a variety of domains. A decision support or recommender
system can query (or otherwise interact with) a user, determin-
ing additional constraints on the utility set W until minimax re-
gret reaches some acceptable level (possibly optimality), elicitation
costs become too high, or some other termination criterion is met.

A natural meta-heuristic for elicitation is the current solution

strategy (CSS), first described in [3]. The idea is as follows: a
solution to the problem MMR(W) generates a minimax-optimal
product x∗

W , an adversarial product xa and utility function w that
maximizes the regret of x∗

W . CSS generates a query (depending
on the space of queries allowed) that involves utility parameters in
either x∗

W or xa (or both). This is based on the insight that should
a query provide information about no parameter that impacts the
utility of either x∗

W or xa, minimax regret cannot change. As one
example, consider comparison queries, in which a user is asked to
compare one product x to another y. A response that x is preferred
imposes a linear constraint on W :

P

i
fi(xi) >

P

i
fi(yi). In

systems in which comparison queries are used, the CSS proposes a
comparison query between x∗

W and xa.

3. OPTIMAL RECOMMENDATION SETS
Apart from allowing a users to have some control over the nav-

igation process, critiquing systems provide the user the ability to
explore their preferences effectively by simultaneously comparing
multiple products at once. We want to blend this advantage with
the benefits of explicit elicitation methodologies by constructing
optimal recommendation sets. Unlike standard comparison queries
(where a user is asked whether one option is better than another),
our set queries will present a set of alternatives. In contrast to tradi-
tional critiquing systems, we associate a precise semantics with the
user’s choice from such a set: it is assumed the chosen product has
utility at least as great as the unselected elements of the set. This is
used to then refine our model of user utility.

We maintain a set W of feasible utility functions, and at each
step, present a set of recommendations Z (these will be jointly op-
timal in a sense defined below). The user selects a single product as

most preferred fromZ, and W is refined to reflect this. The process
repeats until the user is satisfied with her choice, or minimax regret
reaches some target. This is appealing for several reasons. First, the
current set recommendation Z is always optimal; i.e., it minimizes
setwise max regret given our beliefs about user utility. Second, max
regret is a well-defined progress metric that lets the user know the
value of further exploration of product space. Finally, the user se-
lection from Z is maximally informative (as defined below). This
last point is critical: it means that the best “query” set and the best
“recommendation” set are identical.

Set recommendations have been addressed previously: in work
that maximizes the joint diversity of a set [14]; or that optimizes set
recommendations using expected maximum utility of the options
in the set w.r.t. a probabilistic prior [15, 4]. These latter models
focus implicitly on preference-based diversity: the set of recom-
mendations attempts to span the (probabilistic) range of possible
user utility functions to the greatest extent possible. Our setwise
regret model does the same thing without requiring a density over
utility functions, and the concomitant data and computational costs.
Our approach can thus be viewed a generating dynamic, compound
critiques using preference-based diversity. Set-based queries are
studied extensively in conjoint analysis. Such queries are usually
used to identify aggregate consumer preferences. But in some work
adaptive elicitation of individual preferences is considered, using
an explicit utility model, and volumetric methods for generating a
query (or choice) set [23].

3.1 Setwise Minimax Regret
Suppose we have a slate of k options to present to the user and

want to quantify the possible loss associated with restricting the
user’s decision to options in that slate. Intuitively, the user may se-
lect any of the k options as being “optimal.” An adversary wanting
to maximize regret should do so assuming the any such choice is
possible—unlike max regret, we allow the user to select any from
a set of k options. Formally, we choose the set of k options first,
but delay the specific choice from the slate until after the adversary
has chosen a utility function w. The regret of a set is the difference
between the utility of the best configuration under w and the utility
of the best option w.r.t. w in the slate. (To keep notation to a min-
imum, we assume Z is restricted to suitable subsets of X (e.g., of
cardinality k) without making this explicit.)

Definition 2 Let W be a feasible utility set, Z ⊆ X. Define:

SMR(Z, W) = max
x′∈X

max
w∈W

min
x∈Z

u(x′;w) − u(x;w)

SMR-Adv(Z, W) = arg max
x′∈X

max
w∈W

min
x∈Z

u(x′; w) − u(x; w)

SMMR(W) = min
Z⊆X

max
x′∈X

max
w∈W

min
x∈Z

u(x′;w) − u(x; w)

Z∗
W = min

Z⊆X
max
x′∈X

max
w∈W

min
x∈Z

u(x′;w) − u(x; w)

The setwise max regret (SMR) of a set Z of k options reflects the
intuitions above, and SMR-Adv(Z, W) is the adversarial alterna-
tive that maximizes regret. Setwise minimax regret is SMR of the
minimax optimal set Z∗

W , i.e., the set that minimizes SMR(Z, W).
Setwise max regret has some intuitive properties. First, adding

new items to a recommendation set cannot increase SMR:

Observation 1 SMR(A ∪ B, W) ≤ SMR(A, W).

Incorporating options that are known to be dominated given W

does not change setwise max regret:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utility parameter w1

u
ti
lit

y

o1

o2

o3

o4

o5

Figure 1: Utility as a function of weight w1.

Observation 2 If u(a, w) > u(b, w) for some a ∈ Z and all

w ∈ W , then SMR(Z ∪ {b}, W) = SMR(Z, W).

Observation 3 Setwise max regret can be rewritten:

SMR(Z, W) = max
y∈X

max
w∈W

[u(y; w) − max
x∈Z

u(x; w)] (5)

This last observation captures the intuition that, given an utility
function w, the option (among those in Z) that determines setwise
max regret is that with highest utility with respect to w. In fact, it is
useful to explicitly partition utility space w.r.t. options in Z; define:

W [Z → xi] = {w ∈ W : u(xi;w) > u(xj ;w) ∀j 6= i, 1 ≤ j ≤ k}

(i.e., the region of w where xi has greater utility than any other
option in Z). The regions W [Z → xi], xi ∈ Z, partition W

(we ignore of ties over full-dimensional subsets of W , which are
easily dealt with, but complicate the presentation). We call this
the Z-partition of W . An important observation we use later is
that SMR(Z, W) can be determined using the maximum of the
(individual) max-regrets over the Z-partition:

Observation 4 Let Z = {x1, . . . ,xk}. Then

SMR(Z, W) = max{MR(xi, W [Z → xi]) : i ≤ k},

We illustrate this notion with a simple example, involving five
options o1, . . . , o5 with two features x1 and x2 as follows:

o1 o2 o3 o4 o5

x1 0.35 0.9 0. 1 0.5
x2 0.68 0.2 0.75 0 0.3

We assume linear user utility u(x; w1) = w1x1 + (1 − w1)x2,
with a single (unknown) parameter w1 (we assume weight w2 =
1 − w1). Utility of each option, as a function of w1 is shown in
Fig. 1; we see each option except o5 is optimal for some value
of w1. However, o5 is minimax optimal: its max regret of 0.5—
attained with adversarial choice o4 at w1 = 1—is less than that of
any other option. This can be seen using a geometric interpretation
of max regret: o5’s utility is a linear function of w1 (in general, de-
termining a hyperplane in w-space); and its max regret is its max-
imum distance from the piecewise linear, convex function of w1

determined by the upper surface in Fig. 1 (i.e., maxoi u(oi; w1)).
This distance is less than that of any other option (e.g., the max
regret of o2 is 0.55, occurring at w1 = 0 with adversarial choice
o3).

Sets of options have a similar graphical interpretation: instead of
considering a single hyperplane, we consider the upper surface dic-
tated by the recommendation set (i.e., the piecewise-linear, convex
max) and its distance from the full upper surface. For instance, con-
sider the recommendation of k = 2 options, {o1, o4}. By Obs. 4
we partition utility space where the two options have identical util-
ity, w1 = 0.51, and use o1 for w1 < 0.51 and o4 for w1 > 0.51.
The setwise max regret is the max difference between the max of
these two functions/options and the upper surface (i.e., 0.07 at-
tained at w1 = 0). This set is in fact setwise minimax optimal
among pairs, though other pairs, e.g., {o1, o2} have relatively low
SMR. Note that any pair containing o5, the best singleton recom-
mendation, will have high (poor) SMR.

3.2 Optimal Myopic Elicitation
In critiquing systems, set recommendations are used not just to

make a recommendations to the user, but also to give the user the
chance to critique the proposed options and continue exploration
of the product space. Our setwise minimax regret criterion can be
used directly for this purpose, implementing a form of preference-
based diversity. This stands in contrast to “product diversity” typ-
ically considered in critiquing systems. And unlike recent work
in polyhedral conjoint analysis [23], which emphasizes volume re-
duction of the utility polytope W , our regret-based criterion is sen-
sitive to the range of feasible products and does not reduce utility
uncertainty for its own sake.

Any set Z can be interpreted as a query (or system-generated dy-
namic compound critique): we simply allow the user to state which
of the k elements xi ∈ Z she prefers. We refer to Z interchange-
ably as a query or a choice set. The choice of some xi ∈ Z refines
the set of feasible utility functions W by imposing the k − 1 linear
constraints u(xi; w) > u(xj ; w), j 6= i.

When treating Z as a choice set (as opposed to a recommen-
dation set), we are not interested in its max regret, but rather in
how much a query response will reduce minimax regret. In our
distribution-free setting, the most appropriate measure is myopic

worst case regret (WR), a measure of the value of information of a
query. Generalizing the pairwise measure of [3], we define:

Definition 3 The worst-case regret (WR) of Z = {x1, . . . ,xk} is

WR(Z, W) = max[MMR(W [Z → x1]), . . . ,MMR(W [Z → xk])]

An optimal choice set OptQuery(W) is any Z that minimizes
worst case regret MinWR(W):

MinWR(W) = min
Z⊆X

WR(Z, W)

Intuitively, each possible response xi to the query Z gives rise to
updated beliefs about the user’s utility function. We use the worst-
case response to measure the quality of the query (i.e., the response
that leads to the updated W with greatest remaining minimax re-
gret). The optimal query is that which minimizes this value.

It is not hard to show that the worst-case regret of choice set Z
is never greater than its setwise max regret:

Observation 5 WR(Z, W) ≤ SMR(Z, W).

In the following we make use of a transformation that modifies a
given recommendation set Z in such a way that SMR cannot in-
crease, and usually decreases. This transformation will be used in
two ways: to prove the optimality of SMR for choice set genera-
tion; and directly as a computationally viable heuristic strategy for
choice set generation. Define MMR-transformation T to be a map-
ping that refines a recommendation set Z as follows: (a) we first

construct the Z partition of W ; (b) we then compute the single rec-
ommendation that has minimax regret in each element (region of
utility space) in the partition; and (c) let T (Z) be the new recom-
mendation set consisting of these new recommendations.

Definition 4 Let Z = {x1, . . . ,xk}. DefineMMR-transformation

T (Z) = {x∗
W [Z→x1], . . .x

∗
W [Z→xk]}

The optimality of minimax setwise recommendations, when used
as queries, is based on the following lemma:

Lemma 1 SMR(T (Z),W) ≤ WR(Z, W)

Proof Let Z = {x1, . . . ,xk} and T (Z) = {x′
1, . . . ,x′

k
}, where x′

i =
x∗

W [Z→xi]
. Define W [Z → xi, T (Z) → x′

j] = W [Z → xi] ∩

W [T (Z) → xj] to be the subset of W where xi is preferred in choice
set Z and xj in choice set T (Z). The two expressions can be compactly
represented as:

WR(Z, W) = max
i,j

[MR(x′
i, W [Z → xi, T (Z) → x′

j])] (6)

SMR(T (Z), W) = max
i,j

[MR(x′
j , W [Z → xi, T (Z) → x′

j])] (7)

We now compare the two expressions componentwise. Consider the utility

space W [Z → xi, T (Z) → x′
j]: if i = j then the two MR components

are the same. If i 6= j, consider any w ∈ W [Z → xi, T (Z) → x′
j].

Since w ∈ W [T (Z) → x′
j], we must have u(x′

j ;w) > u(x′
i;w).

Therefore MR(x′
j , W [Z → xi, T (Z) → x′

j]) ≤ MR(x′
i, W [Z →

xi, T (Z) → x′
j]). In the expression of SMR(T (Z)) (Eq. 7), each ele-

ment is no greater than its correspondent in the WR(Z) expression (Eq. 6).

Thus SMR(T (Z), W) ≤ WR(Z, W).

From Lemma 1 and Observation 5, it follows that T cannot in-
crease setwise max regret: SMR(T (Z),W) ≤ SMR(Z, W).

Theorem 1 Let Z∗
W be a minimax optimal recommendation set.

ThenZ∗
W is an optimal choice set: WR(Z∗

W , W) = MinWR(W).

Proof Suppose Z∗
W

is not an optimal choice set, i.e., there is some Z′ such

that WR(Z′, W) < WR(Z∗
W

, W). If we apply transformation T to Z′

we obtain a set T (Z′), and by the results above we have: SMR(T (Z′, W)) ≤

WR(Z′, W) < WR(Z∗, W) ≤ SMR(Z∗
W , W). This contradicts the

(setwise) minimax optimality of Z∗
W .

3.3 Alternative strategies
We now describe other set recommendation and query strategies

that exploit minimax regret. Unlike the minimax optimal set, these
strategies are heuristic and do not generally produce optimal sets.
However, they are computationally less demanding than computing
the SMR-optimal option. (We discuss algorithms for computing
SMR in the next section.) We use the following notion: define an
adversarial choice forW and x to be the witness product that maxi-
mizes the regret of x: Adv(x, W) = arg maxx′∈X MR(x,x′, W).

One simple strategy is the current solution strategy (CSS) for
pairwise comparisons [3]. CSS asks a user to compare two prod-
ucts: the minimax optimal product x∗

W and its adversarial coun-
terpart Adv(x∗

W , W). A pairwise comparison can be viewed as
a choice set of size two (thus CSS is restricted to generating sets
of size two). User selection of one of these products directly con-
strains the utility parameters that impact minimax regret.

The chain of adversaries strategy (CAS) generalizes CSS to pro-
duce a choice set with k options by repeatedly selecting an ad-
versarial choice relative to the last option added to the set. More

precisely, CAS produces choice set {x1, . . . ,xk}, where:


x1 = x∗
W

xi = Adv(xi−1, W); 2 ≤ i ≤ k

CAS requires one minimax optimization to find x1 (which simulta-
neously determines witness x2). After that, only k − 2 max regret
computations are needed. If k = 2, CAS reduces to CSS.

The setwise chain of adversaries strategy (SCAS) selects k op-
tions by repeatedly maximizing setwise max regret given the cur-
rent set. It can be viewed as a greedy, incremental approximation of
the (setwise) minimax optimal set. As with setwise max regret, it
explicitly maximizes diversity from the perspective of utility space.

Formally, SCAS determines a set {x1, . . . ,xk} where:


x1 = x∗
W

xi = SMR-Adv({x1, ..,xi−1}, W) 2 ≤ i ≤ k

Recall that SMR-Adv(Z, W) is the adversarial option w.r.t. set-
wise max regret. SCAS can be seen as a generalization of CAS
(and hence CSS) to sets of any size. Computing SMR-Adv(Z, W),
which determines a single product at a time, is typically much faster
than the joint optimization required by full computation of setwise
minimax regret (see next section).

Finally, the MMR-transformation T introduced above gives rise
to a natural heuristic search strategy for construction of good rec-
ommendation sets. Given an initial set Z, we repeatedly apply T
until a fixed point (w.r.t. setwise max regret) is found:

• Repeat Z := T (Z)
• Until SMR(T (Z),W) = SMR(Z, W)

We initialize this algorithm HCT (hillclimbing T) with the slate
Z given by CAS. Empirically this seems to produce the most promis-
ing sets.2 The HCT algorithm can be terminated early.

4. COMPUTING SETWISE REGRET
We now discuss how to compute regret-based recommendations,

distinguishing configuration problems and database problems.

Configuration problems In configuration problems, options are
defined by a set of variables and configuration constraints (i.e., as
solutions to a constraint satisfaction problem). In such domains,
minimax regret computation for a single recommendation can be
formulated as a MIP, and solved practically for large problems us-
ing techniques such as Bender’s decomposition and constraint gen-
eration. We refer to [3, 5] for more details. Our MIP formulations
for setwise minimax regret below draw heavily on these techniques,
but require important modifications.

Setwise minimax regret for configuration problems can be for-
mulated as the following MIP:

min δ

s.t. M ≥
X

1≤j≤k

R
j
w ∀w ∈ W (8)

R
j
w ≥w(x∗

w−X
j) + (Ij

w−1)M ∀j ≤ k, w ∈ W (9)
X

1≤j≤k

I
j
w = 1 ∀w ∈ W (10)

I
j
w ∈ {0, 1}

V
j

w ≥ 0 ∀j ∈ [1, k], w ∈ W

Intuitively, this MIP chooses k products xj , j ≤ k, designated by
variables Xj (where each Xj is a variable vector over the n prod-
uct attributes). The objective minimizes δ subject to constraint (8),

2In the case no query can guarantee regret reduction for each re-
sponse, i.e., WR(Z∗

W) = MMR(W), T degenerates to a single-
ton with only the minimax regret option. In such cases HCT returns
the initial set produced by CAS.

ensuring δ is no less than the setwise regret of the selected options
w.r.t. any w ∈ W (i.e., no less than setwise max regret).3

Constraint (8) need not be expressed for each (of the continu-
ously many) w ∈ W . Since setwise regret is maximized at some
vertex of W , we can post constraints only for these vertices (i.e.,
w ∈ Vert(W)). (We also exploit the fact, in Constraint (9), that
regret at any w is maximized by the adversary selecting the optimal
product x∗

w.) However, this MIP still requires (potentially) expo-
nentially many constraints, one for each element of Vert(W). We
can make computation much more effective by applying constraint
generation, observing that very few of these constraints will be ac-
tive. Our procedure works as follows: we solve a relaxed version
of the MIP above—the master problem—using only the constraints
corresponding to a small subset Gen ⊂ Vert(W) of the con-
straints in the MIP above. We then test whether any unexpressed
constraints are violated at the current solution. This involves com-
puting the true SMR of the recommendation set generated by the
master problem. If SMR is of the set is greater than δ, we know that
a constraint has been violated. Computation of SMR produces the
element w ∈ Vert(W) and optimal product x∗

w that corresponds
to the maximally violated constraint in the current master solution.
We add this maximally violated constraint to Gen , tightening the
MIP relaxation, and repeat; if no violated constraint exists, we are
assured that the current solution minimizes SMR.4

The setwise max regret subproblem used to generate constraints
is itself easily encoded as a MIP (similar to [3]), which can be
solved directly. Given a set Z, it computes SMR(Z, W) as well
as SMR-Adv(Z, W). Note that this procedure is also used to con-
struct recommendation/choice sets in the SCAS heuristic above.

Database problems Database problems, where options are enu-
merated in a product database, do not lend themselves to a di-
rect constraint optimization when forming (regret-based) set rec-
ommendations since no explicit variable constraints can be encoded
in a MIP, CSP or other formalism. Instead, we adopt a computa-
tional model that repeatedly determines the pairwise regret between
a candidate recommendation set and an adversarial option in order
to identify the option with minimax regret. This can be seen as
a game between the recommender and an adversary. The com-
putation of single recommendations is greatly facilitated in prac-
tice by formulating the optimization as a minimax search and using
standard pruning techniques. However, computing optimal recom-
mendation sets has complexity O(nk) (for a DB of size n), thus
becoming increasingly impractical the size of the desired set in-
creases. The hill-climbing method HCT, SCAS, and CSS are best
suited to this case.

5. EMPIRICAL EVALUATION
We evaluate the effectiveness of our regret-based approaches for

generating recommendation sets in simulation. We also compare
them to several state of the art critiquing algorithms.

3Here Rj
w is the actual regret of jth option Xj w.r.t. w when the

indicator Ij
w is activated (indicating that the jth option is the one

with maximal utility in the set). For any w, exactly one Ij
w is set to

1. Hence minimization of δ ensures Ij
w = 1 for the xj with least

actual regret. Constraint (9) ensures Rj
w has its intended meaning;

here M is any upper bound on max regret.
4Note that the adding a new constraint requires the introduction of
new variables to the master problem. Every time we add a new w
to Gen , k new binary variables I and V are necessary.

5.1 Critiquing Algorithms
We first review three state-of-the-art approaches to compound

critiques. The dynamic critiquing (DC)model [16] uses a similarity
metric to retrieve the current product and the APriori datamining al-
gorithm to propose alternatives. Each compound critique describes
a set of products in terms of the features they have in common. For
example, in the computer domain, one compound critique might be
“Faster CPU and Larger Disk.” When the current product is shown,
such patterns are converted into a set of suggested compound cri-
tiques, each corresponding to a product that is, among products
satisfying the pattern, most similar to the current one. In our ex-
periments, we use Apriori [1] with a support threshold of 0.3, and
select compound critiques using the low-support strategy [16].

Incremental critiquing (IC-wsim) [17] incorporates a user pref-
erence model. While the APriori algorithm (as above) is used to
discover patterns, these patterns are converted to suggestions us-
ing a quality metric that values both the score given to the product
by the preference model and its similarity to the current product.
Among all products that satisfy the pattern, the system selects the
x that maximizes score(x) · Similarity(x,y), where y is the pre-
vious suggestion, and score is measures the fraction of previously
stated user critiques that are satisfied by the product.5

Incremental Critiquing: MAUT (IC-maut) [18] is a version of
incremental critiquing that uses a multiattribute utility (MAUT)
model to make recommendations and generate suggestions. In this
approach, a simple additive utility model u is generated, initially
giving equal weight to all attributes; each time an attribute is cri-
tiqued, its weight is modified by a multiplicative constant α (we
use α = 2 in our experiments, following [18]). The algorithm as-
sumes value functions of fixed form, parameterized by the current
option. Suggestions are generated by optimizing products w.r.t. the
estimated utility model, and the k best products are presented to the
user. A limitation of this approach is its reliance on a single util-
ity model (as opposed to reasoning with the space of possible user
utilities); furthermore, these suggestions are unlikely to be diverse
or informative enough to generate useful distinctions.

5.2 Empirical Results
We compare our regret-based strategies and the critiquing meth-

ods above by showing the reduction of max regret of the current
recommendation as a function of the number of recommendation
cycles (critiquing opportunities) presented to the user, Since our
emphasis on recommendations that are also informative for further
elicitation—since the interaction can be terminated by the user at
any stage—we are interested in the “anytime” profile of suggestion
quality as well as its ultimate convergence. While our methods are
tuned to reducing max regret, one might argue that true regret, i.e.,
the difference between the utility of the recommended product and
the optimal product under the user’s actual utility function, is the
most critical measure. This is informative since minimax regret
provides only an upper bound on this loss. Of course, in practice,
we do not have access to the true utility function, but we do in sim-
ulation. So we present results for true regret as well.

In our experiments, we use two different datasets. The first is a
database of 187 rental accommodation options (drawn from a real
student rental database). Each option is characterized by 10 at-
tributes, such as price, size, distance to university, etc. Attribute
domains are either numeric or discrete with domains of size 2–6.
The second, larger dataset is a synthetic dataset of 5000 rental units
generated by sampling a generative model (Bayesian network) over

5When a a suggestion is selected, the system implicitly assumes
that the user is critiquing the attributes that differ between the sug-
gestion and the current product.

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

5000

6000

recommendation cycles

m
in

im
a

x
 r

e
g

re
t

($
)

SMMR
HCT
CSS

Figure 2: Max regret reduction (k = 2, db = 187, 50 runs).

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

5000

6000

7000

recommendation cycles

m
a

x
 r

e
g

re
t

DC
IC: wsim
IC: maut
CAS
SCAS
HCT

Figure 3: Max regret reduction (k = 3, db = 187, 50 runs).

the same 10 attributes.6 The latter was used since it is much larger
and has initial regret that is much higher.

We simulate the interaction of a single user by generating a ran-
dom user utility function, and making user choices based on it.7 We
assume that the user initially orders the domain values of each at-
tribute from best to worst (a simple and natural task). Computation
time for SCAS and HCT in the 187 product domain averages 0.9s
and 2.7s, respectively, and 7-15s in the 5000 product dataset. We
are examining several techniques to speed computation, but even at
these levels, they support real-time response.

We first compare our regret-based strategies—exact SMMR com-
putation, HCT, and CSS—on the small, 187-option dataset, with
2 options in each recommendation set (k=2). Fig. 2 shows the
max regret of the recommended product after each interaction (cri-
tique). While SMMR is optimal, both CAS and HCT offer very
good approximations, and are much more computationally efficient
(SMMR requires on average 285s per query). For this reason, we
focus on CAS (and SCAS, which is identical to CAS when k = 2)
and HCT in the remaining experiments.

We next compare the three regret-based approaches, HCT, SCAS,
and CAS, and the three critiquing methods above, DC, IC, and IC-
MAUT, with set size k = 3. Fig. 3 shows that traditional critiquing

6The model was generated from the smaller real database using the
K2 Bayes net learning algorithm [8].
7Each attribute has a fixed independent probability p of being rel-
evant to the user (p ∼ U [0.5, 1.0]). Relevant attributes are ran-
domly assigned an importance: hi (probability 0.2), med (0.3), or
lo (0.5). Each importance has utility parameters drawn uniformly
from [0, 1] (lo), [0, 5] (med), or [0, 10] (hi). Numeric domains are
characterized by a single weight, discrete domains, by a vector of
local utilities where the least preferred value has zero marginal util-
ity. The utility is then scaled with respect to the price range, so that
the utility of an option is obtained by subtracting the price.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

cycles

m
a

x
 r

e
g

re
t

($
)

DC
IC: wsim
IC: maut
SCAS
HCT

Figure 4: Regret reduction, alternating unit critiques and set

suggestions (k = 3, db = 5000, 50 runs).

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

recommendation cycles

re
a
l
re

g
re

t

DC
IC: wsim
IC: maut
SCAS
HCT

Figure 5: True regret (percentage of optimal value), alternate

unit critiques/set suggestions (k = 3, db = 5000, 50 runs).

methods stall after only few cycles. We conjecture that the reliance
of these approaches on a single ranking or utility model (rather than
a space of possible user utilities) renders their suggestions insuffi-
ciently diverse to generate useful feedback. Regret-based recom-
mendation sets, in contrast, reduce max regret very quickly, reach-
ing zero regret in about 20 queries. HCT and SCAS are almost
indistinguishable (the difference is not statistically significant) but
both dominate CAS (with significant differences; we do not show
error bars for legibility). This clearly demonstrates benefit of rea-
soning directly about the joint value of an option set.

We consider a third setting using the larger, 5000-apartment dataset,
and allowing unit critiques in addition to our compound critiques
(or set choices). In other words, apart from selecting an option from
a set recommendation, the user can also critique a single attribute,
asking for an improvement in its value. Unit critiques are modeled
according to what we call the ideal semantics: the user is asked to
choose the unit critique whose improvement for the current prod-
uct x is best when the attribute is moved to its greatest level. We
alternate between unit critiques and compound critiques (set sug-
gestions) at each cycle. (More flexible user-controlled interactions
are possible.) Fig. 4 shows the max regret of the recommended
product at each cycle. Again, our regret-based recommendations
provide better suggestions than the other methods by a significant
margin. This is true when considering both the “anytime” profile
of the method and its final convergence: our techniques not only
discover the optimal product, but are able to “prove” its optimal-
ity (reach max regret is 0), in roughly 20 cycles. In contrast, the
critiquing methods settle at relative max regret of about 40%. We
notice that, compared to the first experiment, unit critiques seem to
help regret reduction.

Regret-based critiquing is designed to attack bounds on regret
(i.e., worst-case loss); generally, the recommended product will be
closer to optimal than its max regret measure. Indeed, we may
discover the optimal product long before being able to prove its op-
timality for the user. Since the other methods do not optimize regret
bounds, perhaps they recommend good products despite being un-
able to “prove” they are good. Fig. 5 shows this not to be the case.
It illustrates the true regret or the recommended product, that is, the
difference between its true value to the user (given her utility func-
tion) and the value of the optimal recommendation. We express it as
a percentage difference from the true optimal value. Regret-based
critiquing offers better actual recommendations, as measured by
the true regret of the recommended product. The other critiquing
techniques recommend products that are better than their regret-
bounds suggest; but regret-based critiquing consistently finds the
optimal product (and finds a near-optimal product in as few as 5–6
interactions). By contrast, the other three methods are unable to
identify the optimal option at convergence: incremental critiquing
stabilizes at products that are nearly 20% worse than optimal; and
dynamic critiquing never reaches products that are within 30% of
optimal. The difference of true regret between our methods and
dynamic/incremental critiquing is statistically significant.8

6. CONCLUSIONS
We have developed a novel, minimax-regret based formaliza-

tion for recommending sets of alternatives in conversational rec-
ommender systems. Our setwise max regret criterion is a natural
extension of max regret for single recommendations, not only pro-
viding robust recommendation sets, but also serving as a means of
generating myopically optimal queries or suggestions for critique.
We developed computational MIP methods for optimal recommen-
dation sets, as well as tractable approximations. Even when ap-
proximations are used, our reliance on explicit utility modeling and
minimax regret provides a powerful new means of generating good
critiques and making good product recommendations. Our regret-
based recommender often leads to optimal recommendations using
very few compound critiquing interactions, and outperforms other
dynamic critiquing techniques both in speed of convergence and
the quality of the final recommendations.

Further verification of our regret-based approach requires user
studies to determine the intuitive acceptability of regret-based rec-
ommendations;9 we also plan a comparison with diversity-enhanced
incremental critiquing [13]. Largely unaddressed in our critiquing
model is the need for users to explore the product space (one of
the main advantages of critiquing). We are developing hybrid mod-
els that distinguishes exploratory actions from improving actions.
Finally, the development of models of cognitive costs using tech-
niques from behavioral economics and decision theory remains an
important avenue of future research.

7. ACKNOWLEDGMENTS
This work was partially supported by the Natural Sciences and

Engineering Research Council (NSERC). The first author was par-
tially supported by the Swiss National Science Foundation (grant
PBEL2-120935).

8The standard deviation for both HCT and SCAS quickly decreases
as recommendations converge to the optimal product; e.g., for
HCT, deviation is less than 0.05 after the 10th cycle. All 50 runs
recommend the optimal product at or before the 16th cycle with
HCT, and at or before the 21st cycle for SCAS.
9These studies are planned; ongoing preliminary studies of regret-
based elicitation in single item (not set-based) domains suggest that
max regret works very well in practice.

The authors would like to thank Darius Braziunas for valuable
discussion on minimax regret computation for database problems
and the anonymous reviewers for their valuable suggestions.

8. REFERENCES
[1] F. Bodon. A fast apriori implementation. IEEE ICDM Worksh. on

Frequent Itemset Mining Implementations, Melbourne, FL, 2003.

[2] C. Boutilier. A POMDP formulation of preference elicitation
problems. 18th National Conf. on AI (AAAI-02), pp.239–246,
Edmonton, 2002.

[3] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.
Constraint-based optimization and utility elicitation using the
minimax decision criterion. Artif. Intel., 170(8–9):686–713, 2006.

[4] C. Boutilier, R. Zemel, B. Marlin. Active collaborative filtering. 19th
Conf. on Uncertainty in AI (UAI-07), pp.98–106. Acapulco, 2003.

[5] D. Braziunas and C. Boutilier. Minimax regret-based elicitation of
generalized additive utilities. 23rd Conf. on Uncertainty in AI

(UAI-07), pp.25–32, Vancouver, 2007.

[6] R. Burke. Interactive critiquing for catalog navigation in
e-commerce. Artif. Intel. Rev., 18(3-4):245–267, 2002.

[7] U. Chajewska, D. Koller, and R. Parr. Making rational decisions
using adaptive utility elicitation. 17th National Conf. on AI

(AAAI-00), pp.363–369, Austin, TX, 2000.

[8] G. Cooper, E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Mach. Learn., 9:309–347, 1992.

[9] P. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory. Intl. Economic Review,
8:335–342, 1967.

[10] R. Keeney and H. Raiffa. Decisions with Multiple Objectives:

Preferences and Value Trade-offs. Wiley, 1976.

[11] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its

Applications. Kluwer, Dordrecht, 1997.

[12] T. Hadzic and B. O’Sullivan. Critique graphs for catalogue
navigation. RecSys ’08, pp.115–122, Lausanne, 2008.

[13] K. McCarthy, J. Reilly, B. Smyth, L. McGinty Generating Diverse
Compound Critiques. Artif. Intell. Rev. 24(3-4): 339-357 (2005)

[14] D. McSherry. Diversity-conscious retrieval. 6th Eur. Conf. on

Advances in Case-Based Reasoning, pp.219–233, London, 2002.

[15] R. Price and P. Messinger. Optimal recommendation sets: Covering
uncertainty over user preferences. 20th National Conf. on AI
(AAAI’05), pp.541–548, 2005.

[16] J. Reilly, K. McCarthy, L. McGinty, B. Smyth. Dynamic critiquing.
In P. Funk, P. A. González-Calero, eds., ECCBR, Lecture Notes in
Computer Science 3155, pp.763–777. Springer, 2004.

[17] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Incremental
critiquing. Knowl.-Based Syst., 18(4-5):143–151, 2005.

[18] J. Reilly, J. Zhang, L. McGinty, P. Pu, and B. Smyth. Evaluating
compound critiquing recommenders: a real-user study. ACM Conf.

on Electronic Commerce, pp.114–123, 2007.

[19] A. Salo and R. Hämäläinen. Preference ratios in multiattribute
evaluation (PRIME)–elicitation and decision procedures under
incomplete information. IEEE Trans. on Systems, Man and

Cybernetics, 31(6):533–545, 2001.

[20] L. Savage. The Foundations of Statistics. Wiley, 1954.

[21] P. Slovic. The construction of preference. American Psychologist,
50(5):364–371, 1995.

[22] M. Torrens, B. Faltings, and P. Pu. Smartclients: Constraint
satisfaction as a paradigm for scaleable intelligent information
systems. Constraints, 7(1):49–69, 2002.

[23] O. Toubia, J. Hauser, and D. Simester. Polyhedral methods for
adaptive choice-based conjoint analysis. J. Marketing Res.,
41:116–131, 2004.

[24] P. Viappiani, B. Faltings, and P. Pu. Preference-based search using
example-critiquing with suggestions. J. Artif. Intell. Res.,
27:465–503, 2006.

