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Abstract

Reinforcement learning can provide a robust and natural
means for agents to learn how to coordinate their action
choices in multiagent systems. We examine some of the fac-
tors that can influence the dynamics of the learning process in
such a setting. We first distinguish reinforcement learners that
are unaware of (or ignore) the presence of other agents from
those that explicitly attempt to learn the value of joint actions
and the strategies of their counterparts. We study (a simple
form of) Q-learning in cooperative multiagent systems under
these two perspectives, focusing on the influence of that game
structure and exploration strategies on convergence to (opti-
mal and suboptimal) Nash equilibria. We then propose alter-
native optimistic exploration strategies that increase the like-
lihood of convergence to an optimal equilibrium.

1 Introduction

The application of learning to the problem of coordina-
tion in multiagent systems (MASs) has become increasingly
popular in AI and game theory. The use of reinforcement
learning (RL), in particular, has attracted recent attention [22,
20, 16, 11, 7, 15]. As noted in [16], using RL as a means
of achieving coordinated behavior is attractive because of its
generality and robustness.

Standard techniques for RL, for example, Q-learning [21],
have been applied directly to MASs with some success.
However, a general understanding of the conditions under
which RL can be usefully applied, and exactly what form
RL might take in MASs, are problems that have not yet been
tackled in depth. We might ask the following questions:� Are there differences between agents that learn as if there

are no other agents (i.e., use single agent RL algorithms)
and agents that attempt to learn both the values of specific
joint actions and the strategies employed by other agents?� Are RL algorithms guaranteed to converge in multiagent
settings? If so, do they converge to (optimal) equilibria?� How are rates of convergence and limit points influenced
by the system structure and action selection strategies?

In this paper, we begin to address some of these questions in
a specific context, namely, repeated games in which agents
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have common interests (i.e., cooperative MASs). We focus
our attention on a simplified form of Q-learning, due to its
relative simplicity (certainly not for its general efficacy), con-
sider some of the factors that influence the dynamics of mul-
tiagent Q-learning, and provide partial answers to these ques-
tions. Though we focus on an simple setting, we expect many
of our conclusions to apply more broadly.

We first distinguish and compare two forms of multiagent
RL (MARL). Independent learners (ILs) apply Q-learning in
the classic sense, ignoring the existence of other agents. Joint
action learners (JALs), in contrast, learn the value of their
own actions in conjunction with those of other agents via
integration of RL with equilibrium (or coordination) learn-
ing methods [24, 5, 6, 9]. We then briefly consider the im-
portance of exploitive exploration strategies and examine,
through a series of examples, how game structure and explo-
ration strategies influence the dynamics of the learning pro-
cess and the convergence to equilibrium. We show that both
JALs and ILs will converge to an equilibrium in this spe-
cific setting of fully cooperative, repeated games. In fact,
even though JALs have much more information at their dis-
posal, they do not perform much differently from ILs in the
straightforward application of Q-learning to MASs. We also
observe that in games with multiple equilibria, optimality of
the “agreed upon” equilibrium is not assured. We then de-
scribe several optimistic exploration strategies, designed to
increase the likelihood of reaching an optimal equilibrium.
This provides one way of having JALs exploit the additional
information that they possess. We conclude with a discus-
sion of related work and mention several issues that promise
to make the integration of RL with coordination learning an
exciting area of research for the foreseeable future.

2 Preliminary Concepts and Notation
2.1 Single Stage Games
Our interest is in the application of RL algorithms to sequen-
tial decision problems in which the system is being controlled
by multiple agents. However, in the interests of simplicity,
our investigations in this paper are focussed on n-player co-
operative (or common interest) repeated games. Sequential
optimalitywill not be of primary interest, though we will dis-
cuss this issue in Sections 5 and 6).1 We can view the prob-1Many of our conclusions hold mutatis mutandis for sequential,
multiagent Markov decision processes [2] with multiple states; but



lem at hand, then, as a distributed bandit problem.
More formally, we assume a collection � of n (heteroge-

neous) agents, each agent i 2 � having available to it a finite
set of individual actions Ai. Agents repeatedly play a stage
game in which they each independently select an individual
action to perform. The chosen actions at any point consti-
tute a joint action, the set of which is denoted A = �i2�Ai.
With each a 2 A is associated a distributionover possible re-
wards; though the rewards are stochastic, for simplicity, we
often simply refer to the expected rewardR(a). The decision
problem is cooperative since each agent’s reward is drawn
from the same distribution, reflecting the utility assessment
of all agents. The agents wish to choose actions that maxi-
mize (expected) reward.

We adopt some standard game theoretic terminology [13].
A randomized strategy for agent i is a distribution � 2�(Ai) (where �(Ai) is the set of distributions over the
agent’s action set Ai). Intuitively, �(ai) denotes the proba-
bility of agent i selecting the individual action ai. A strategy� is deterministic if �(ai) = 1 for some ai 2 Ai. A strat-
egy profile is a collection � = f�i : i 2 �g of strategies
for each agent i. The expected value of acting according to
a fixed profile can easily be determined. If each �i 2 � is
deterministic, we can think of � as a joint action. A reduced
profile for agent i is a strategy profile for all agents but i (de-
noted ��i). Given a profile ��i, a strategy �i is a best re-
sponse for agent i if the expected value of the strategy profile��i [ f�ig is maximal for agent i; that is, agent i could not
do better using any other strategy �0i. Finally, we say that the
strategy profile � is a Nash equilibrium iff �[i] (i’s compo-
nent of �) is a best response to ��i, for every agent i. Note
that in cooperative games, deterministic equilibria are easy
to find. An equilibrium (or joint action) is optimal if no other
has greater value.

As an example, consider the simple two-agent stage game:a0 a1b0 x 0b1 0 y
Agents A and B each have two actions at their disposal,a0; a1 and b0; b1, respectively. If x > y > 0, ha0; b0i andha1; b1i are both equilibria, but only the first is optimal: we
would expect the agents to play ha0; b0i.
2.2 Learning in Coordination Games
Action selection is more difficult if there are multiple opti-
mal joint actions. If, for instance, x = y > 0 in the example
above, neither agent has a reason to prefer one or the other
of its actions. If they choose them randomly, or in some way
reflecting personal biases, then they risk choosing a subopti-
mal, or uncoordinated joint action. The general problem of
equilibrium selection [13] can be addressed in several ways.
For instance, communication between agents might be ad-
mitted [22] or one could impose conventions or rules that re-
strict behavior so as to ensure coordination [18]. Here we
entertain the suggestion that coordinated action choice might
be learned through repeated play of the game with the same
agents [5, 6, 9, 11]. (Repeated play with a random selection
of similar agents from a large population has also been the
object of considerable study [17, 10, 24].)

we will see that interesting issues emerge.

One especially simple, yet often effective, learning model
for achieving coordination is fictitiousplay [3, 5]. Each agenti keeps a countCjaj , for each j 2 � and aj 2 Aj , of the num-
ber of times agent j has used action aj in the past. When
the game is encountered, i treats the relative frequencies of
each of j’s moves as indicative of j’s current (randomized)
strategy. That is, for each agent j, i assumes j plays actionaj 2 Aj with probability Priaj = Cjaj=(Pbj2Aj Cjbj ). This
set of strategies forms a reduced profile��i, for which agenti adopts a best response. After the play, i updates its counts
appropriately, given the actions used by the other agents. We
think of these counts as reflecting the beliefs an agent has re-
garding the play of the other agents (initial counts can also be
weighted to reflect priors).

This simple adaptive strategy will converge to an equilib-
rium in our simple cooperative games assuming that agents
randomize when multiple best responses exist [12], and can
be made to converge to an optimal equilibrium if appropriate
mechanisms are adopted [1]; that is, the probability of coor-
dinated equilibrium after k interactions can be made arbitrar-
ily high by increasing k sufficiently. It is also not hard to see
that once the agents reach an equilibrium, they will remain
there—each best response reinforces the beliefs of the other
agents that the coordinated equilibrium remains in force.

We note that most game theoretic models assume that each
agent can observe the actions executed by its counterparts
with certainty. As pointed out and addressed in [1, 7], this as-
sumption is often unrealistic. A more general model allows
each agent to obtain an observation which is related stochas-
tically to the actual joint action selected, where Pra(o) de-
notes the probability of observation o being obtained by all
agents when joint action a is performed. We will not investi-
gate this model further, but mention it here since it subsumes
the two special cases we describe below.

2.3 Reinforcement Learning
Action selection is more difficult still if agents are unaware
of the rewards associated with various joint actions. In such
a case, reinforcement learning can be used by the agents to
estimate, based on past experience, the expected reward as-
sociated with individual or joint actions. We refer to [8] for
a survey of RL techniques.

A simple, well-understood algorithm for single agent
learning is Q-learning [21]. The formulation of Q-learning
for general sequential decision processes is more sophisti-
cated than we need here. In our stateless setting, we assume a
Q-value, Q(a), that provides an estimate of the value of per-
forming (individual or joint) action a. An agent updates its
estimate Q(a) based on sample ha; ri as follows:Q(a) Q(a) + �(r � Q(a)) (1)

The sample ha; ri is the “experience” obtained by the agent:
action a was performed resulting in reward r. Here � is
the learning rate (0 � � � 1), governing to what extent
the new sample replaces the current estimate. If � is de-
creased “slowly” during learning and all actions are sampled
infinitely, Q-learning will converge to true Q-values for all
actions in the single agent setting [21].22Generally,Q(a; s) is taken to denote the long-term value of per-



Convergence of Q-learning does not depend on the ex-
ploration strategy used. An agent can try its actions at any
time—there is no requirement to perform actions that are cur-
rently estimated to be best. Of course, if we hope to enhance
overall performance during learning, it makes sense (at least
intuitively) to bias selection toward better actions. We can
distinguish two forms of exploration. In nonexploitive explo-
ration, an agent randomly chooses its actions with uniform
probability. There is no attempt to use what was learned to
improve performance—the aim is simply to learn Q-values.
In exploitive exploration an agent chooses its best estimated
action with probability px, and chooses some other action
with probability 1 � px. Often the exploitation probabilitypx is increased slowly over time. We call a nonoptimal action
choice an exploration step and 1� px the exploration prob-
ability. Nonoptimal action selection can be uniform during
exploration, or can be biased by the magnitudes of Q-values.
A popular biased strategy is Boltzmann exploration: action a
is chosen with probabilityeQ(a)=TPa0 eQ(a0)=T (2)

The temperature parameter T can be decreased over time so
that the exploitation probability increases (and can be done
in such a way that convergence is assured [19]).

The existence of multiple agents, each simultaneously
learning, is a potential impediment to the successful employ-
ment of Q-learning (or RL generally) in multiagent settings.
When agent i is learning the value of its actions in the pres-
ence of other agents, it is learning in a nonstationary environ-
ment. Thus, the convergence of Q-values is not guaranteed.
Naive application of Q-learning to MASs can be successful if
we can ensure that each agent’s strategy will eventually “set-
tle.” This is one of the questions we explore below. Applica-
tion of Q-learning and other RL methods have met with some
success in the past [22, 16, 17, 15].

There are two distinct ways in which Q-learning could be
applied to a multiagent system. We say a MARL algorithm
is an independent learner (IL) algorithm if the agents learn
Q-values for their individual actions based on Equation (1).
In other words, they perform their actions, obtain a reward
and update their Q-values without regard to the actions per-
formed by other agents. Experiences for agent i take the formhai; ri where ai is the action performed by i and r is a re-
ward. If an agent is unaware of the existence of other agents,
cannot identify their actions, or has no reason to believe that
other agents are acting strategically, then this is an appropri-
ate method of learning. Of course, even if these conditions
do not hold, an agent may choose to ignore informationabout
the other agents’ actions.

A joint action learner (JAL) is an agent that learns Q-
values for joint actions as opposed to individual actions. The
experiences for such an agent are of the form ha; ri where a
is a joint action. This implies that each agent can observe the

forming action a in state s, and incorporates consideration of the
values of possible states s0 to which action a leads. This learning
method is, in fact, a basic stochastic approximation technique [14].
We use (perhaps, misuse) theQ notation and terminology to empha-
size the connection with action selection.

actions of other agents. The contrast between ILs and JALs
can be illustrated in our example above: if A is an IL, then
it will learn Q-values for actions a0 and a1; if A is a JAL, it
will learn Q-values for all four joint actions, ha0; b0i, etc.

For JALs, exploration strategies require some care. In the
example above, if A currently has Q-values for all four joint
actions, the expected value of performing a0 or a1 depends
crucially on the strategy adopted byB. To determine the rela-
tive values of their individual actions, each agent in a JAL al-
gorithmmaintains beliefs about the strategies of other agents.
Here we will use empirical distributions, possibly with ini-
tial weights as in fictitious play. Agent A, for instance, as-
sumes that each other agent B will choose actions in accor-
dance with A’s current beliefs about B (i.e., A’s empirical
distribution over B’s action choices). In general, agent i as-
sesses the expected value of its individual action ai to be

EV(ai) = Xa�i2A�i Q(a�i [ faig)Yj 6=ifPria�i [j]g
Agent i can use these values just as it would Q-values in im-
plementing an exploration strategy.3

We note that both JALs and ILs can be viewed as special
cases of the partially observable model mentioned above, by
allowing experiences of the form hai; o; riwhere ai is the ac-
tion performed by i, and o is its (joint action) observation. A
preliminary version of this paper [4] studies the methods be-
low within this model.

3 Comparing Independent and Joint-Action
Learners

We first compare the relative performance of independent
and joint-action learners on a simple coordination game of
the form described above: a0 a1b0 10 0b1 0 10
The first thing to note is that ILs using nonexploitive explo-
ration will not deem either of their choices (on average) to
be better than the other. For instance, A’s Q-values for both
action a0 and a1 will converge to 5, since whenever, say, a0
is executed, there is a 0:5 probability of b0 and b1 being ex-
ecuted. Of course, at any point, due to the stochastic nature
of the strategies and the decay in learning rate, we would ex-
pect that the learned Q-values will not be identical; thus the
agents, once they converge, might each have a reason to pre-
fer one action to the other. Unfortunately, these biases need
not be coordinated.

Rather than pursuing this direction, we consider the case
where both the ILs and JALs use Boltzmann exploration
(other exploitive strategies could be used). Exploitation of
the known values allows the agents to “coordinate” in their
choices for the same reasons that equilibrium learning meth-
ods work when agents know the reward structure. Figure 1
shows the probability of two ILs and JALs selecting an op-3The expression for EV(ai) makes the justifiable assumption
that the other agents are selecting their actions independently. Less
reasonable is the assumption that these choices are uncorrelated, or
even correlated with i’s choices. Such correlations can often emerge
due to the dynamics of belief updating without agents being aware
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Figure 1: Convergence of coordination for ILs and JALs (av-
eraged over 100 trials).

timal joint action as a function of the number of interactions
they have. The temperature parameter isT = 16 initiallyand
decayed by a factor of 0:9t at the t+ 1st interaction. We see
that ILs coordinate quite quickly. There is no preference for
either equilibrium point: each of the two equilibria was at-
tained in about half of the trials. We do not show convergence
of Q-values, but note that the Q-values for the actions of the
equilibria attained (e.g., ha0; b0i) tended to 10 while the other
actions tended to 0. Probability of optimal action selection
does not increase smoothly within individual trials; the av-
eraged probabilities reflect the likelihood of having reached
an equilibrium by time t, as well as exploration probabilities.
We also point out that much faster convergence can be had
for different parameter settings (e.g., decaying temperatureT more rapidly). We defer general remarks on convergence
to Section 4.

The figure also shows convergence for JALs under the
same circumstances. JALs do perform somewhat better after
a fixed number of interactions, as shown in the graph. While
the JALs have more information at their disposal, conver-
gence is not enhanced dramatically. In retrospect, this should
not be too surprising. While JALs are able to distinguish Q-
values of different joint actions, their ability to use this infor-
mation is circumscribed by the action selection mechanism.
An agent maintains beliefs about the strategy being played
by the other agents and “exploits” actions according to ex-
pected value based on these beliefs. In other words, the value
of individual actions “plugged in” to the exploration strategy
is more or less the same as the Q-values learned by ILs—the
only distinction is that JALs compute them using explicit be-
lief distributions and joint Q-values instead of updating them
directly. Thus, even though the agents may be fairly sure of
the relative Q-values of joint actions, Boltzmann exploration
does not let them exploit this.4
of this correlation, especially if frequencies of particular joint ac-
tions are ignored.4The key reason for the difference in ILs and JALs is the larger
difference in Q-values for JALs, which bias Boltzmann exploration
slightly more toward the estimated optimal action. Note that other
exploitive strategies alleviate this problem to a certain degree.
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Figure 2: Likelihood of convergence to opt. equilibrium as a
function of penalty k (averaged over 100 trials).

4 Convergence and Game Structure

In the simple game considered above, it isn’t difficult to see
that both independent Q-learners and joint action Q-learners
will converge on equilibria, as long as an exploitive explo-
rationstrategy with decreasing exploration is used. However,
convergence is not always so smooth as illustrated in Fig-
ure 1. We know consider the ways in which the game struc-
ture can influence the dynamics of the learning process.

Consider the following class of games, with a variable (ex-
pected) penalty k � 0. a0 a1 a2b0 10 0 kb1 0 2 0b2 k 0 10

This game (for any penalty) has three deterministic equi-
libria, of which two (ha0; b0i, ha2; b2i) are preferred. If, say,k = �100, during initial explorationagentAwill find its first
and third actions to be unattractive because of B’s random
exploration. IfA is an IL, the average rewards (and hence Q-
values) for a0; a2 will be quite low; and if A is a JAL, its be-
liefs aboutB’s strategy will afford these actions low expected
value. Similar remarks apply to B, and the self-confirming
nature of equilibria virtually assure convergence to ha1; b1i.
However, the closer k is to 0, the lower the likelihood the
agents will find their first and third actions unattractive—
the stochastic nature of exploration means that, occasion-
ally, these actions will have high estimated utility and con-
vergence to one of the optimal equilibria will occur. Figure 2
shows how the probability of convergence to one of the opti-
mal equilibria is influenced by the magnitude of the “penalty”k. Not surprisingly, different equilibria can be attained with
different likelihoods.5

Thus far, our examples show agents proceeding on a direct
route to equilibria (albeit at various rates, and with destina-
tions “chosen” stochastically). Unfortunately, convergence
is not so straightforward in general. Consider the following
climbing game:5These results are shown for JALs; but the general pattern holds
true for ILs as well.
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Figure 4: B’s strategy in climbing gamea0 a1 a2b0 11 �30 0b1 �30 7 6b2 0 0 5
Initially, the two learners are almost certainly going to begin
to play the nonequilibrium strategy profile ha2; b2i. This is
seen clearly in Figures 3, 4 and 5.6 However, once they “set-
tle” at this point, as long as exploration continues, agent B
will soon find b1 to be more attractive—so long as A contin-
ues to primarily choose a2. Once the nonequilibrium pointha2; b1i is attained, agent A tracks B’s move and begins to
perform action a1. Once this equilibrium is reached, the
agents remain there.

This phenomenon will obtain in general, allowing one to
conclude that the multiagent Q-learning schemes we have
proposed will converge to equilibria almost surely. The con-
ditions that are required in both cases are:� The learning rate � decreases over time such thatPt�=0 � =1 and

Pt�=0 �2 <1.� Each agent samples each of its actions infinitely often.6Parameter settings for these figures: initial temperature 10000
is decayed at rate 0:995t .

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

pe
rf

or
m

ed
 jo

in
t a

ct
io

ns
 (

pe
r)

Number of Interactions

Joint actions

joint action a0b0
joint action a0b1
joint action a0b2
joint action a1b0
joint action a1b1
joint action a1b2
joint action a2b0
joint action a2b1
joint action a2b2

Figure 5: Joint actions in climbing game� The probability P it (a) of agent i choosing action a is
nonzero.� Each agent’s exploration strategy is exploitive. That is,limt!1P it (Xt) = 0, where Xt is a random variable de-
noting the event that some nonoptimal action was taken
based on i’s estimated values at time t.

The first two conditions are required of Q-learning, and the
third, if implemented appropriately (e.g., with appropriately
decayed temperature), will ensure the second. Furthermore,
it ensures that agents cannot adopt deterministic exploration
strategies and become strictly correlated. Finally, the last
condition ensures that agents exploit their knowledge. In the
context of ficticious play and its variants, this exploration
strategy would be asymptotically myopic [5]. This is nec-
essary to ensure that an equilibrium will be reached. Under
these conditions we have:

Theorem 1 Let Et be a random variable denoting the prob-
ability of a (deterministic) equilibrium strategy profile being
played at time t. Then for both ILs and JALs, for any �; " > 0,
there is an T (�; ") such thatPr(jEt � 1j < ") > 1� �
for all t > T (�; ").

Intuitively (and somewhat informally), the dynamics of
the learning process behaves as follows. If the agents are in
equilibrium, there is a nonzero probability of moving out of
equilibrium; but this generally requires a (rather dense) se-
ries of exploratory moves by one or more agents. The proba-
bility of this occurring decreases over time, making the like-
lihood of leaving an equilibrium just obtained vanish over
time (both for JALs and ILs). If at some point the agents’
estimated Q-values are such that a nonequilibrium is most
likely, the likelihood of this state of affairs remaining also
vanishes over time. As an example, consider the climbing
game above. Once agents begin to play ha2; b2i regularly,
agent B is still required to explore. After a sufficient sam-
pling of action b1—without agent A simultaneously explor-
ing and moving away from a2—b1 will look more attractive
than b2 and this best reply will be adopted. Decreasing explo-
ration ensures that the odds of simultaneous exploration de-



crease fast enough to assure that this happens with high prob-
ability. Similar reasoning shows that a best reply path will
eventually be followed to a point of equilibrium.

This theoretical guarantee of convergence may be of lim-
ited practical value for sufficiently complicated games. The
key difficulty is that convergence relies on the use of de-
caying exploration: this is necessary to “approximate” the
best-response condition of fictitious play. This gradual de-
cay, however, makes the time required to shift from the cur-
rent entrenched strategy profile to a better profile rather long.
If the agents initially settle on a profile that is a large distance
(in terms of a best reply path) from an equilibrium, each shift
required can take longer to occur because of the decay in ex-
ploration. Furthermore, as pointed out above, the probability
of concurrent explorationmay have to be sufficiently small to
ensure that the expected value of a shift along the best reply
path is greater than no shift, which can introduce further de-
lays in the process. The longer these delays are, the lower the
learning rate � becomes, requiring more experience to over-
come the initially biased estimated Q-values.

Finally, the key drawback for JALs (which know the joint
Q-values) is the fact that beliefs based on a lot of experience
require a considerable amount of contrary experience to be
overcome. For example, once B has made the shift from b2
to b1 above, a significant amount of time is needed for A
to switch from a2 to a1: it has to observe B performing b1
enough to overcome the rather large degree of belief it had
that B would continue doing b2. Although we don’t report
on this here, our initial experiments using windows or finite
histories upon which to base beliefs has shown considerable
practical value.7

5 Biasing Exploration Strategies for
Optimality

One thing we notice about the MARL strategies described
above is that they do not ensure convergence to an optimal
equilibrium. Little can be done about this is the case of ILs.8
However, JALs have considerably more information at there
disposal in the form of joint Q-values. For example, in the
penalty game, agents A and B might converge to the subop-
timal equilibrium ha1; b1i; but both agents have learned the
game structure and realize their coordinated strategy profile
is suboptimal. Once attained, the usual exploration strategies
permit escape from this equilibrium only with small, dimin-
ishing probability.

Intuitively, we can imagine both agents trying to break out
of this equilibrium in an attempt to reach a more desirable
point (say, ha2; b2i). For instance, agent B might sample b2
a number of times in order to induce A to switch its strategy
to a2. In fact, this can be worthwhile if the “penalties” re-
ceived in the attempt are compensated for by the long run
sequence of high rewards obtained once the optimal equi-
librium is achieved. Note that this type of action selection
runs counter to the requirement that a best response be cho-7Fictitious play based on histories of an appropriately chosen
length is shown to converge in [24].8One could imagine that an IL might bias its action selection to-
ward those whose Q-values have high variance, or adhere to a mul-
timodal distribution, perhaps indicative of another agent acting si-
multaneously; but this seems to run contrary to the “spirit” of ILs.

-10

-5

0

5

10

0 10 20 30 40 50 60

A
cc

um
ul

at
ed

 r
ew

ar
d

Number of interactions

Combined strategy
WOB strategy

NB strategy
OB strategy

Figure 6: Sliding avg. reward in the penalty game

sen except for “random” exploration. This type of switch re-
quires that agents intentionally choose (immediately) subop-
timal actions.

Ultimately, the decision to attain a long run optimal equi-
librium at the expense of a finite sequence of penalties can
be cast as a sequential decision problem. For instance, if fu-
ture rewards are highly discounted, agents may not risk de-
viating from a suboptimal equilibrium. However, such a de-
cision problem (especially when we move to more complex
settings) can be intractable. Instead, we consider augmented
exploration strategies that will encourage long run optimal-
ity. What we propose below are myopic heuristics, based
only on the current state, that tend to induce long run optimal
behavior. Three such heuristics are:

Optimistic Boltzmann (OB): For agent i, action ai 2 Ai,
let MaxQ(ai) = max��i Q(��i; ai). Choose actions
with Boltzmann exploration (another exploitive strategy
would suffice) using MaxQ(ai) as the value of ai.

Weighted OB (WOB): Explore using Boltzmann using fac-
tors MaxQ(ai) �Pri(optimal match ��i for ai).

Combined: Let C(ai) = � MaxQ(ai) + (1 � �)EV(ai),
for some 0 � � � 1. Choose actions using Boltzmann
exploration with C(ai) as value of ai.
OB is optimistic in the sense that an agent assesses each

of its actions as though the agents around it will act in order
to “match” its choice of an action. WOB is a more realistic
version of OB: the assessment of an action is tempered by
the likelihood that a matching will be made (according to its
current beliefs). Finally the combined strategy is more flex-
ible: it uses a normal exploration strategy but introduces the
MaxQ factor to bias exploration toward actions that have “po-
tential.” The coefficient � allows one to tune this bias. The
experiment below uses � = 0:5.

We have performed some preliminary experimentation
with these heuristics. Figure 6 illustrates the results of these
three heuristics, as well as normal Boltzmann (NB) explo-
ration, for the penalty game (k = �10). It shows (slid-
ing) average reward obtained over the last ten interactions for
each strategy. Thus it shows not only the convergence be-
havior, but the penalties incurred in attempting to reach an



optimal equilibrium. NB behaves as above, sometimes con-
verging to the optimal (10) and suboptimal (2) equilibrium.
Not surprisingly, OB fares poorly: the presence of multiple
equilibria make it impossible to do well (although it behaves
reasonably well in simpler games). The two agents cannot
coordinate because the are not permitted to account for the
strategy of the other agent. WOB circumvents the difficulty
with OB by using beliefs to ensure coordination; it converges
to an optimal equilibrium each time. The Combined strategy
also guarantees long run optimality, but it has better perfor-
mance along the way.

We can draw few formal conclusions at this time; but we
think the use of myopic heuristics for exploration deserves
considerably more study. Methods like the Combined strat-
egy that allow problem dependent tuning of the exploration
strategy seem especially promising. By focusing on particu-
lar sequential optimality criteria, intelligent parameter tuning
should be possible.

6 Concluding Remarks
We have seen described two basic ways in which Q-learning
can be applied in multiagent cooperative settings, and exam-
ined the impact of various features on the success of the in-
teraction between equilibrium selection learning techniques
with RL techniques. We have demonstrated that the integra-
tion requires some care, and that Q-learning is not nearly as
robust as in single-agent settings. Convergence guarantees
are not especially practical for complex games, but new ex-
ploration heuristics may help in this regard.

Several proposals have been put forth that are closely re-
lated to ours. Tan [20] and Sen, Sekaran and Hale [16] ap-
ply RL to independent agents and demonstrate empirical con-
vergence. These results are consistent with ours, but proper-
ties of the convergence points (whether they are optimal or
even in equilibrium are not considered). Wheeler and Naren-
dra [23] develop a learning automata (LA) model for fully
cooperative games. They show that using this model agents
will converge to equilibrium if there is a unique pure strat-
egy equilibrium; thus the coordination problem that interests
us here is not addressed directly. Furthermore, the LA model
is different from the Q-learning model we address. However,
the connections between the two models deserve further ex-
ploration.

A number of important directions remain to be pursued.
The most obvious is the generalization of these ideas to gen-
eral, multistate, sequential problems for which Q-learning is
designed (for instance, as addressed in [20, 16]. An interest-
ing issue that emerges when one tries to directly apply fic-
titious play models to such a setting is estimating the value
of actions using the Q-values of future states when the ac-
tual future value obtained can hinge on coordination (or lack
thereof) at these future states. The application of generaliza-
tion techniques to deal with large state and action spaces is
also of great importance, especially in multiagent domains
where the size of joint action spaces can grow exponentially
with the number of agents. Finally, we expect these ideas to
generalize to other settings (such as zero-sum games) where
fictitious play is also known to converge.
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