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ABSTRACT
Evaluation of policies in recommender systems typically involves
A/B live experiments on real users to assess a new policy’s impact
on relevant metrics. This “gold standard” comes at a high cost, how-
ever, in terms of cycle time, user cost, and potential user retention.
In developing policies for onboarding users, these costs can be es-
pecially problematic, since on-boarding occurs only once. In this
work, we describe a simulation methodology used to augment (and
reduce) the use of live experiments. We illustrate its deployment for
the evaluation of preference elicitation algorithms used to onboard
new users of the YouTube Music platform. By developing counter-
factually robust user behavior models, and a simulation service that
couples such models with production infrastructure, we can test
new algorithms in a way that reliably predicts their performance
on key metrics when deployed live.
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1 INTRODUCTION
The scale and complexity of modern recommender systems (RSs)
means they are typically developed with a continuous delivery
methodology, where new features are produced, evaluated, and
deployed constantly. The gold standard for evaluation of any new
feature is controlled A/B tests, using live experiments (LEs) with
real users, to assess its impact on key long-term RS metrics. The
use of LEs for A/B testing, however, has well-known costs [20].
Online evaluation can impose reputational and retention costs by
degrading the experience of users exposed to poorly performing
(experimental) policies. Statistically significant results often require
large sample sizes and long evaluation periods to emerge, which
can slow the algorithm development cycle. Finally, opportunity cost
is especially acute when testing new onboarding methods, a focus
in this work: since users onboard only once, a poor user experience
may leave no opportunity for recovery.

To alleviate these concerns, simulation has been used increas-
ingly for RS research and algorithm development [1, 11, 17, 22, 23].
Simulated user models allow developers to “observe” how (stochas-
tic) user responses unfold in reaction to sequences of RS actions,
circumventing the out-of-distribution issues of static data sets, al-
lowing effective assessment of new algorithms, and supporting
quicker iteration without imposing the costs of LEs on users. That
said, simulation is largely used for algorithm development rather
than to replace LEs since simulation models: (a) are not completely
realistic, (b) are often designed to predict short-term effects rather
than the long-term metrics often assessed by LEs, and (c) are rarely
connected directly to production infrastructure (which links other
vital RS components that influence user behavior).

In this work, we propose a practical methodology for the use
of simulation not only to help develop new RS algorithms, but to
move a step closer to reducing (even partially replacing) LEs for
evaluation. We illustrate this methodology using the development,
evaluation and deployment of novel onboarding algorithms for
new users of YouTube Music. Along the way we outline: (a) the
development of user models—in our case recurrent neural networks
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Figure 1: The artist selec-
tion interface. Users se-
lect artists they like, and
skip those they don’t, with
“Done” confirming the end
of the onboarding session.
The artists displayed as
the user scrolls down are
chosen dynamically given
earlier selections and non-
selections (or skips).

[8]—that capture the distribution of (relevant properties of) real
users; (b) a process that ensures these models are reasonably coun-
terfactually robust so performance predictions for new policies can
guide deployment decisions [11]; and (c) the framework used to
run our simulated users on production infrastructure to ensure
simulated metrics reflect all product intricacies.

2 PROBLEM STATEMENT
Wefirst outline the onboarding process (OP) for new users of YouTube
Music, and the preference elicitation (PE) algorithms we have devel-
oped to drive user interaction. We refer to Meshi et al. [15] for a
detailed description of the PE methods themselves.

The interface used to elicit artist preferences is shown in Figure 1.
The user can scroll to select as many artists as desired and choose
“Done” to terminate the onboarding process. The PE strategy plays
a critical role in the user experience: it impacts how much and what
type of preference information the RS obtains, hence, downstream
recommendation quality and usage. If the PE algorithm showsmany
similar artists to the user, or artists they are not familiar with, the
user might decide that onboarding is not worth their time, and
abandon before providing much (or any) preference information.

These considerations mean that developing a good PE algorithm
for onboarding is highly non-trivial, involving tradeoffs between
familiarity and novelty, coverage and “deep dives,” and much more.
We do not provide detailed algorithm descriptions here other than to
point out that our PE methods are both personalized to user context
(see below) and dynamic (i.e., artists are chosen adaptively based on
a user’s previous selections/skips during the onboarding session).
For our purposes, it is sufficient to treat various algorithms and their
parameterizations as black boxes to be evaluated or compared.1

3 METHODOLOGY
To evaluate PE policies for onboarding, we employ simulation as an
alternative to costly A/B testing with LEs. Simulation can mitigate
the potential cost imposed on users—which is magnified due to the
one-off nature of onboarding—and accelerate the development cycle
for novel PE policies. This approach aligns with recent advances
in simulation usage in RSs, encompassing algorithm development
[11, 19, 22, 23], user dynamics analysis [1], and the modeling of
sequential [5, 10, 25, 26] and multiagent interactions [16].

1For further discussion of onboarding techniques for RSs, see [14], and PE, see [2, 3, 21].

Effective simulation for algorithm development requires syn-
thetic user models that accurately represent the distribution of user
characteristics and their responses to RS actions to determine algo-
rithm performance when tested with a simulated user population.
In our case, user models reflect (conditional) user responses to
questions about artist preferences, their chance of exiting the on-
boarding process, and the distribution of such behaviors in the
new-user population. Developing such user models is challenging.
Typically, data from an existing RS policy is used to train predic-
tive user models. However, this offline approach is often unable to
predict responses to novel policies, since new policies induce out-
of-distribution behaviors/data w.r.t. the production policy. Without
methods for off-policy evaluation [6], these models are unlikely to be
counterfactually robust. We approach this by building models using
data from several policies that capture a range of user behaviors.

Our user models, which engage in the PE OP, have two require-
ments: generating a synthetic user population whose distribution of
relevant characteristics reflects that of the user base; and providing
a user response model that accurately captures user behavior with
our PE methods conditioned on these characteristics. We make two
assumptions that support our modeling approach. First, some ver-
sion of the OP has been deployed prior to the development of new
methods targeted by simulation. Second, most users who engaged
with the original OP moved on to use the RS for an extended period.
This gives a set of usersU: for each 𝑢 ∈ U we have both OP session
data 𝑆𝑢 and post-onboarding usage data, which we morph into static
user state (or context) 𝐶𝑢 (see details below).

The new OP being tested is driven by one of several PE algo-
rithms being considered for evaluation. These algorithms adapt
their artist selection to the previous selections/skips of the user.2
When presented with an artist, a user makes two distinct binary
choices: (i) select or skip that artist; and (ii) terminate or continue
with the OP. A simulated user must generate these two choices
at each step. Action sampling is conditioned on (a) the static (or
prior) user state; and (b) the user’s OP session history so far. The
interaction of a synthetic user 𝑢 with the OP proceeds through
a sequence of 𝑡 > 0 turns (until 𝑢 terminates) as follows: (1) RS
(PE module) queries 𝑢 with an artist. (2) 𝑢 responds (selects/skips,
terminates/continues). (3) 𝑢’s context (latent state) is updated. (4)
RS updates its beliefs about 𝑢 given response (a black box).

User State Generator. The first component of our generative
user model comprises a distribution 𝑃 (𝐶𝑢 ) of static user states, those
characteristics that drive a user’s behavior when engaging with the
OP. Our user state generator divides user state into observable context
𝐶𝑢𝑜 and latent state 𝐶𝑢

ℓ
. Observable context consists of factors that

are directly observable and (potentially) influence a user’s musical
tastes and OP interactions—these might include geography, device
type (e.g., mobile vs. desktop, OS type), and other such features.

Perhaps more critical is the user’s latent state, which includes the
user’s true but unobservable underlying musical preferences. There
is no data for new users, but by assumption, we have a large number
of users who have used the original OP and subsequently engaged
with the RS. This allows us to estimate the true preferences of such
users, retrospectively correlate them with behavior during the OP,

2Our PE methods are also personalized given prior music engagement by the user, but
we set this aside in our treatment here.
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and generate realistic preference distributions. Together with the
observable state, this comprises our user state generator. Specifically,
we augment OP session data with an ordered list {𝑞𝑢1 , 𝑞

𝑢
2 , . . . , 𝑞

𝑢
𝐾
}

comprising the top-𝐾 artists w.r.t. 𝑢’s post-onboarding music lis-
tening time during the first𝑊 weeks of YouTube Music usage.3 We
use this data to train latent user-preference models.

To train the user state generator 𝑃 (𝐶𝑢 ), we can easily learn
a categorical (joint) distribution over relevant observable state
variables 𝐶𝑢𝑜 from our data. However, directly modeling the joint
distribution 𝑃 (𝐶𝑢

ℓ
) of latent preferences (i.e., all combinations of

inferred user interests) is intractable. Hence, we formulate our
latent state model as a sequence generation or next-item prediction
problem [24] conditioned on the observable state 𝑐𝑢 . Specifically,
given a user’s (post-OP) music consumption, we predict the next
item 𝑞𝑢

𝑘
given a user𝑢’s past interaction history: 𝑃 (𝑞𝑢

𝑘
|𝑞𝑢1 , . . . , 𝑞

𝑢
𝑘−1).

We factorize the joint distribution 𝑃 (𝐶𝑢 ) as:

𝑃 (𝐶𝑢 )=𝑃 (𝑐𝑢 , 𝑞𝑢1 , . . . , 𝑞
𝑢
𝐾 ) = 𝑃 (𝑐

𝑢 )
𝐾∏
𝑘=1

𝑃 (𝑞𝑢
𝑘
|𝑐𝑢 , 𝑞𝑢1 ,. . . ,𝑞

𝑢
𝑘−1). (1)

Recurrent neural networks (RNNs) [9] have proven effective for
next-item prediction [7, 12, 18]. Thus, we use an RNN to model
the temporal dependencies needed to generate inferred user inter-
ests 𝑞𝑢1 , . . . , 𝑞

𝑢
𝐾
. We apply a trainable multilayer perceptron (MLP)

adapter to the one-hot encoding of 𝑐𝑢 and seed the initial state of
the RNN ℎ𝑢0 with the output. The RNN updates its hidden state ℎ𝑢

𝑘
and generates output 𝑜𝑢

𝑘
: (ℎ𝑢

𝑘
, 𝑜𝑢
𝑘
) = RNN (ℎ𝑢

𝑘−1, 𝜙 (𝑞
𝑢
𝑘
), 𝛿𝑘 ) where

𝜙 (𝑞𝑢
𝑘
) is the embedding of artist 𝑞𝑢

𝑘
—we reuse embeddings from the

PE module—and 𝛿𝑘 is a one-hot encoding of the number of artists
generated so far. The next artist 𝑞𝑢

𝑘+1 is then sampled (without
replacement) using a multinomial logit model [4, 13] given 𝑜𝑢

𝑘
:

𝑃 (𝑞𝑢
𝑘+1 |𝑜

𝑢
𝑘
) =

exp(𝜙 (𝑞𝑢
𝑘+1)

⊤𝑜𝑢
𝑘
)∑

𝑞∈Q\{𝑞𝑢
𝑖
}𝑖≤𝑘 exp(𝜙 (𝑞)⊤𝑜𝑢

𝑘
) + exp(𝜙⊤∅𝑜𝑢𝑘 )

. (2)

To generate variable-length sequences, we introduce a fixed null
artist embedding 𝜙∅. We do not increase 𝑘 or change the input
vector when the null artist is sampled. Including 𝛿𝑘 as an RNN
input helps match the distribution of the number of artists in users’
inferred interests to the observed data.

Our latent state generator is implemented with a long short-term
memory (LSTM) architecture [8]. By modeling generation of user
interests 𝑃 (𝑞𝑢

𝑘+1 |𝐶
𝑢 , 𝑞𝑢1 , . . . , 𝑞

𝑢
𝑘
) = 𝑃 (𝑞𝑢

𝑘+1 |𝑜
𝑢
𝑘
) with an RNN and

𝑃 (𝑐𝑢 ) as a categorical distribution, we can optimize parameters of
the entire generator by maximum likelihood estimation (MLE).

User Session Generator. The second component of our model
is a user session generator that samples a user’s action choice when
presented with an artist, conditioned on their (static) state and
their action choices thus far. Users’ attitudes evolve during the OP
(e.g., degree of engagement/frustration with the OP, or satisfaction
with the information provided). These are part of the user’s latent,
dynamic state implicitly captured in our model.

To train the session generator, we use a set of artists Q =

{𝑞1, . . . , 𝑞𝑚} eligible to be shown during PE. A session 𝑆𝑢 for𝑢 ∈ U

3Initial RS recommendations will of course be correlated with onboarding selections
and affect post-onboarding consumption. However, user searches and RS exploration
will make this effect smaller as the horizon𝑊 increases.

comprises a sequence of artists/queries 𝑞𝑢𝑡 and associated responses
𝑟𝑢𝑡 : 𝑆

𝑢 = {(𝑞𝑢1 , 𝑟
𝑢
1 ), . . . , (𝑞

𝑢
|𝑆𝑢 |, 𝑟

𝑢
|𝑆𝑢 |)}, where 𝑟

𝑢
𝑡 ∈ {0, 1} is the user

response (skip/select) to 𝑞𝑢𝑡 at turn 𝑡 . User termination occurs only
at turn 𝑡 = |𝑆𝑢 |. Let 𝑆𝑢<𝑡 = {(𝑞𝑢1 , 𝑟

𝑢
1 ), . . . , (𝑞

𝑢
𝑡−1, 𝑟

𝑢
𝑡−1)} be 𝑢’s sub-

session prior to 𝑡 . This format assumes users inspect artists linearly,
which may be only roughly valid in UIs where multiple artists are
visible at once. We truncate sessions at 300 turns.

We formulate the user response model 𝑃 (𝑟𝑢𝑡 |𝐶𝑢 , 𝑆𝑢<𝑡 , 𝑞𝑢𝑡 ) as con-
textual sequence generation, using an RNN to encode (in-session)
dynamic user state and its dynamics. We first embed inferred user
interests in 𝐶𝑢 via function 𝜙 , to which we apply a trainable MLP
to obtain encoded context 𝐸 (𝐶𝑢 ) to personalize session state, dy-
namics and output (user response) for a synthetic user 𝑢. The input
vector 𝑥𝑢𝑡 to the RNN at turn 𝑡 includes 𝐸 (𝐶𝑢 ), the embedding𝜙 (𝑞𝑢𝑡 )
of the artist/query, the embedding of selection response 𝜙𝑟 (𝑟𝑢𝑡 ), the
number 𝑦𝑡 of selections so far, and 𝑡 . The latter two are critical for
reproducing realistic distributions of the number of artist selections
and session length. The response embedding 𝜙𝑟 is trainable but, as
above, we reuse artist embeddings {𝜙 (𝑞)}𝑞∈Q from PE. The RNN
hidden state ℎ𝑢𝑡 at turn 𝑡 is updated as: (ℎ𝑢𝑡 , 𝑜𝑢𝑡 ) = RNN (ℎ𝑢

𝑡−1, 𝑥
𝑢
𝑡 ).

where ℎ𝑢0 = 𝐸 (𝐶𝑢 ) and 𝑜𝑢𝑡 is the output of the RNN at turn 𝑡 .
OP sessions 𝑆𝑢 vary in length since 𝑢 determines when to termi-

nate given their latent state and the current artist. Since we must
also predict session continuation 𝑠𝑢𝑡 , we use an MLP with two heads
and sigmoid activation 𝜎 for 𝑟𝑢𝑡 and 𝑠𝑢𝑡 :

𝑃 (𝑟𝑢𝑡 = 1|𝐶𝑢 , 𝑆𝑢<𝑡 , 𝑞𝑢𝑡 ) = 𝜎 (MLP (𝑜𝑢𝑡−1, 𝑥
𝑢
𝑡−1)) · 𝑠

𝑢
𝑡−1, (3)

𝑃 (𝑠𝑢𝑡 = 1|𝐶𝑢 , 𝑆𝑢<𝑡 , 𝑞𝑢𝑡 ) = 𝜎 (MLP (𝑜𝑢𝑡−1, 𝑥
𝑢
𝑡−1)) · 𝑠

𝑢
𝑡−1 . (4)

We also pass 𝑥𝑢
𝑡−1 = (𝐸 (𝐶𝑢 ), 𝑦𝑡−1, 𝑡 − 1, 𝜙 (𝑞𝑢𝑡 )) to the MLP. The

response model does not predict a selection if the model predicts
termination. As above, the session generator is implemented using
an LSTM, and we optimize its parameters by MLE.

The Simulator. Evaluating actual deployment of an algorithm
requires integration into a production stack. Likewise, truly ef-
fective use of simulation requires running the production RS with
simulated users.We integrate synthetic user models into the produc-
tion RS (vs. a mock RS) using a service that injects simulated user
interactions into the full content-serving stack. Simulated-user data
is segregated from real-user data, but is otherwise indistinguishable
to the production RS.

Our simulator interacts with a front-end service that mimics the
YouTube Music app, and with our user models. For each simulated
user, a test account is created and user data is initialized. The sim-
ulator presents artists used for PE from the front-end in a linear
fashion. User-selected artists are submitted to the RS and stored
so as to affect downstream recommendations. Use of a single user
data serving service (UDSS) ensures consistency and proper access
control of (real and synthetic) user data for dependent systems. A
Data Overlay Service (DOS) allows reads and writes of synthetic
data for the RS. When UDSS receives requests from the simula-
tor, it retrieves data from the DOS, replacing or merging it with
production data.

4 EXPERIMENTAL RESULTS
We train RNN user models with logged data from YouTube Music
OP sessions, using the user-simulation platform RecSim NG [17].
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Figure 2: Cumulative distribution functions (CDFs) for both
session length (left) and selection counts per session (right).
Generated CDFs are red, observed CDFs black.

Users Selections Impressions
Live Exp. ~134 000 -0.76% [-5.05%, 3.04%] -1.25% [-3.57%, 1.07%]
Simulation 200 000 +1.36% [-0.11%, 2.83%] -1.02% [-1.74%, -0.31%]
Post-launch 500 000 +1.17% [-0.03%, 2.36%] -0.78% [-1.15%, -0.41%]
Table 1: Comparison of Live Experiment, Simulated, and
Post-launch Metrics of New pCTR Policy on a Traffic Slice.

We deploy our simulation service for the OP so simulated user mod-
els interact with the production RS. We use a well-performing OP as
the data-generating policy for user-model training and evaluate our
models based on their ability to reproduce key statistics from logged
(real) user (test) data. As our static user-state generator is policy-
independent, we compare its generated context distribution with
the ground truth. For space reasons, we omit results with existing
PE policies, and instead emphasize our model results when interact-
ing with previously unseen PE policies, focusing on counterfactual
robustness and policy optimization via offline simulation.

Simulation of New Policies: To evaluate the counterfactual
robustness of our user models, we simulate their interactions with
unseen OP PE policies. Specifically, we deployed a new policy that
prioritizes artists with higher predicted click-through rates (pCTR).
Using 200,000 synthetic users (from one geo, one device type), we
forecast the policy’s impact on impressions and selections. For
validation, we also conducted an LE with 134,000 real users (same
geo, device type). Table 1 compares the percentage changes of
the new and incumbent policies with confidence intervals (CIs).
Due to traffic limitations, LE results have much wider CIs than
simulated metrics (we note they do overlap); the ability to produce
tighter CIs are a significant advantage of simulation. Moreover, our
simulation predictions are more closely aligned (informally, not
statistically due to the wide LE CIs) with the real-world impact
of the pCTR policy w.r.t. actual post-launch metrics obtained from
500,000 real users. Our simulation results also closely match the
observed session length and artist-selection count distributions in
post-launch logs, as seen in Figure 2.

Offline Optimization: We test whether our user models can
be used to improve the RS policy using purely offline simulation with
synthetic users. This would reduce both algorithm-development
time and the user-cost of LEs. In its simplest form, we simulate
three new pCTR models—these vary in their features and train-
ing data filters/ The best candidate, with a simulated CTR gain of
+1.15%[−1.71%, 4.01%] w.r.t. the original pCTR model, was run in

Trade-off 𝜆 Selections change Impressions change
0.001 0.07%[−3.35%, 3.49%] 0.75%[−0.08%, 1.59%]
0.01 0.20%[−3.16%, 3.56%] −0.04%[−0.91%, 0.82%]
0.05 0.84%[−2.33%, 4.00%] 0.47%[−0.23%, 1.18%]
0.2 2.35%[−0.96%, 5.67%] 0.50%[−0.33%, 1.33%]
0.5 −0.48%[−3.69%, 2.72%] −0.29%[−1.06%, 0.48%]
1 0.24%[−2.73%, 3.21%] 0.19%[−0.50%, 0.88%]
2 −0.78%[−4.03%, 2.46%] 0.75%[0.02%, 1.48%]
5 −1.67%[−5.22%, 1.88%] 0.18%[−0.78%, 1.15%]
10 −2.12%[−5.62%, 1.39%] 0.56%[−0.28%, 1.41%]

Table 2: Simulated Results (with 95% CIs) when Tuning the
Trade-off between pCTR and Coverage.

Sels. 𝜆 = 0.001 Sels. 𝜆 = 0.05 Sels. 𝜆 = 0.2 Ordering
LE 1 0.71 ± 3.35% 1.60 ± 1.91% 1.17 ± 3.81% 0.05>0.2>0.001
LE 2 1.62 ± 3.40% 0.54 ± 2.96% 0.52 ± 3.38% 0.001>0.05>0.2
LE 3 −2.11 ± 2.50% 0.07 ± 3.02% 0.61 ± 3.36% 0.2>0.05>0.001

Launch −0.12 ± 1.88% 0.75 ± 1.22% 0.79 ± 1.98% 0.2>0.05>0.001
Simul. 0.07 ± 3.42% 0.84 ± 3.16% 2.35 ± 3.32% 0.2>0.05>0.001

Table 3: Selection Change (95% CIs) for 3 Policies, and In-
duced Policy Ordering: LEs vs. “Launch” vs. Simulation.

an LE with an observed CTR gain of +2.06%[0.20%, 3.92%]. It was
subsequently deployed in production.

We next conducted simulation-based experimentation to optimize
the OP PE policy offline. We study policies in which each query 𝑞
is scored using Score(𝑞) = pCTR(𝑞) + 𝜆Coverage(𝑞), where the first
term is 𝑞’s pCTR and the second, 𝑞’s gain in artist space coverage
(see Meshi et al. [15]). While a strong-performing production policy
with 𝜆 = 0.1 was previously launched, we tested our ability to
tune the trade-off parameter 𝜆 via simulation. Table 2 presents our
offline simulation results on mobile traffic relative to the incumbent
(𝜆 = 0.1). It shows that 𝜆 = 0.05 and 𝜆 = 0.2 provide the greatest
selection gains, with only modest impression increases, but with
wide CIs. We ran LEs with these two policies (𝜆 = 0.05, 𝜆 = 0.2),
along with an under-performing candidate 𝜆 = 0.001, to test if
simulation can correctly order policies. Specifically, we ran a large
“Launch LE” with all three policies to measure their impact on
artist selections. We then partitioned the data as if we did three
smaller “true LEs” and assessed consistency with the launch data;
we evaluate our simulation similarly.4 Table 3 shows that none
of the three small “true LEs” order the policies in the same way,
and only one conforms to the “launch.” By contrast, the simulation
ordering predicts (informally) the actual ordering of the launch.

5 CONCLUSION
We demonstrated that simulation can play a key role in the eval-
uation and optimization of RS policies by reducing the need for
costly LEs. We focused on new user onboarding in YouTube Music,
showing that realistic user models can be learned from logged on-
boarding sessions and post-onboarding consumption. We described
a simulation platform that allows integration of synthetic user
models with full production infrastructure, providing suitable sepa-
ration of live and simulated data, and showed the potential of our
approach empirically. We hope this work will foster wider adoption
of simulation for RS algorithm development and evaluation.
4The “LEs” and “Launch” metrics might be more correlated in our design than they
would be in practice, since each LE is in fact a one-third sample of the Launch traffic.
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