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Abstract

Market-based mechanisms such as auctions are being studied
as an appropriate means for resource allocation in distributed
and multiagent decision problems. When agents value re-
sources in combination rather than in isolation, one gener-
ally relies on combinatorial auctions where agents bid for re-
source bundles, or simultaneous auctions for all resources. We
develop a different model, where agents bid for required re-
sources sequentially. This model has the advantage that it can
be applied in settings where combinatorial and simultaneous
models are infeasible (e.g., when resources are made available
at different points in time by different parties), as well as cer-
tain benefits in settings where combinatorial models are appli-
cable. We develop a dynamic programming model for agents
to compute bidding policies based on estimated distributions
over prices. We also describe how these distributions are up-
dated to provide a learning model for bidding behavior.

1 Introduction
A great deal of attention has been paid to the development of
appropriate models and protocols for the interaction of agents
in distributed and multiagent systems (MASs). Often agents
need access to specific resources to pursue their objectives,
but the needs of one agent may conflict with those of another.
A number of market-based approaches have been proposed
as a means to deal with the resource allocation and related
problems in MASs [5, 21].

Of particular interest are auction mechanisms, where each
agent bids for a resource according to some protocol, and
the allocation and price for the resource are determined by
specific rules [13]. Auctions have a number of desirable
properties as a means for coordinating activities, including
minimizing the communication between agents and, in some
cases, guaranteeing Pareto efficient outcomes [13, 21].

An agent often requires several resources before pursu-
ing a particular course of action. Obtaining one resource
without another—for example, being allocated trucks with-
out fuel or drivers, or processing time on a machine with-
out skilled labor to operate it—makes that resource worth-
less. When resources exhibit such complementarities, it is
unknown whether simple sellingmechanisms can lead to effi-
cient outcomes [21, 1]. Moreover, groups of resources are of-
ten substitutable: obtaining the bundle needed to pursue one
course of action can lower the value of obtaining another, or
render it worthless. For instance, once trucks and drivers are

obtained for transporting material in an optimal fashion, he-
licopters and pilots lose any value they may have had.

Two methods for dealing with complementarities have
been studied: simultaneous auctions for multiple goods [1,
17]; and combinatorial auctions in which agents submit bids
for resource bundles [16, 18, 19, 9, 21]. Specific models
sometimes deal (possibly implicitly) with substitution ef-
fects, and sometimes not. In this paper, we explore a model
that combines features of both simultaneous and combinato-
rial auctions. Our sequential auctions model supposes that
the set of resources of interest are auctioned in sequence.
Agents bid for resources in a specific, known order, and can
choose how much (and whether) to bid for a resource depend-
ing on past successes, failures, prices, and so on.

Our model has several advantages over standard combina-
torial and simultaneous models. The chief benefit of such a
model is that is can be applied in situations where combina-
torial and simultaneous models cannot. Specifically, when
multiple sellers offer various resources of interest, or when
the resources are sold at different points in time, one does not
have the luxury of setting up either combinatorial or simulta-
neous auctions. As such, our model is suitable for agents who
are required to interact with multiple suppliers over time.
Even in settings where combinatorial models can be applied,
there may be some advantages to using a sequential model.
Unlike combinatorial models, our model relieves the (com-
putational) burden of determining a final allocation from the
seller, effectively distributingcomputation among the buyers
(as in the simultaneous case); note that determining an opti-
mal allocation that maximizes the seller’s revenue is NP-hard
[18]. Our sequential model also has the advantage that buy-
ers are not required to reveal information about their valu-
ations for specific resource bundles that they do not obtain.
Furthermore, it has greater flexibility in that agents can enter
and leave the market without forcing recomputation of entire
allocations. In contrast to simultaneous models, agents in the
sequential model may lessen their exposure. If an agent does
not obtain a certain resource early in the sequence, it need not
expose itself by bidding on complementary resources occur-
ring later in the sequence. Agents are typically bidding in a
state of greater knowledge in the sequential model, at least in
later stages; however, in earlier stages agents may have lesser
information than they would in a simultaneous model.

One difficulty that arises in the sequential model is how an



agent computes bids for individual resources (the same dif-
ficulty arises in simultaneous models). An agent has a val-
uation for a particular resource bundle b = fr1; � � � ; rkg,
but has no independent assignment of value to the individ-
ual resources.1 While auction theory can tell us how an agent
should bid as a function of its valuation of resource ri for spe-
cific auction mechanisms, in our setting no such valuation
exists. If b is worth v(b), how is an agent to “distribute the
value” among the resources ri in order to compute bids?

In this paper, we develop a dynamic programming algo-
rithm for doing just this. We assume that each agent has a
probabilistic estimate of the size of the maximum bids for
each resource (excluding its own). It can then compute a
bidding policy that maximizes its expected utility, and apply
this policy as dictated by its initial endowment. Bids for re-
sources early in the sequence are computed as a function of
the odds of being able to obtain their complements and sub-
stitutes, while bids for later resources are conditioned on the
resources obtained early in the sequence.

We also interested in adaptive biddingbehavior, and to this
end investigate a repeated sequential auction model in which
agents repeatedly bid for the same resources over time. We
consider the problem of estimating the probability distribu-
tions over maximal bids in this repeated scenario. If agents
persistently find themselves requiring resources to pursue
their aims, we want them to learn which resources they will
be able to obtain and which they will not. This is related to re-
cently proposed learning models for auctions [11, 12], though
our focus is on learning prices and its effect on the valuation
of individual resources in bundles.

The problem we study is part of a more general research
program designed to study the impact of specific resource
allocation schemes on the solution of sequential multiagent
decision problems. We motivate the problem studied here
as follows. We suppose that a number of agents have cer-
tain tasks and objectives to pursue, and for any objective
there may exist a number of potential courses of action that
are more or less suitable. For instance, an agent may con-
struct a policy for a Markov decision process [15, 2], from
which it can determine the value of various courses of action,
their likelihood of success, and so on. Any specific course of
action will require certain resources, say, bundle bk, whose
value can be determined as a function of the expected value
of that course of action (and the expected value of alternative
courses of action). As such, we suppose each bundle bk has
an associated value v(bk) and that the agent will use only one
bundle (the one associated with the highest-valued course of
action among those bundles it possesses). It is from these val-
uations that the agent must determine its bidding policy for
individual resources. This is the problem considered here.

Ultimately, the decision problem we hope to study is far
more complex. Determining appropriate courses of action
will depend on perceived probability of obtaining requisite
resources, uncertainty in that course of action, alternatives
available and so on. We envision very sophisticated reason-
ing emerging regarding the interaction bidding behavior and1In fact, we will assume that several bundles can be valued, with
possible overlap. This accounts for possible substitution effects.

“base-level” action choice (in the MDP), such as taking a few
critical steps along a specific course of action before decid-
ing to enter the market for the corresponding resources (e.g.,
perhaps because this policy is fraught with uncertainty). We
also foresee interesting interactions with other coordination
and communication protocols.

In Section 2 we describe the basic sequential bidding
model. We note a number of dimensions along which our
basic model can vary, though we will focus only on specific
instantiations of the model for expository reasons. We de-
scribe our dynamic programming model for constructing bid-
ding policies in Section 3. We also describe the motivation
for using the specific model proposed here instead of using
explicit equilibrium computation. We discuss repeated se-
quential auctions in Section 4, focusing on the problem of
highest-bid estimation. In Section 5 we describe some pre-
liminary experimental results, and conclude in Section 6 with
discussion of future research directions.

While bidding strategies for sequential auctions would
seem to be an issue worthy of study, there appears to have
been little research focussed on this issue. What work exists
(see, e.g., [8, 10]) tends to focus the seller’s point of view—
for example, will simultaneous or sequential sales maximize
revenue—and does not address the types of complementari-
ties we consider here. Generally, existing work assumes that
single items are of interest to the buyer.

2 Basic Model

We assume we have a finite collection of agents, all of
whom require resources from a pool of n resources R =fr1; � � � ; rng. We denote by Rt the subset fr1; � � � ; rtg, t �n, with R0 = ; by convention. We describe the quanti-
ties relevant to a specific agent a below, assuming that these
quantities are defined for each agent. Agent a can use ex-
actly one bundle bi = fri1; � � � ; rijbijg of resources from a

set of k possible bundles: B = fb1; � � � ; bkg. We denote byU (a) = [B the set of useful resources for our agent.
Agent a has a positive valuation v(bi) for each resource

bundle bi 2 B. Suppose the holdings of a, H(a) � U (a),
are those resources it is able to obtain. The value of these
holdings is given by v(H(a)) = maxfv(bi) : bi � H(a)g;
that is, the agent will be able to use the resource bundle with
maximal value from among those it holds in entirety, with the
others going unused. This is consistent with our interpreta-
tion given in Section 1 where resource bundles correspond to
alternative plans for achieving some objective (though other
value combinators can be accommodated).

The resources will be auctioned sequentially in a com-
monly known order: without loss of generality, we assume
that this ordering is r1; r2; � � � ; rn We use Ai to denote
the auction for ri. We refer to the sequence of auctionsA1; A2; � � � ; An as a round of auctions. There may be a single
round, some (definite or indefinite) finite numbers of rounds,
or an infinite number of rounds.

Supposing for the moment only one round, we assume that
agent a is given an initial endowment ewhich it can use to ob-
tain resources. At the end of the round, a has holdingsH(a)



and d dollars remaining from its endowment.2 We assume
that the utility of being in such a state at the end of the round
is given by v(H(a)) + f(d), where f is some function at-
taching utility to the unused portion of the endowment. Other
utility functions could be considered within this framework.

There are a wide range of options one could consider when
instantiating this framework. We define a specific model
here, but list the options that could be explored. We develop
the algorithms in this paper for the specific model, but where
appropriate, indicate how they should be modified for other
design choices. The main design choices are:� What auction mechanism is used for the auctions Ai?� What rules are instituted for reselling or speculation?� What information is revealed to the agents? When?� What information do agents have when a round begins?

We assume that the individual auctions will be first-price,
sealed-bid—each agent will provide a single bid and the
highest bidder will be awarded the resource for the price bid.
We adopt this model because of the ease with which it fits
with our approach to bid computation; however, we believe
our model could be adapted for other auction protocols. We
also assume that bids are discrete (integer-valued); but we do
describe the appropriate amendments to deal with continuous
bids. Agents, once obtaining a resource, cannot resell that re-
source to another agent. This, of course, means that an agent
may obtain one resource ri, but later be unable to obtain a
complementary resource ri+k, essentially being “stuck” with
a useless resource ri. We do this primarily for simplicity,
though in certain settings this assumption may be realistic.
We are currently exploring more sophisticated models where
agents can “put back” resources for re-auctioning, or possi-
bly resell resources directly to other agents.

Each agent is told the winning price at the end of the each
auction (and whether it was the winner). We could suppose
that no information (other than winning or losing) is pro-
vided, that the distributionover bids is announced, or that the
bids of specific individuals are made public; our assumption
seems compatible with the first-price, sealed-bid model.

Finally, agent a believes that the highest bid that will be
made for resource ri, excluding any bid a might make, is

drawn from some unknown distribution Pri. Because bids
are integer-valued, this unknown distribution is a multino-
mial over a non-negative, bounded range of integers.3 To
represent a’s uncertainty over the parameters of this distri-
bution, we assume a has a prior probability distributionPri
over the space of bid distributions. Agent a models Pri
as a Dirichlet distribution with parameters �i0; � � � ; �imi [6],
wheremi is the (estimated) maximum possible bid for ri. We
elaborate on this probability model in Sections 3 and 4.

We make two remarks on this model. First, if the space of
possible bids is continuous, a suitable continuous PDF (e.g.,2If speculation or reselling is allowed, there is the possibility thatd > e, depending on the interaction protocols we allow. We will
mention this possibility below, but we will examine only protocols
that disallow it.3We assume that a bound can be placed on the highest bid.

Gaussian) could be used to model bid distributions and the
uncertainty about the parameters of this PDF. More ques-
tionable is the implicit assumption that bids for different re-
sources are uncorrelated. By having distributionsPri rather
than a joint distribution over all bids, agent a is reasoning as
if the bids for different resources are independent. When re-
sources exhibit complementarities, this is unlikely to be the
case. For instance, if someone bids up the price of some re-
source ri (e.g., trucks), they may subsequently bid up the
price of complementary resource rj (e.g., fuel or drivers). If
agent a does not admit a model that can capture such correla-
tions, it may make poor bids for certain resources. Again, we
make this assumption primarily for ease of exposition. Ad-
mitting correlations does not fundamentally change the na-
ture of the algorithms to follow, though it does raise interest-
ing modeling and computational issues (see Section 4).

3 Computing Bids by Dynamic Programming
In this section we focus on the decisions facing an agent in a
single round of auctions. A key decision facing an agent at
the start of a round is how much to bid for each resource that
makes up part of a useful bundle bi. In standard single item
auctions (e.g., first/second-price, sealed bid) rational agents
with an assessment of the valuations of other agents can com-
pute bids with maximum expected utility [13]. For example,
in first-price, sealed bid auctions, an agent should bid a some
amount below its true valuation, where this amount is given
by its beliefs about the valuations of others.

Unfortunately, the same reasoning cannot be applied to our
sequential setting, since individual resources cannot be as-
sessed a well-defined valuation. For instance, if bundle bi =fri1; ri2g has valuation v(bi), how should agent a apportion
this value over the two resources? Intuitively, if there is a
greater demand for ri1, a larger “portion” of the value should
be allotted for bidding in the first auction rather than the sec-
ond. If the agent fails to obtain ri1, the value of ri2 goes to zero
(ignoring other bundles). In contrast, should a obtain ri1, it is
likely that the agent should offer a substantial bid for ri2, ap-
proaching the valuation v(bi), since the price paid for ri1 is
essentially a “sunk cost.” Of course, if the agent expects this
high price to be required, it should probably not have bid forri1 in the first place. Finally, the interaction with other bun-
dles requires the agent to reason about the relative likelihood
of obtaining any specific bundle for an acceptable price, and
to focus attention on the most promising bundles.

3.1 The Dynamic Programming Model
These considerations suggest that the process by which an
agent computes bids should not be one of assigning value
to individual resources, but rather one of constructing a bid-
ding policy by which its bid for any resource is conditioned
on the outcome of events earlier in the round. The sequen-
tial nature of the bidding process means that it can be viewed
as a standard sequential decision problem under uncertainty.
Specifically, the problem faced by agent a can be modeled as
a fully observable Markov decision process (MDP) [15, 2].
The computation of an optimal bidding policy can be imple-
mented using a standard stochastic dynamic programming al-



gorithm such as value iteration.
We emphasize that agents are computing optimal bids, not

true valuations for individual resources. Thus issues involv-
ing revelation of truthful values for resources are not directly
relevant (but see Section 4 on multiple rounds).

We assume the decision problem is broken into n + 1
stages, n stages at which bidding decisions must be made,
and a terminal stage at the end of the round. We use a time
index 0 � t � n to refer to stages—time t refers to the
point at which auction At+1 for rt+1 is about to begin. The
state of the decision problem for a specific agent a at time t is
given by two variables: Ht(a) � Rt, the subset of resourcesRt held by agent a; and dt, the dollar amount (unspent en-
dowment) available for future bidding. We write hh; dit to
denote the state of a’s decision problem at time t. Note that
although we could distinguish the state further according to
which agents obtained which resources, these distinctionsare
not relevant to the decision facing a.4

The dynamics of the decision process can be characterized
by a’s estimated transition distributions. Specifically, assum-
ing that prices are drawn independently from the stationary

distributionsPri, agent a can predict the effect of any action
(bid) z available to it. If agent a is in state hh; dit at stage t,
it can bid for rt+1 with any amount 0 � z � dt (for conve-
nience we use a bid of 0 to denote nonparticipation). Lettingw denote the highest bid of other agents, if a bids z at time t,
it will transition to state hh [ frt+1g; d� zit+1 with proba-

bility Prt+1(w < z) and to hh; dit+1 with Prt+1(w � z).5
This does not form an MDP per se, since a may be uncer-

tain about the true distributionPrt+1, having only a Dirichlet
distribution h�t+11 ; � � � ; �t+1mt+1 i over the possible parameters

of Prt+1. However, the expectation that the highest bid is w
is given by the relative weight of parameter �t+1w ; thus,Prt+1(w < z) = Pz�1i=0 �t+1iPmt+1i=0 �ti+1
While the observation of the true winning bid can cause
this estimated probability to change (properly making this
a partially observable MDP), the change cannot impact fu-
ture transition probabilityestimates or decisions: we have as-
sumed that the high bid probabilities are independent. Thus,
treating this as a fully observable MDP with transition prob-
abilities given by expected transition probabilities is sound.

The final piece of the MDP is a reward function q. We
simply associate a reward of zero with all states at stages0 through n � 1, and assign reward v(h) + f(d) to ev-
ery terminal state hh; din. A bidding policy � is a map-
ping from states into actions: for each legal state hh; dit,�(hh; dit) = z means that a will bid z for resource rt+1.
The value V �(hh; dit) of policy � at any state hh; dit is the
expected reward E�(q(hH(a); din)jhh; dit) obtained by ex-
ecuting �. The expected value of � given the agent’s initial4This is true under the current assumptions, but may not be under
different models; see below.5For expository purposes, the model assumes ties are won. Sev-
eral rules can be used for ties; none complicate the analysis.

state h;; eit is simplyV �(h;; eit). An optimal bidding policy
is any � that has maximal expected reward at every state.

We compute the optimal policy using value iteration [15],
defining the value of states at stage t using the value of states
at stage t+ 1. Specifically, we setV (hh; din) = v(h) + f(d)
and define, for each t < n:Q(hh; dit; z) = Prt+1(w < z) � V (hh [ frtg; d� zit+1)+Prt+1(w � z) � V (hh; dit+1)V (hh; dit) = maxz�d Q(hh; dit; z)�(hh; dit) = argmaxz�d Q(hh; dit; z)
Given that V is defined for all stage t+1 states,Q(hh; dit; z)
denotes the value of bidding z at state hh; dit and acting op-
timally thereafter. V (hh; dit) denotes the optimal value at
state hh; dit, while �(hh; dit) is the optimal bid.

Implementing value iteration requires that we enumerate,
for each t, all possible stage t states and compute the con-
sequences of every feasible action at that state. This can re-
quire substantial computational effort. While linear in the
state and action spaces (and in the number of stages n), the
state and action spaces themselves are potentially quite large.
The number of possible states at stage t could potentiallycon-
sist of any subset of resources Rt together with any monetary
component. The action set at a state with monetary compo-
nentd has size d+1. Fortunately, we can manage some of this
complexity using the following observations: first, a never
needs to bid for any resource outside the useful set U (a), so
its state space (at stage t) is restricted to subsets ofU t(a); and
second, if a resource rt requires a complementary resourcert0, t0 < t, (that is, all bundles containing rt also contain rt0),
then we need never consider a state where a has rt but notrt0.6 Reducing the impact of the number of possible bids is
more difficult. We can certainly restrict the state and action
space to dollar values no greater than a’s initial endowmente. If the PDF is well-behaved (e.g., concave), pruning is pos-
sible: e.g., once the expected value of a larger bids starts to
decrease, search for a maximizing bid can be halted.7

This dynamic programming model deals with the com-
plementarities and substitutability inherent in our resource
model; no special devices are required. Furthermore, it auto-
matically deals with issues such as uncertainty, dynamic val-
uation, “sunk costs,” and so on. Given stationary, uncorre-
lated bid distributions, the computed policy is optimal.

3.2 Extensions of the Model
While the assumptions underlying our (single-round) model
are often reasonable, there are two assumptions that must be
relaxed in certain settings: the requirement for discrete bids6This reasoning extends to arbitrary subset complementarities.7If we move to a continuous action space, the value function rep-
resentation and maximization problems may become easier to man-
age for certain well-behaved classes of probability distributions and
utility functions (see Section 3.2 and [3]).



and the prohibition of reselling or returning resources for re-
sale. We are currently exploring these relaxations.

Continuous bidding models are important for computa-
tional reasons. Though money is not truly continuous, the in-
crements that need to be considered generally render explicit
value calculations for all discrete bids infeasible. Continu-
ous function maximization and manipulation techniques are
often considerably more efficient that discrete enumeration,
and approximately optimal “integer” bids can usually be ex-
tracted. We are currently exploring specific continuous mod-
els, specifically using parameterized bid distributions (such
as Gaussian and uniform distributions)and linear utilityfunc-
tions (as described above). The key difficulty in extending
value iteration is determining an appropriate value function
representation. While the maximization problem (over bids)
for a specific state is not difficult, we must represent V t as
a function of the continuous state space. This function is
linear (in d) at all states where the remaining endowment d
is greater than the maximal worthwhile bid. But a different
function representation is needed for states with endowment
less than the best bid. We are currently exploring a value
function representation with piecewise, continuous represen-
tations of V for each (discrete) set of holdings H(a) [3].

Reselling may be appropriate in many settings and can al-
low agents to bid more aggressively with less risk. We are
currently developing a simple model in which agents are al-
lowed, at the end of a round, to “put back” resources for re-
auction that are not needed (e.g., are not part of the agent’s
max-valued complete bundle).8 Several difficulties arise in
this setting, including the fact that agents may need to esti-
mate the probability that an unobtained resource may be re-
turned for re-auction.

3.3 Equilibrium Computation
The model described above does not allow for strategic rea-
soning on the part of the bidding agent. The agent takes the
expected prices as given and does not attempt to compute the
impact of its bids on the behavior of other agents, how they
might estimate its behavior and respond, and so on; that is,
no form of equilibriumis computed. Standard models in auc-
tion theory generally prescribe bidding strategies that are in
Bayes-Nash equilibrium: when each agent has beliefs about
the types of other agents (i.e., how each agent values the good
for sale), and these beliefs are common knowledge, then the
agents’ bidding policies can be prescribed so that no agent
has incentive to change its policy.9 This, for instance, is the
basis for prescribing the well-known strategies for bidding in
first- and second-price auctions [20].

Our approach is much more “myopic.” There are several
reasons for adopting such a model rather that a full Bayes-
Nash equilibrium model. First, equilibrium computation is
often infeasible, especially in a nontrivial sequential, multi-
resource setting like ours. Second, the information required
on the part of each agent, namely a distribution over the pos-8More complicated models that allow agents to put back re-
sources during the round or resell directly are also possible.9We use type here in the sense used in game theory for games
with incomplete information [14].

sible types of other agents, is incredibly complex—an agent
type in this setting is its set of valuations for all resource bun-
dles, making the space of types unmanagable. Finally, the
common knowledge assumptions usually required for equi-
librium analysis are unlikely to hold in this setting.

We expect that the MDP model described here could be ex-
tended to allow for equilibrium computation. Rather than do
this, we consider an alternative, adaptive model for bidding
in which agents will adjust their estimates of prices—hence
their bidding policies—over time. Implicitly, agents learn
how others value different resources, and hopefully some
type of “equilibrium” will emerge. We turn our attention to
this process of adaptation.

4 Repeated Auctions and Value Estimation
In certain domains, agents will repeatedly need resources
drawn from some pool to pursue ongoing objectives. We
model this by assuming that the same resource collection is
auctioned repeatedly in rounds. While agents could compute
a single bidding policy and use it at every round, we would
like agents to use the behavior they’ve observed at earlier
rounds to update their policies. Specifically, observed win-
ning prices for resource auctions Ai in the past can be used
by an agent to update its estimate of the true distributionPri
of high bids for ri. Its bidding strategy at the next round can
be based on the updated distributions.

If each agent updates its bidding policy based on past price
observations, the prices observed at earlier rounds may not
be reflective of the prices that will obtain at the next round.
This means that the agents are learning based on observa-
tions drawn from a nonstationary distribution. This setting
is common in game theory, where agents react to each oth-
ers past behavior. Myopic learning models such as fictitious
play [4] (designed to learn strategy profiles) can be shown to
converge to a stationary distribution despite the initial non-
stationarity. This type of learning model has been applied to
repeated (single-item) auctions and shown to converge [11].
Our model is based on similar intuitions—namely, that learn-
ing about prices will eventually converge to a steady state.
Hu and Wellman [12] also develop a related model for price
learning in a somewhat different context.

The advantage of a learning model is that agents can come
to learn which resources they can realistically obtain and fo-
cus their bidding on those. If agents A and B have similar
endowments and both equally value having either r1 or r2,
they may learn over time not to compete for r1 and r2; instead
they may learn to anticipate (implicitly, through pricing)each
other’s strategy and (implicitly) coordinate their activities,
with one pursuing r1 and the other r2. If one agent has a
greater endowment than another (e.g., it may have higher pri-
ority objectives in a distributed planning environment), the
poorer agent should learn that it can’t compete and focus on
less contentious (and perhaps less valued) resources. An-
other important feature of learning models is that they can be
used to overcome biased or weak prior assessments.

Given the form of the probabilisticmodel described in Sec-
tion 3, an agent can update its estimate of a bid distribution
rather easily. Suppose agent a has parameters h�t1; � � � ; �tmti



that characterize its distributionPrt over the true distributionPrt of high bids for resource rt. After auction At the win-
ning bid w is announced to each agent.10 If a fails to win
the resource, it should update these Dirichlet parameters by
setting �tw to �tw + 1; at the next round, its estimate that the
highest bid will be w is thus increased. If a wins resourcert for price z, the only information it gets about the highest
bid (excluding its own) is that it is less than z. The Dirich-
let parameters can then be updated with an algorithm such as
EM [7]. Roughly, the expectation step computes an update
of the parameters of the Dirichlet using current estimates to
distribute the observation over the parameters �t1; � � � ; �tz�1:
each �tj (j < z) is increased by �tj=Pz�1i=0 �ti . The maxi-
mization step corresponds to the actual update followed by
the substitution of these parameters in Pr. Whereas the EM
algorithm requires an iteration of these two steps until con-
vergence, we performed this iteration about 10 times.11

In the specific probability model developed here, agents
cannot profitably use this updated estimate during the cur-
rent round. Because prices are assumed independent, learn-
ing about one price cannot influence an agent’s bidding strat-
egy for other resources.12 Thus the agent continues to im-
plement the biddingpolicy computed at the start of the round.
The updated bid distributions are used prior to the start of the
next round of auctions to compute an new bidding policy.

As mentioned above, the price-independence assumption
may be unrealistic. If prices are correlated, the observed
price of a resource can impact the estimated price of another
resource that will be available later in the round. Agents in
this case should revise their bidding policies to reflect this
information. Two approaches can be used to deal with cor-
relations. First, agents can simply recompute their bidding
policies during a round based on earlier outcomes. An alter-
native is to model this directly within the MDP itself: this en-
tails making the MDP partially observable, which can cause
computational difficulties.

One thing we do not consider is agents acting strategi-
cally within a round to influence prices at subsequent rounds.
Agents are reasoning “myopically” within a specific round.
By formulating multi-round behavior as a sequential prob-
lem, we could have agents attempting to manipulate prices
for future gain. Our current model does not allow this.

5 Results
We now describe the results of applying this model to some
simple resource allocation problems. These illustrate inter-
esting qualitative behavior such as adaptation and coordina-
tion. We also explain why such behavior arises. In all runs,
multiple rounds are considered and remaining endowment d10Our model can accommodate both more (e.g., the bids of all
agents) and less (e.g., only whether an agent won or lost) revealed
information about the auction outcome rather easily.11Preliminary experiments showed this sufficient.12With correlated prices, an agent could attempt to provide mis-
leading information about its valuation of one resource in order to
secure a later resource at a cheaper price. This type of deception,
studied for identical item auctions in [10], cannot arise within a sin-
gle round in our current model, even if strategic reasoning is used.

is valued at 0:5d (� = 0:5). Agent priors have slightly in-
creasing weights on higher bids.13

The first series of examples illustrates bidding behavior in
allocation problems with specific parameter settings.

Example There are two agents whose optimal bundles are
disjoint: a1 requires b11 = fr1; r3g (value 20) or b12 =fr4; r5; r6g (value 30), while a2 requires b21 = fr2; r3g
(value 20) or b22 = fr7; r8; r9g (value 30). Initially, both
agents focus on the smaller (and lower-valued) bundles.
At the first round,a1 obtains b11, whilea2 gets “stuck” withr2 (a1 outbid it for r3). The next round sees a2 bid less
for r2, and more for r3 (outbidding a1). Since it obtainsb21, it does not attempt to bid for b22. But without b11, and
its estimated prices for resources in b12 lowered, a1 now
bids for and gets b12 (its optimal bundle). Up to the 14th
round, one of the agents gets its best bundle and the other
its worst. At the 14th round, each gets its best bundle, and
after the 16th round, the socially optimal allocation (the
one with maximal total bundle value) is reached each time:
the agents (more or less) “realize” that they need not com-
pete. The agents do “hedge their bets” and still keep bid-
ding for resources r1, r2 and r3. They also offer fairly high
bids for the nonconflicting resources, though these bids are
reduced over time.

This first example shows that optimal allocations will
emerge when agents are not in direct competition. It also il-
lustrates general behavioral phenomenon that occur in almost
all examples. (1) Agents tend to bid more aggressively (ini-
tially) for resources in bundles with smaller size, since the
odds of getting all resources in a larger bundle are lower. (2)
Agents tend to bid more aggressively for resources that occur
later in the sequence. Once an agent obtains all resources in
a bundle but one, the last resource is very valuable (for ex-
ample, in round 16 above, a1 obtains b12 by paying 1 for r4
and r5, and 27 for r6. (3) Agents tend to initially offer high
bids for certain resources, and gradually lower their bids over
time (realizing slowly that there is no competition). For ex-
ample, a1 reduces its bid for r6 to 26 only at round 36. This
is a consequence of the simple priors and belief update rules
we use, and the lack of information it obtains when it wins
the resource consistently: it is not told what the next highest
bid is (it is zero), and can only conclude that it was less than
27, making belief update slow. The equivalent sample size of
our priors also makes adjustment somewhat slow. Domain-
specific (more accurate) priors, and the use of exponential
decay (or finite histories) in price-estimation would alleviate
much of this slowness of response.

Example There are 25 resources and five agents with four
bundles each (with an average of four resources per bun-
dle). There exists an allocation of five disjoint bundles,
one to each agent. For each agent three of the resources
occur only in its bundles, so the agents are competing for
only 10 of the 25 resources. The socially optimal alloca-
tion has value 100. Over fifty rounds, the agents gener-
ally find very good (but not optimal) allocations. Figure 1
shows the value of the allocations obtained at each round,13More realistic priors could reflect perceived demand.
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Figure 1: Behavior over 50 Auction Rounds: 5 agents with
disjoint bundles (optimal allocation has value 100).

as well as the collective “surplus” (total value minus �-
adjusted prices paid). The agents quickly find good alloca-
tions (by the ninth round, no allocation has value less than
88), and also learn to pay less for the resources.

Example An interesting phenomenon emerges in a two-
agent example of [21] that has no price equilibrium: as-
sume resources r1, r2, with a1 valuing bundle fr1; r2g at
6, and a2 valuing either of r1, r2 at 4. The agents have
equal endowments. Though there is no price equilibrium,
in our adaptive protocol a2 wins one of its bundles much
more frequently than a1. It bids for r1, and if it wins it need
not bid for r2; if it loses it can outbida1 for r2 (since a1 has
paid for r1). a2 experiments with r1 and wins it occasion-
ally. a2 gradually lowers its bid for r2 and, since it does
not model correlations in prices, occasionally loses r2, al-
lowing a1 to get both r1 and r2. When this occurs, a2 will
quickly raise its bids and win one of the resources again.
By modeling price correlations, or estimating the require-
ments of a1, agent a2 could guarantee that it obtains one
of its resources (see Section 6).

Example We have 3 resources and 2 agents, each valuingfr1; r2g at 10 and r3 at 5, but differing in initial endow-
ment: a1 begins with 6, a2 with 8. Initially,a1 gets the first
(higher-valued) bundle (at prices 2 and 5) and a2 the sec-
ond (at price 3). By the fourth round, a2 realizes that it can
win r1 with bids of 3 and 5. It spends 8 on fr1; r2g, leav-
ing a1 to bid 4 for r3. These prices persist, with a2 not bid-
ding on r3 and a2 eventually not bidding on r1 or r2. This
illustrates that agents with larger endowments (or less rel-
ative value for money compared to bundles) have greater
odds of obtaining their most important bundles, leaving
“poorer” agents to get what is left.1414This last property is useful for teams if agents with higher pri-

ority objectives are given larger endowments.
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Figure 2: Sample Behavior over 75 Auction Rounds: 5
agents (optimal allocation has value 69)

We also studied the bidding behavior on randomly gener-
ated allocation problems. Here we describe two sets of ex-
periments. In problem set PS1, five allocation problems were
randomly generated with the following characteristics: four
agents are competing for 12 resources with an initial endow-
ment of 30 each; each agent has a random number of needed
bundles (normally distributed with mean 4 and s.d. 1); each
bundle contains a random number of resources (normally dis-
tributedwith mean 3 and s.d. 1, where the resources are them-
selves drawn uniformly from the set of 12); and the value of
each bundle is random (normally distributed with mean 16
and s.d. 3). Problem set PS2 is identical except there are five
agents and the mean number of resources per bundles is 4:
hence problems in PS2 are more constrained, with more com-
petition among the agents.

Typical behavior for one trial from PS2 (the more con-
strained problem set) is shown in Figure 2, which plots the
the value of the allocations obtained at each round, as well
as the collective surplus. The agents find good allocations in
this problem, reaching the (socially) optimal allocation (with
value 69) at many of the rounds. On average, over the 75
rounds, the allocation obtained has value 59 (85% of opti-
mal). Note that once the agents “find” a good allocation, they
may not stick with it—generally such allocations are not in
equilibriumin the sequential game induced by a round of auc-
tions. At the very least, agents have a tendency to attempt to
lower the prices they bid after consistently winning a good,
due to the lack of informationabout what other agents bid and
how they update their beliefs (as mentioned above). This it-
self can cause some instability. The greater cause of instabil-
ity however is the fact that a socially optimal allocation does
not generally make self-interested agents happy.

Other trials illustrate similar qualitative behavior. When
comparing PS1 (the less constrained problem set) to PS2
(the more constrained), we find that the allocations in PS1
have value that is, on average, within 87% of the optimal,
while with PS2, allocations are within 80% of optimal. This
suggests that for less constrained problems, sequential auc-



tions among self-interested agents can lead to allocations
with higher social welfare value. Given that agents “dis-
cover” many different allocations, one might view sequen-
tial auctions as a heuristic search mechanism for combinato-
rial auctions.15 However, we emphasize that the main goal
of our model is to compute bidding policies when combina-
torial and simultaneous auctions are not possible.

6 Concluding Remarks
We have described a model for sequential auctioning of re-
sources that exhibit complementarities for different agents
and described a dynamic programming algorithm for the
computation of optimal bidding policies. We have also illus-
trated how price learning can be used to allow agents to adapt
there bidding policies to those of other agents. The sequen-
tial model can be applied in settings where combinatorial and
simultaneous models are infeasible (e.g., when agents enter
or leave markets over time, or when agents require resources
from multiple sellers). Preliminary results are encouraging
and suggest that desirable behavior often emerges.

We have suggested several possible extensions of the
model, some of which we are currently exploring. These in-
clude developing continuous bidding models, models with
reselling/return, incorporating correlated bid distributions
and exploring the interactions between decision theoretic
planning and bidding for the resources needed to implement
plans and policies.

There are several more immediate directions we hope to
pursue. One is the investigation of models where prices are
estimated with greater weight placed on more recent prices.
Along with correlated price distributions, the use of limited
“opponent” models may be helpful: by identifying which
agents tend to need which resources, a bidder can make more
informed decisions. Additional revealed information about
specific auctions (such as who bid what amount) could also
lead to more informed decisions. This information may be
appropriate in team situations, where distributed decision
makers are not directly in competition.

Apart from such myopic mechanisms, we would also like
to develop a Bayes-Nash equilibrium formulation of the se-
quential model, and study the extent to which myopic mod-
els like our simple learning scheme approximate it. The con-
ditions under which our model converges to interesting allo-
cations (socially optimal allocations, equilibria, etc.) is also
worthy of exploration. Other avenues to be considered are
the development of different auction ordering heuristics to
maximize social welfare, seller’s revenue or other objective
criteria; and the development of generalization methods to
speed up dynamic programming. We are also integrating the
sequential auction model for resource allocation into the gen-
eral planning context described in Section 1.
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