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Abstract

Intelligent agents often need to assess user utility
functions in order to make decisions on their be-
half, or predict their behavior. When uncertainty
exists over the precise nature of this utility function,
one can model this uncertainty using a distribution
over utility functions. This view lies at the core of
games with incomplete information and, more re-
cently, several proposals for incremental preference
elicitation. In such cases, decisions (or predicted
behavior) are based on computing theexpectedex-
pected utility (EEU) of decisions with respect to the
distribution over utility functions. Unfortunately,
decisions made under EEU are sensitive to the pre-
cise representation of the utility function. We ex-
amine the conditions under which EEU provides
for sensible decisions by appeal to the foundational
axioms of decision theory. We also discuss the im-
pact these conditions have on the enterprise of pref-
erence elicitation more broadly.

1 Introduction
Most work on the foundations of decision theory—
specifically on the justification of expected utility—has fo-
cused onpersonal decision making, that is, settings where a
decision is being made by the “holder” of the utility func-
tion. Of course the decision maker may not be fully aware
of (or have fully articulated) her utility function. The pro-
cess of articulation is complex, and much work in decision
analysis deals with preference elicitation and decision fram-
ing to help the decision maker formulate her decision problem
[11]. However, this work is primarily concerned with elicit-
ing enough information about preference tradeoffs to allow
an (approximately) optimal decision to be made. While an
analyst can never be sure about the true nature of the deci-
sion maker’s utility function, this uncertainty is not generally
characterized explicitly, though its impact is often minimized
though sensitivity analysis and related techniques.

Recent emphasis has been placed on the development of
automated decision tools, where a decision is being made
on behalf of a user whose utility function is imprecisely
known. As in goal programming or other forms of inter-
active optimization, a space of possible utility functions is

usually maintained (often by imposing constraints on trade-
off weights). A decision can be made based on this set of
feasible utility functions. For example, Pareto optimal deci-
sions can be identified[21; 18], or models based on mini-
max regret can be used to choose a specific decision[11; 2;
20]. In each of these models, the uncertainty regarding the
utility function is characterized by the feasible utility set.

Somewhat less common is work in which the system’s un-
certainty about a user’s utility function is quantified proba-
bilistically. Some recent examples include[5; 6; 1]. In this
work, a distribution over utility functions is assumed. The
expected utility of a decision is determined not just by taking
expectation over the outcomes of that decision, but also ex-
pectation over the space of possible utility functions. We use
the termexpected expected utility (EEU)to denote the value
of a decision computed in this way. Elicitation strategies can
be informed using the current distribution over utility func-
tions. For example, value of information can be used to de-
termine whether the improvement in decision quality given
by a piece of information outweighs the cost of obtaining
that information. Thus, characterizing one’s uncertainty over
possible utility functions in a probabilistic fashion, and using
EEU to determine decision quality, has much to recommend
it from the point of view of elicitation.

Decision making using distributions over utility functions
has been considered in other contexts. For example, Cyert
and de Groot consider problems in sequential decision mak-
ing in which uncertainty in the underlying utility function is
represented probabilistically[8; 9]. Fishburn[10] also ad-
dresses this problem (as we discuss below). Harsanyi’s for-
mulation of games with incomplete information as Bayesian
games[12; 13] relies critically on distributions over payoff
functions, and virtually the entire literature on in this area
adopts this perspective[7; 15].1

In all of this work, the EEU concept is used to determine
the value of decisions in the context of an uncertain utility
function. Unfortunately, while EEU has an intuitive appeal,
this scheme is sensitive to positive affine transformations of

1In some sense, much work in collaborative filtering[3; 16] and
related models[4] can be viewed as incorporating distributions over
utility functions. However, these are used for purposes of classi-
fication (i.e., determining a unique utility function for a particular
user) and generally uncertainty in utility is not accounted for when
making decisions.



the utility functions in question. Implicit in such a scheme
is a commensurability assumptionthat allows the quantities
present in the different utility functions to be meaningfully
compared and combined. This is not always the case. The
aim of this paper is to describe certain conditions under which
this commensurability assumption can be justified by appeal
to the foundational axioms for decision theory as proposed by
von Neumann and Morgenstern[19] and Savage[17].

The setting we consider is one in which an agent for a de-
cision maker or user is uncertain about the user’s preferences,
but wishes to recommend (or take) decisions on the user’s be-
half. Fishburn[10] has considered the problems of the foun-
dations of expected expected utility from a somewhat differ-
ent perspective. He considers the problem in which a decision
maker is uncertain about the set of consequences she might
face and considers combining utility functions over different
consequence sets. Unfortunately, his results cannot be ap-
plied (except in a trivial way) to the situation above.2

We begin by defining the problem of decision making
given uncertainty over utility functions and the EEU con-
cept. We then examine the sensitivity of EEU to the precise
representation of the underlying utility functions, and pro-
pose an interpretation of utility uncertainty that allows one to
prescribe “canonical” utility function representations under
specific circumstances. We conclude with a brief discussion
of the implications these considerations have for “practical”
elicitation.

2 ExpectedExpected Utility
We begin by establishing notation and basic background with
a quick overview of expected utility and then define the notion
of expected expected utility formally.

2.1 Expected Utility
Assume adecision scenarioconsisting of a finite set of pos-
sibledecisionsD, a finite set of possible outcomes (or states)
S, and a distribution functionPrd ∈ ∆(S), for eachd ∈ D.
The termPrd(s) denotes the probability of outcomes being
realized if the system takes decisiond. Prd(s) can be viewed
as a vectorpd whoseith component isPrd(si) (given a suit-
able enumeration of outcomes inS).

A utility function u : S → R associates utilityu(s)
with each outcomes. We will generally viewu as a|S|-
dimensional vectoru whoseith componentui is u(si).3 The
expected utilityof decisiond w.r.t. u is:

EU(d, u) = pdu =
∑
i∈S

Prd(si)ui.

The optimal decisiond∗ w.r.t. u is that with maximum ex-
pected utility (MEU).

2While our results are general, it is unclear how profitable it is to
model a decision maker’s uncertainty about herownutility function.
It can be argued that such uncertainty should be viewed as “tradi-
tional” uncertainty about future outcomes, context, etc. Rather than
take a stand on this issue, we simply emphasize that an agent can
be genuinely uncertain about a user’s utility function, and that our
model and results apply (in a practical way) to such a setting.

3If u is represented using some more concise model,u is simply
the vector of parameters required for that model.

It is well known that utility functions are invariant under
positive affine transformations. That is, the relative expected
utility of any pair of decisions (in any decision scenario) will
be unaltered by such a transformation of a utility function.
This implies that the optimal decision in any decision sce-
nario is unaffected by such a transformation.

More precisely, von Neumann and Morgenstern equate
[19] (classes of) utility functions with preferences overlotter-
ies. Let〈p1, s1; p2, s2; . . . pn, sn〉, where

∑
i pi = 1, denote a

simple lotteryover outcomes, with each outcomesi obtained
with probabilitypi. As a shorthand, we sometimes omit out-
comes whose probability is zero. Note that an outcomesi is
itself a (trivial) simple lottery, and that each decisiond in-
duces a simple lotteryl(d) over outcomes. Acompound lot-
tery is a lottery whose elements may be further lotteries. Let
� a preference function over lotteries, withl1 � l2 meaning
that l2 is strictly preferred tol2. The relations�, ≺, �, and
∼ are defined in the usual way. Assuming certain (relatively
uncontroversial) axioms restricting the form of the preference
function�, von Neumann and Morgenstern show that there
exists a utility functionu� that exactly represents� in the
following sense:EU(d, u�) > EU(d′, u�) iff l(d) � l(d′).
Furthermore, the utility functionu� is unique up to positive
affine transformation. Because of this, we can partition the
space of utility functions into equivalence classes, each cor-
responding to a unique preference ordering�. We denote this
class by[�].

Several of the axioms used to equate utility functions with
preferences over lotteries are listed here. These are based on
the work of von Neumann and Morgenstern[19] and Savage
[17], though the particular form used here is drawn from[14].
We uses> to denote some most preferred outcome inS (i.e.,
s> � s, ∀s ∈ S), ands⊥ to denote some least preferred
outcome (these are guaranteed to exist due to other axioms).
Monotonicity 〈p, s>; 1 − p, s⊥〉 � 〈q, s>; 1 − q, s⊥〉 iff p ≥ q.

Continuity For eachsi, there is somep such that
si ∼ 〈p, s>; 1 − p, s⊥〉.

Reduction of Compound Lotteries Let l be the lottery
〈p1, l1; . . . ; pn, ln〉 where eachli is a lottery of the form
〈qi

1, l
i
1; . . . ; q

i
m(i), lim(i)〉. Let l̃k, k ≤ K denote theK

(unique) lotteries within the set{lij : i ≤ n, j ≤ m(i)}.
Let r be the (reduced) lottery over the (unique) compo-
nent lotteries̃lk with probability p̃k =

∑{piq
i
j : lij =

l̃k} associated with each̃lk. Thenr ∼ l.

2.2 Uncertainty over Utility Functions
An agent will often not know the user’s utility functionu
with certainty. We model this uncertainty using a densityP
over the set of utility functionsU ⊆ R

|S| (or a distribution
over a finite support set contained inU ). If a system makes a
decisiond under such conditions of uncertainty, the expected
utility of d must reflect this. We consider the following defi-
nition for the expected utility ofd given densityP overU :

EU(d, P ) =
∫

pduP (u)du.

We refer to this as theexpected expected utility (EEU)of de-
cisiond, since it is the expectation ofEU(d, u) w.r.t. P (U).



This definition is precisely that used in[5; 6; 1] in the con-
text of utility elicitation, and also that used in much other
work involving uncertainty over utility[12; 8; 9]. In such
a state of uncertainty—orbelief state—the optimal decision
is that d∗ with maximum EEUEU(d∗, P ). We denote by
EU(P ) the value of being in belief stateP , assuming one is
forced to make a decision:

EU(P ) = max
d∈D

EU(d, P ).

We call this generic decision rulethe MEEU decision rule, by
analogy with the classical MEU decision rule.

EEU seems to be a fairly natural concept given proba-
bilistically quantified uncertainty over utilities. The fact that
it occurs in many different contexts certainly attests to this
fact. Unfortunately, the proposed definition can induce cer-
tain anomalies, as we examine below.

3 Justifying MEEU
3.1 Loss of Invariance
The results of von Neumann and Morgenstern suggest that
the decisions one makes with respect to belief stateP over
U should be invariant to legitimate transformations of the el-
ements ofU . Certainly, this would be a desirable feature of
the MEEU decision rule. One might even claim that the de-
cision rule can only be considered useful if it satisfies this
condition. In general, unfortunately, this is not the case.

As a simple illustration, suppose we have a domain with
two outcomess1 and s2, and a distributionP that assigns
probability 0.5 to u1 = 〈1, 3〉 and probability0.5 to u2 =
〈2, 1〉. Suppose we use the MEEU decision rule in this con-
text, by computing

EU(d, P ) =
∑
ui

∑
sj

pd(sj)ui(sj)P (ui).

and choosing the decisiond∗ with maximum expected utility
EU(d∗, P ). Then a decision that accords higher probability
to s2 will be preferred to one that gives lower probability to
s2. However, if we transformu2 into u′

2 = 〈20, 10〉, the
relative utilities of these decisions will be reversed. Thus, the
MEEU decision rule is not insensitive to transformations of
individual utility functions with positive support. Note that
we are not suggesting that agent’s will arbitrarily transform
some utility functions and not others.4 Rather, the question
is: which representation of a specific utility function (e.g.,u2

in the example) should be adopted in the first place?
One possible way to deal with this problem is to recognize

that a utility function is simply a convenient (and nonunique)
way of expressing preferences over lotteries. Rather than
working with utility functions, we could work explicitly with
a density over preference functions (in fact, we will do this
implicitly below). Unfortunately, the set of lotteries over
which a preference ordering is defined is uncountable; there-
fore, some compact representation (of theindividual prefer-
ence functions) is needed. But this is precisely the role of

4If the same transformation is applied to all functions with posi-
tive support, the MEEU decision is unchanged.

a utility function—to serve as a concise representation of a
preference function over lotteries.

This gives rise to the question of how to choose a repre-
sentative utility function from each equivalence class[�] that
allows formal justification of the MEEU decision rule, and
under what circumstances such representatives exist.

3.2 A Lottery Interpretation of MEU
We give a formal justification for the MEEU rule under a spe-
cific condition:we assume the existence of a known best and
worst outcome. That is, each utility function with positive
support has the same best outcomes> and worst outcomes⊥.
We also insist that the user is not indifferent to these alterna-
tives, that is, thats> must be strictly preferred tos⊥.5 We call
such utility functionsextremum equivalent. In many settings,
such as those involving active preference elicitation, restrict-
ing attention to a set of extremum equivalent utility functions
is not problematic. One simply needs to ask the user to iden-
tify her most and least preferred outcomes (these need not be
unique, but only one such representative need be identified).

Once we know outcomess> ands⊥, we insist that our be-
lief stateP assign nonzero measure only to normalized utility
functionsu in whichu(s>) = c> andu(s⊥) = c⊥ for some
constantsc> > c⊥. For convenience, we will assumec> = 1
andc⊥ = 0, but nothing crucial depends on these choices.
Under these conditions, every preference ordering� for lot-
teries has a unique utility function representation satisfying
the normalization constraints.

We note that each preference ordering corresponds to a
unique set of indifference conditions between outcomes and
standard lotteries. Astandard lotteryis one of the form
〈p, s>; 1 − p, s⊥〉. By the Continuity Axiom, we have, for
each outcomesi and each preference ordering�,

si ∼ 〈p�i , s>; 1 − p�i , s⊥〉,
for some uniquep�i . We denote byl(�, si) this standard lot-
tery. This implies thatu�(si) = p�i in the normalized utility
functionu� corresponding to�.6

Now given a belief stateP , how does one compare the
value of different decisionsd? This can be reduced to a ques-
tion of how one compares the value of guaranteed outcomes
si, since decisions are just lotteries over outcomes. Given
a particular preference ordering�, we havesi ∼ l(�, si).
However, the choice facing the agent for the decision maker
involves uncertainty over the true preference ordering. Thus,
we can view the outcomesi as a compound lottery, where first
a preference ordering is chosen according to distributionP ,
and then the standard gamble involvingsi is played. This will
induce a new preference ordering�P over outcomes (and de-
cisions). We illustrate this for the case of a discrete distribu-
tion over two preference orderings� and�′, with probabil-
ities q and1 − q respectively. In this case, the outcomesi is
equated with the compound lottery

si ∼ 〈q, l(�, si); 1 − q, l(�′, si)〉.
5If s> ∼ s⊥, then the decision problem is trivial since each

decision is equally preferred. Indeed, in some axiomatizations, non-
triviality is imposed on legitimate preferences[11].

6If the normalizing constants differ from 0/1, then utility is some
linear function ofp�

i . This has no impact on our argument.



By reduction of compound lotteries, this means that

si ∼P 〈q·p�
i +(1−q)·p�′

i , s>; q·(1−p�
i )+(1−q)·(1−p�′

i ), s⊥〉.
Similarly, for any other outcomesj , we have

sj ∼P 〈q·p�
j +(1−q)·p�′

j , s>; q·(1−p�
j )+(1−q)·(1−p�′

j ), s⊥〉.
By the Monotonicity Axiom, we havesi �P sj iff

q · p�i + (1 − q) · p�′
i > q · p�j + (1 − q) · p�′

j .

Sincep�i = u�(si) (and similarly for the other terms), we
havesi �P sj iff EU(si, P ) > EU(sj , P ) (where we em-
phasize that here we are treating outcomes as deterministic
decisions that guarantee the corresponding outcomes).7 From
this one can easily show that for any two decisionsd, d′
(that induce distributions over outcomes),l(d) �P l(d′) iff
EU(d, P ) > EU(d′, P ).

This argument applies to arbitrary discrete distributions,
and can be generalized to continuous densities as follows:

si �P sj

iff

〈∫
U

l(�u, si)
〉

�P

〈∫
U

l(�u, sj)
〉

iff

〈∫
U

p�u

i P (u), s>; 1 −
∫

U

p�u

i P (u), s⊥

〉
�P

〈∫
U

p�u

j P (u), s>; 1 −
∫

U

p�u

j P (u), s⊥

〉

iff
∫

U

p�u

i P (u) >

∫
U

p�u

j P (u)

iff
∫

U

u(si)P (u) >

∫
U

u(sj)P (u)

iff EU(si, P ) > EU(sj , P )

Here the first step refers to a compound lottery over an con-
tinuous set of component (simple) lotteries, while we assume
in second step that a such a compound lottery can be reduced
to a simple lottery in an analogous way to the reduction of a
finite compounded lottery.

Thus under the assumption that one can identify a best and
worst outcome, the MEEU decision rule can be justified for
use with normalized (extremum equivalent) utility functions
by appeal to the foundational axioms of decision theory, and
an interpretation of uncertainty over utility as a lottery over
the lotteries defined by the component utility functions.

We now formalize the legitimacy of EEU and MEE.

Definition 1 Let {�i} be a set of extremum equivalent pref-
erence relations with respect to finite outcome setS, with best
and worst outcomess> ands⊥, respectively. LetP be a den-
sity over{�i}. For any�i, let p�i

s denote the tradeoff prob-
ability for states in its standard gamble w.r.t.�i; that is,

s ∼ 〈p�i
s , s>; 1 − p�i

s , s⊥〉.
7Note that if we chose other normalizing constants for our best

and worst outcomes, then we would have thatu�(si) is some linear
function ofp�

i ; but this linear function is identical for each term in
the equation, so the conclusion holds.

Theaggregate standard gamblefor s ∈ S induced by{�i}
andP is defined:〈∫

�i

p�i
s P (�i), s>; 1 −

∫
�i

p�u
s P (�i), s⊥

〉
.

Let l be any lottery w.r.t.S. Theaggregate reduction ofl is
the standard gamble

RP (l) = 〈pl
P , s>; 1 − pl

P , s⊥〉
obtained by replacing every outcomes in l by its aggregate
standard gamble and reducing it to a standard gamble in the
usual fashion. Theaggregate preference relation� (w.r.t. S)
induced by{�i} andP is given by

l1 � l2 iff pl1
P > pl2

P .

Theorem 1 Let {�i} andP be defined as above. Let{ui}
be a set of utility functions (one for each�i, consistent with
�i) such thatui(s>) = c> andui(s⊥) = c⊥, for all ui and
two fixed constantsc> > c⊥ ≥ 0. Then the utility function
u(s) =

∫
�i

ui(s)P (�i) is consistent with the aggregate pref-
erence relation� induced by{�i} andP .

Extremum equivalence is thus sufficient to ensure commen-
surability, as it puts all utility functions on a common scale. It
is important to realize that the scale dictated by the best and
worst outcomescannot vary, since these are truly best and
worst outcomes; we return to this point below. It appears to
be much more difficult to apply this type of argument to den-
sities over utility functions that are not extremum equivalent.

Fishburn[10] considers the problem of EEU when a deci-
sion maker is uncertain about the nature of the consequence
sets she will face. He proposes foundational axioms that jus-
tify the use EEU to compare decisions. However, the setting
is rather different: specifically, Fishburn requires that any
consequences that two utility functions have in common be
ranked identically. In our context, where each utility function
lies over the same consequence set, the Fishburn axioms im-
pose overly stringent requirements. It is interesting to note
that Fishburn requires something akin to extremum equiva-
lence, namely, that there exist two consequences common to
the domains of each utility function such that one of the con-
sequences is preferred to the other in each function.

4 Dealing with Small Worlds
It is important to realize that the best and worst outcomes
with which one calibrates must either be truly best and worst
outcomes from the decision maker’s standpoint, or they them-
selves must be calibrated. Using Savage’s[17] terminology,
we must be careful to distinguish “small worlds” reasoning
from “grand worlds.” Consider the case where the set of out-
comes is restricted to the subset of outcomes that are possible
given the set of actions in a specific decision scenario. But
assume there exist outcomes outside the domain of the re-
stricted scenario for which the user has concrete preferences.
Let’s refer to the set of restricted outcomes aslocal, while the
space of all outcomes isglobal.



We might imagine determining the best and worstlocal
outcomes,sl

> andsl
⊥, respectively, and engaging in the elic-

itation process using standard gambles with respect to these
extreme local outcomes. Unfortunately, this is not sufficient
to justify the MEEU decision rule. The difficulty is that the
user’s degrees of preference forsl

> andsl
⊥ may themselves

be characterized by uncertainty. Specifically,sl
> can be

equated with a standard gamble〈pl
>, s>; 1 − pl

>, s⊥〉 (where
s>, s⊥ denote the globally best and worst outcomes). Sim-
ilarly, sl

⊥ ∼ 〈pl
⊥, s>; 1 − pl

⊥, s⊥〉. But the relevant gamble
probabilities—pl

> andpl
⊥—mayvarywith the utility function

and will not be known if attention is restricted to thesmall
worlds domain. As a consequence, our distribution overlo-
cal utility functions is insufficient to justify MEEU.

To illustrate, suppose that we believe the user’s utility func-
tion is eitheru1 (with probabilityq1) or u2 (with probability
q2 = 1−q1). Furthermore, suppose that we consider only the
projection of these onto the set of local outcomes, calibrat-
ing two outcomessi andsj with respect to “local” standard
gambles. Suppose that we have the following tradeoffs with
respect to the local extrema inu1:

si ∼1 〈p1
i , s

l
>; (1 − p1

i ), s
l
⊥〉

sj ∼1 〈p1
j , s

l
>; (1 − p1

j), s
l
⊥〉

and similarly inu2:

si ∼2 〈p2
i , s

l
>; (1 − p2

i ), s
l
⊥〉

sj ∼2 〈p2
j , s

l
>; (1 − p2

j), s
l
⊥〉.

Using EEU, we have

si ∼〈q1p
1
i + q2p

2
i , s

l
>; q1(1 − p1

i ) + q2(1 − p2
i ), s

l
⊥〉

sj ∼〈q1p
1
j + q2p

2
j , s

l
>; q1(1 − p1

j) + q2(1 − p2
j), s

l
⊥〉.

Now, were we to place thissmall worldin thegrand world
context, we might say that the local best and worst outcomes,
sl
> andsl

⊥, have specific lottery probabilities with respect to
the global utility functions. Let’s assume that we have

sl
> ∼1 〈p1

>, s>; (1 − p1
>), s⊥〉

sl
⊥ ∼1 〈p1

⊥, s>; (1 − p1
⊥), s⊥〉

sl
> ∼2 〈p2

>, s>; (1 − p2
>), s⊥〉

sl
⊥ ∼2 〈p2

⊥, s>; (1 − p2
⊥), s⊥〉.

In other words, in (the normalized, global counterpart of) util-
ity function u1, we haveu1(sl

>) = p1
> andu1(sl

⊥) = p1
⊥;

while in u2 we haveu2(sl
>) = p2

> andu2(sl
⊥) = p2

⊥. Apply-
ing EEU and reduction of compound lotteries, we see that

si ∼
〈p1

>q1p
1
i + p2

>q2p
2
i + p1

⊥q1(1 − p1
i ) + p2

⊥q2(1 − p2
i ), s>;

(1 − p1
>)q1p

1
i + (1 − p2

>)q2p
2
i

+ (1 − p1
⊥)q1(1 − p1

i ) + (1 − p2
⊥)q2(1 − p2

i ), s⊥〉
and

sj ∼
〈p1

>q1p
1
j + p2

>q2p
2
j + p1

⊥q1(1 − p1
j) + p2

⊥q2(1 − p2
j), s>;

(1 − p1
>)q1p

1
j + (1 − p2

>)q2p
2
j

+ (1 − p1
⊥)q1(1 − p1

j) + (1 − p2
⊥)q2(1 − p2

j), s⊥〉.

Hence,si � sj iff

p1
>q1p

1
i + p2

>q2p
2
i + p1

⊥q1(1 − p1
i ) + p2

⊥q2(1 − p2
i )

>p1
>q1p

1
j + p2

>q2p
2
j + p1

⊥q1(1 − p1
j) + p2

⊥q2(1 − p2
j).

Unfortunately, this condition is not equivalent to the MEEU
rule in the original small worlds domain. Specifically, this
condition cannot generally be assessed without having some
assessment of the global tradeoff probabilitiesp1

>, etc. In
other words, to accurately compare two small world out-
comes given uncertainty about thelocal utility functions, we
have to explicitly assess our uncertainty about therangeof
values the local extrema can take with respect to theglobal
utility function. Thus while one can generally use small world
reasoning in the classic decision-theoretic setting, its use is
problematic in the EEU framework.

Fortunately, the MEEU principle can be recovered if we
make one simple assumption: that the global tradeoffs asso-
ciated with the best and worst local outcomes do not vary
with the utility function (at least, with those utility functions
having positive support). For example, to continue with the
illustration above, suppose that the tradeoff probabilities as-
sociated with the two utilitiesu1 andu2 are identical; that
is, p1

> = p2
> andp1

⊥ = p2
⊥. (Whether the probabilities are

known is irrelevant, all that matters is that they are known to
be identical.) If this is so we havesi � sj iff

p1
>(q1p

1
i + q2p

2
i ) + p1

⊥(q1(1 − p1
i ) + q2(1 − p2

i ))

>p1
>(q1p

1
j + q2p

2
j) + p1

⊥(q1(1 − p1
j) + q2(1 − p2

j))

Since the inner terms in each expression sum to one, and
p1
> > p1

⊥ (sincesl
> � sl

⊥), we must havesi � sj iff

q1p
1
i + q2p

2
i > q1p

1
j + q2p

2
j

This, of course, is the expression for MEEU.
Indeed, we don’t have to assume that the global tradeoff

probabilities are fixed. It is sufficient to assume that the un-
known range of (global) utility spanned bysl

> andsl
⊥ is prob-

abilistically independent of the unknown local utility function
u. This too is sufficient to allow MEEU to be used justifiably.
We omit the argument, which is straightforward.

5 Consequences for Preference Elicitation
The considerations above have implications for practical pref-
erence elicitation. From a foundational perspective, calibra-
tion of utilities relative to known best and worst outcomes is
required if decisions are to be based on EEU. In the case of
incremental elicitation, where EEU is used to determine value
of information, we must first obtain a prior over a set of ex-
tremum equivalent utility functions before engaging in such
deliberations. Fortunately, it often seems to make sense to
determine best and worst outcomes beforehand, and engage
in “serious” elicitation after this initial calibration.

Another important question: how does one determine pri-
ors over utility functions? Utility function databases[4] could
be used. This poses some problems regarding interpersonal
utility comparison for which there are no especially com-
pelling solutions. When using EEU, things are a bit worse:
we need to construct priors conditioned on the observed or



elicited best and worst outcomes. Given a prior over arbitrary
utility functions, as long as decisions using EEU are not made
until the determination of best and worst outcomes is com-
pleted, this poses no difficulties. An alternative, in certain
scenarios, is to suppose that certain outcomes are universally
most and least preferred (e.g., in medical contexts, death can
be used as the latter). This may be hard to justify formally,
but from a practical point of view will be quite useful and
(one hopes) have little impact on actual decision quality.

The issue of small worlds also poses certain problems.
From the point of view of practical elicitation, the prospect
of calibrating some small set of relevant outcomes using a
user’s “global” utility function is unappealing. Fortunately,
as argued above, for a given individual, strength of prefer-
ence can be assumed fixed for the best and worst outcomes,
which allows things to carry through. Strength of preference
may prove to be important however when trading off the in-
crease in EEU with the effort associated with the elicitation
process. Furthermore, this can have an important impact on
the construction of priors from databases of utility functions.

6 Concluding Remarks
Decision making when the underlying utility function is un-
known is an important problem in game theory, interactive
optimization, and preference elicitation. Quantifying this un-
certainty using distributions over utility functions has a num-
ber of appealing qualities, and quite naturally leads to the no-
tion of expectedexpected utility, a concept that has been used
in several different lines of research.

The aim of this paper is to point out that expectations taken
with respect to utility function distributions require some
care. More precisely, the operation of expected expected util-
ity only makes sense (from a foundational standpoint) when
the distribution is over extremal equivalent utility functions.
While this has certain implications for practical utility elic-
itation, we have argued that this requirement is not overly
stringent from a practical perspective.
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