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Abstract
Markov decision processes (MDPs) have recently
been applied to the problem of modeling decision-
theoretic planning. While traditional methods for
solving MDPs are often practical for small states
spaces, their effectiveness for large AI planning
problems is questionable. We present an algorithm,
called structured policy iteration (SPI), that con-
structs optimal policies without explicit enumera-
tion of the state space. The algorithm retains the
fundamental computational steps of the commonly
used modified policy iteration algorithm, but ex-
ploits the variable and propositional independencies
reflected in a temporal Bayesian network represen-
tation of MDPs. The principles behind SPI can be
applied to any structured representation of stochas-
tic actions, policies and value functions, and the
algorithm itself can be used in conjunction with re-
cent approximation methods.

1 Introduction
Increasingly research in planning has been directed towards
problems in which the initial conditions and the effects of
actions are not known with certainty, and in which multiple
potentially conflicting objectives must be traded against one
another to determine optimal courses of action. For this rea-
son, there has been much interest in decision theoretic plan-
ning (Dean and Wellman 1991). In particular, the theory of
Markov decision processes (MDPs) has found considerable
popularity recently both as a conceptual and computational
model for DTP (Dean et al. 1993; Boutilier and Dearden
1994; Tash and Russell 1994).

While MDPs provide firm semantic foundations for much
of DTP, the question of their computational utility for AI re-
mains. Many robust methods for optimal policy construction
have been developed in the operations research (OR) commu-
nity, but most of these methods require explicit enumeration
of the underlying state space of the planning problem, which
grows exponentially with the number of variables relevant to
the problem at hand. This severely affects the performance of
these methods, the storage required to represent the problem,
and the amount of effort required by the user to specify the
problem. Much emphasis in DTP research has been placed
on the issue of speeding up computation, and several solu-
tions proposed, including local search methods (Dean et al.

1993; Dearden and Boutilier 1994; Barto, Bradtke and Singh
1995; Tash and Russell 1994) or reducing the state space via
abstraction (Boutilier and Dearden 1994). Both approaches
reduce the state space in a way that allows MDP solution
techniques to be used, and generate approximately optimal
solutions (whose accuracy can sometimes be bounded a pri-
ori (Boutilier and Dearden 1994)). While approximation is
no doubt crucial, two questions remain: a) what if optimal
solutions are required? b) what if the state space reduction af-
forded by these methods is not great enough to admit feasible
solution?

The approach we propose is orthogonal to the approxima-
tion techniques mentioned above. It is based on a structured
representation of the domain that allows the exploitation of
regularities and independencies in the domain to reduce the
“effective” state space. This reduction has an immediate effect
on the computation of the solution, the storage required, and
on the effort required to specify the problem. The approach
has the following benefits:� It computes an optimal, rather than an approximate so-

lution. Thus, it can be applied in instances where opti-
mality is strictly required.� It employs representations of actions and uncertainty that
are well known in the AI literature.� It is orthogonal to, and can be used in conjunction with,
many of the approximation techniques mentioned above.

This third point is especially significant because approxima-
tion methods such as abstraction often require that one opti-
mally solve a smaller problem.

In this paper, we describe our investigations of a com-
monly used algorithm from OR called modified policy iter-
ation (MPI) (Puterman and Shin 1978). We present a new
algorithm called structured policy iteration (SPI) which uses
the same computational mechanism as MPI. As in (Boutilier
and Dearden 1994), we assume a compact representation of an
MDP, in this case using a “two-slice” temporal Bayesian net-
work (Dean and Kanazawa 1989; Darwiche and Goldszmidt
1994) to represent the dependence between variables before
and after the occurrence of an action. In addition, we use a
structureddecision tree representation of the conditional prob-
ability matrices quantifying the network to exploit “proposi-
tional” independence, that is, independence given a particular
variable assignment (see also (Smith, Holtzman and Math-
eson 1993)). Propositional independence is reflected in the
specific quantification of the network, in contrast to the vari-
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able independence captured by the network structure. Such
representations allow problems to be specified in a natural
and concise fashion; and they have the added advantage of
allowing problem structure to be easily identified.

Using this representation, we can exploit the structure and
regularities of a domain in order to obviate explicit state space
enumeration. Roughly, at any point in our computation, states
are partitioned in two distinct ways: those states assigned
the same action by the “current” policy are grouped together,
forming one partition of the state space; and those state whose
“current” estimated value is the same are grouped, forming a
second partition. MPI-style computations can be performed,
but need only be considered once for each partition, rather than
for each state. The motivation for our method is similar to that
underlying Bayes nets and influence diagrams, namely, that
many problems seem to exhibit tremendous structure. Just as
network algorithms have proven practical for reasoning under
uncertainty, we expect SPI to be quite useful in practice.1

In Section 2 we briefly describe MDPs and the MPI al-
gorithm; we refer to (Puterman 1994) for a more detailed
description of MDPs and solution techniques. In Section 3
we discuss our representation of MDPs using decision trees,
and in Section 4 we describe the structured policy iteration
algorithm. The two phases of the algorithm, structured suc-
cessive approximationand structured policy improvement, are
described individually. We illustrate the algorithm on a de-
tailed example, and describe the results of our implementation.
We refer to the full paper (Boutilier, Dearden and Goldszmidt
1994) for a much more detailed description of the algorithm
and implementation, and discussion of additional issues.

2 Modified Policy Iteration
We assume a DTP problem can be modeled as a completely
observable MDP. We assume a finite set of states S and ac-
tions A, and a reward function R. While an action takes an
agent from one state to another, the effects of actions cannot
be predicted with certainty; hence we write Pr(s1; a; s2) to
denote the probability that s2 is reached given that action a
is performed in state s1. These transition probabilities can
be encoded in an jSj � jSj matrix for each action. Complete
observability entails that the agent always knows what state it
is in. We assume a bounded, real-valued reward functionR,
withR(s) denoting the (immediate) utility of being in state s.
For our purposes an MDP consists of S, A, R and the set of
transition distributions fPr(�; a; �) : a 2 Ag.

A plan or policy is a mapping � : S ! A, where �(s)
denotes the action an agent will perform whenever it is in
state s.2 Given an MDP, an agent ought to adopt an optimal
policy that maximizes the expected rewards accumulated as
it performs the specified actions. We concentrate here on dis-
counted infinite horizon problems: the current value of future
rewards is discounted by some factor � (0 < � < 1); and

1The analogy in fact is quite strong: Tatman and Shachter (1990)
have shown that influence diagram methods perform dynamic pro-
gramming steps on MDP problems in a way that “compacts” the
state space somewhat. However, their method is restricted to finite-
horizon problems, and adopts value iteration, which convergesmuch
too slowly on the infinite (or indefinite) horizon problems frequently
encountered in planning (Puterman 1994).

2Thus we restrict attention to stationary policies. For the prob-
lems we consider, optimal stationary policies always exist.

we want to maximize the expected accumulated discounted
rewards over an infinite time period. The expected value of a
fixed policy � at any given state s is given by:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t) (1)
The value of � at any initial state s can be computed by
solving this system of linear equations. A policy � is optimal
if V�(s) � V�0 (s) for all s 2 S and policies �0.

Howard’s (1971) policy iteration algorithm constructs an
optimal policy by improving the “current” (initially random)
policy by finding for each state some action better than the
current action for that state. Each iteration of the algorithm
involves two steps, policy evaluationand policy improvement:

1. For each s 2 S, compute V�(s).
2. For each s 2 S, find the action a that maximizesVa(s) = R(s) + �Xt2S Pr(s; a; t) � V�(t) (2)

If Va(s) > V�(s), let policy �0 be such that �0(s) = a;
otherwise �0(s) = �(s).

The algorithm iterates on each new policy �0 until no im-
provement is found. The algorithm will terminate with an
optimal policy, and in practice tends to converge in a reason-
able number of iterations.

Policy evaluation requires the solution of a set of jSj lin-
ear equations in jSj unknowns. This can be computationally
prohibitive for very large state spaces. However, one can es-
timate V� through several steps of successive approximation.V� is approximated by a sequence of vectors V 0; V 1; � � �, each
a successively better estimate. The initial estimate V 0 is any
random jSj-vector. The estimate V i(s) is given byV i(s) = R(s) + �Xt2S Pr(s; �(s); t) � V i�1(t) (3)
Modifiedpolicy iteration (Puterman and Shin 1978) uses some
number of successive approximation steps to produce an es-
timate of V�(s) at step 1. We refer to (Puterman 1994) for
theoretical and practical advice for choice of good stopping
criteria. MPI is used frequently in practice for large state
space problems with good results (Puterman 1994).

3 Representation of MDPs
It is unreasonable to expect that DTP problems, while for-
mulable as MDPs, will be specified in the manner described
above. Since state spaces grow exponentiallywith the number
of propositions relevant to a problem, one should not expect a
user to provide an explicit jSj�jSj probabilitymatrix for each
action, or a jSj-vector of immediate rewards. Regularities in
action effects and reward structure will usually permit more
natural and concise representations.

We will illustrate our representational methodology (and
algorithm) on a simple example: a robot is charged with the
task of going to a café to buy coffee and delivering it to a
user in their office. It may rain on the way and the robot will
get wet unless it has an umbrella. We have six propositions
(hence 64 states) –L (location of robot: L at office, L at café),W (robot is wet), U (robot has umbrella), R (raining), HCR
(robot has coffee), HCU (user has coffee) – and four actions —
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Figure 1: Action Network for DelC

Go (to opposite location), BuyC (buy coffee), DelC (deliver
coffee to user), GetU (get umbrella). Each of these actions
has the obvious effect on a state, but may fail with some
probability (see (Boutilier, Dearden and Goldszmidt 1994)
for a full problem specification).

We discuss one possible representation for actions and utili-
ties, Bayesian networks, and in the next section show how this
information can be exploited in MPI. While our algorithm de-
pends on the particular representation given, the nature of our
method does not and could be used with, say, the probabilis-
tic STRIPS representation of (Boutilier and Dearden 1994;
Kushmerick, Hanks and Weld 1994).

We assume a set P of atomic propositions characterizing
the relevant features of our domain. Because of the Markov
assumption, the effect of a given action a is completely deter-
mined by the current state of the world, and can be represented
by a “two-slice” temporal Bayes net (Dean and Kanazawa
1989; Darwiche and Goldszmidt 1994): we have one set of
nodes representing the state of the world prior to the action
(one node for each P 2 P), another set representing the
world after the action has been performed, and directed arcs
representing causal influences between these sets.3 Figure 1
illustrates this network representation for the action DelC (de-
liver coffee); we will have one such network for each action.

The post-action nodes have the usual matrices describing
the probabilityof their values given the values of their parents,
under action A. We assume that these conditional probabil-
ity matrices are represented using a decision tree (or if-then
rules) (Smith, Holtzman and Matheson 1993). This allows
independence among variable assignments to be represented,
not just variable independence (as captured by the network
structure), and is exploited to great effect below. A tree rep-
resentation of the matrices for variables HCU and W in the
DelC network is shown in Figure 1 along with the induced
matrix (our convention is to use left-arrows for “true” and
right-arrows for “false”). Each branch thus determines a par-
tial assignment to the parents of that variable (in the network)
with some parents unmentioned. The leaf at each branch de-
notes the probability of the variable being true after the action
is executed given any conditions consistent with that branch.
In this case Pr(HCU) = :8 when HCU, L and HCR hold prior
to the action. The tree associated with proposition P in the

3To simplify the exposition, we only consider binary variables,
and assume that there are no arcs between post-action variables.
Relaxing these assumptions (as long as the network is acyclic) does
not complicate our algorithm in any essential ways.
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network for an action a is denoted Tree(P ja). Since we are
interested only in the transition probabilities P (s1; a; s2) for
a known state s1, we do not require prior probabilities (or
matrices) for pre-action variables (the roots of the network).

We note that many actions affect only a small number of
variables; to ease the burden on the user, we allow unaffected
variables to be left out of the network specification for that
action. Persistence is assumed and the arcs (indicated by
broken arrows) and trees can be constructed automatically.
For instance, all of L, R, W and U are unaffected by the
action DelC. It is easy to see how such an action representation
induces a transition matrix over the state space.

We assume that the immediate reward R is solely a func-
tion of the state of the world. As such, we can use a simple
“atemporal influence diagram” to capture the regularities in
such a function. Since (immediate) reward is independent
of stage and the action performed, we need only one net-
work to capture reward. Figure 2 illustrates such a network.
Only variables that influence reward need be specified. One
may also use a tree-structured representation for R as shown
(where leaves now indicate the reward associated with any
state consistent with the branch). It is easy to see how such
a tree determines the reward functionR(s). In this example,
the robot gets a reward of 0:9 if the user has coffee and 0:1 if
it stays dry, which are added to determine R(s).
4 Structured Policy Iteration
Given a network formulation of an MDP, one might compute
an optimal policy by constructing the appropriate transition
matrices and reward vector, and solving with standard tech-
niques. But as the number of propositions increase, state
spaces grow exponentially, and these methods quickly be-
come infeasible. In addition, although these algorithms may
converge in relatively few iterations, memory requirements
are quite intensive.4 If a problem can be represented com-
pactly, the representation must exploit certain regularities and
structure in the problem domain. Therefore one can often ex-
pect that optimal policies themselves have certain structure,
as do value functions V� . The optimal policy for our exam-
ple problem can be expressed quite concisely. For example,
DelC is the best action whenever HCR and L are both true,
regardless of the truth values of the other four variables. Thus
by associating the action DelC with the proposition HCR^L,
we capture the policy for 16 states with one assertion.

We propose a method for optimal policy construction that
eliminates the need to construct explicit transition matrices,
reward and value vectors, and policy vectors. Our method is
based on MPI, but exploits the fact that at any stage in the

4Puterman (1994) describes this as a potential bottleneck; our
previous experiences also suggests this is often problematic.
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computation: (a) The current policy � may be structured; and
(b) The value function for a policy V� , or some estimate V i
thereof, may be structured. Rather than having a policy vector
of size jSj individually associating an action with each state,
one can use a structured representation.

Definition A structured policy is any set of formula-action
pairs � = fh i; aiig such that the set of propositional
formulae f ig partitions the state space. This induces
the “explicit” policy �(s) = ai iff s j=  i.

Structured policies can be represented in many ways (e.g.,
with decision lists (Rivest 1987)). We adopt a decision tree
representation similar to the representation of probability ma-
trices above. Leaves are labeled with the action to be per-
formed given the partial assignment corresponding to the
branch. Thus, if there are k leaf nodes, the state space is
partitioned into k subsets or clusters. Figure 6 (the second
tree) illustrates a structured policy: we have 4 clusters and 4
action assignments rather than one action assignment for each
of 64 states.5

A structured value vector can be represented similarly as a
set of formula-value pairs V = fh'i; viig, where states satis-
fying 'i have value vi. Again, we will use a tree-structured
representation for such a partition. In this case, each leaf is
annotated with the value associated with that partition (see
Figure 4).

The insights crucial to our algorithm are the following:

(a) If we have structured policy� and a structured value
estimate V i for �, an improved estimate V i+1 can
often preserve much of this structure;

(b) If we have a structured value estimate V� , we can
construct a structured improving policy �0.

The first observation suggests a structured form of successive
approximation, while the second suggests that one can im-
prove a policy in a way that exploits structure. This gives rise
to the SPI algorithm for structured policy iteration:

1. Choose a random structured policy �, then LOOP through 2,3:
2. Approximate value function V�(s) using structured successive

approximation.
3. Produce an improved structured policy �0 (if no improvement

is possible, terminate).

We describe these components of the algorithm in turn below.
Initial structured policy selection is fairly unconstrained.

In the example below, we adopt the greedy “one-step” policy� = fh>;DelCig (deliver coffee no matter what the state).
Simpler policies should be preferred.

4.1 Structured Successive Approximation
Phase 1 of each iteration of SPI invokes structured succes-
sive approximation (SSA): we assume we have been given
a structured policy and an initial structured estimate of that
policy’s value. During the first iteration of SPI, SSA may use
the immediate reward tree as its initial structured estimate.
In subsequent iterations the initial estimate is the computed
value-tree for the previous policy.

5We note that tree representations of policies are sometimes used
in reinforcement learning as well (Chapman and Kaelbling 1991);
however, the motivation there is somewhat different. In addition,
the ordering of variables in the tree can have a dramatic impact on
the size of the representation (see Section 5).

Input: Tree(V i), action a; Output: Tree(V i+1)
1. Determine a total orderingO of variables in Tree(V i)
2. Set Tree(V i+1) = ;
3. For each variableX in Tree(V i) (using orderingO):

(a) Determine partial branch in Tree(V i) that makeX relevant

(b) For each leaf in Tree(V i+1) that assigns nonzero probability to
some such branch: 1) Append Tree(Xja) to leaf, collapsing re-
dundant nodes; 2) Copy probability labels from leaf to each ‘new’
leaf (from Tree(Xja))

4. At each leaf of Tree(V i+1), use prob labels to compute expected future value

5. Add reward/action costs (expanding leaves if needed)

Figure 3: Algorithm Explain(a; Tree(V i))
Given a policy �, we wish to determine its value V� . The

basic step of successive approximation involves producing a
more accurate estimate of a policy’s value V i+1 given some
previous estimate V i using Equation 3. Successively better
estimates are produced until the difference between V i+1 andV i is (componentwise) below some threshold.6

SSA embodies the intuition that, given a structured value
vector V i, the conditions under which two states can have
different values V i+1 can be readily determined from the
action representation. In particular, although an action may
have different effects at two states, if this difference is only in
variables or variable assignments not relevant to the structured
value vector V i, then these states must have identical values
in V i+1. Since V i is tree-structured, the SSA algorithm can
easily determine what assignments are relevant to value at
stage i. The crucial feature of the algorithm is its use of the
action representation to cluster the states (i.e., form a new treeV i+1) under which the policy must have the same value at
stage i+1. By doing so, we can calculate V i+1 once for each
leaf of the tree rather than for each state in the state space.
This may have a significant impact on both time and memory
requirements in many cases.

We first describe the main loop of the SSA assuming a
single action (uniform policy) to be executed (see Algorithm
Explain(a; Tree(V i)) in Figure 3), and give a detailed exam-
ple. We then describe how general policies are dealt with.

We accept a structured value vector Tree(V i), the current
estimated value for the current policy �, and an action a to
be performed at stage i + 1 (as if we were computing Va in
Eq. 2). Given an action a to be performed, the states that can
have different values V i+1 are those that lead (under action a)
to different partitions of Tree(V i) with different probability.
Roughly, Tree(V i) describes not only what is relevant to the
value of the policy (executed for i stages), but also how its
value depends on (or is independent of) the particular variable
assignments in the tree. To generate the Tree(V i+1) we want
to explain the partitions in Tree(V i). That is, we want to
generate the conditions that, if known prior to the action,
would cause a state transition with some fixed probability to
fixed partitions (or leaves) of Tree(V i).

Since the probability of reaching a given partition in V i
is a function of the probabilities of the individual variables
on its branch, we can build this explanation componentwise:

6Better stopping criteria are possible (Puterman 1994), but have
no bearing on our algorithm.
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we consider the variables in Tree(V i) individually. More
precisely, explanations are generated by a process we call
abductive repartitioning, quite similar in spirit to probabilistic
Horn abduction (Poole 1993). A given traversal of Tree(V i)
induces an ordering of relevant (post-action) variables; we
“explain” variables in Tree(V i) according to this order (Step 3
of Figure 3).

For each variable X in Tree(V i), the conditions under
which the probability of X varies when action a is executed
is given by Tree(Xja), which is simply read from the network
for a (see Step 3b.1). Hence explanation generation for the
individual variables is trivial – an explanation consists of the
tree whose branches are partial truth assignments and whose
leaves reflect the probability that the variable becomes true.
This explanation must be added to the current (partial) tree
for V i+1 (Step 3b.1). However, it need not be added to the
end of every partial branch. Tree(V i) asserts the conditions
under which X is relevant to value; the explanation for X
need only be added to the leaves where those conditions are
possible (Steps 3a and 3b). Since the tree is generated in the
order dictated by Tree(V i), the probabilities of the relevant
variables are already on the leaves of the partial tree. Once
Tree(Xja) is added to the required leaves, the new leaves of
the tree now have Pr(X) attached in addition to the proba-
bilities of the previous variables (Step 3b.2), and these can
be used to determine where the explanation for the next vari-
able must be placed. Should the variable labeling a node of
Tree(Xja) occur earlier in the partial tree for V i+1, that node
in Tree(Xja) can be deleted (since the assignments to that
node in Tree(Xja) must be either redundant or inconsistent –
Step 3b.1). Thus, much shrinkage is possible (see below).7

Figure 4 illustrates the value trees that result for two suc-
cessive approximation steps, V 1 and V 2, as well as the fiftieth
step in our example, using the initial policy DelC. The gener-
ation of Tree(V 1) from Tree(V 0) is straightforward. The first
relevant variable HCU will have different outcome probabili-
ties as dictated by Tree(HCUjDelC) in Figure 1; this requires
the addition of variables HCU, L and HCR to Tree(V 1). The
other relevant variable W has its tree added to each of the
leaves of Tree(HCUjDelC), since it is relevant no matter how
HCU turns out. This results in the tree structure shown in
Figure 4 labeled V 1.

More interesting is the generation of Tree(V 2) using
Tree(V 1), illustrated in Figure 5, which we now describe
in some detail. The four variables in Tree(V 1) are ordered
HCU; L;HCR;W . We start by inserting Tree(HCUjDelC)
(Stage1) which explains HCU. The probability of HCU
given the relevant assignment labels the leaf nodes. The
next variable L is “explained” by Tree(LjDelC); however,
from Tree(V 1) we notice that L is only relevant when HCU
is false. Therefore, we only add L to those leaves where
Pr(HCU) < 1.8 We notice that such leaves only exist be-
low the node L in our partial tree. We also notice that
Tree(LjDelC) contains only the variable L (by persistence);
thus, no additional branches need to be added to the tree (any

7In general, one has to consider also the impact of the immediate
reward function, whose tree can be incorporated into the tree V i+1

(see Step 5); however, this is often unnecessary when the reward
function is used as an initial value estimate.

8We don’t use Pr(HCU) = 0; L is relevant to value whenever
HCU is less than certain.

further partitioning on L is either redundant or inconsistent).
The net result is the simple addition of a probability label forL on these leaves (see Stage2). In general, for more compli-
cated trees, we will add a tree of the form Tree(Xja) to a leaf
node, and eliminate some (but perhaps not all) of its nodes.

The next variable is HCR, which is only relevant when
HCU andL hold, and Tree(HCRjDelC) is added only at leaves
where Pr(HCU) < 1 and Pr(L) > 0. However, as with L,
the addition of Tree(HCRjDelC) (containing only the variable
HCR) is redundant since leaves satisfying this condition lie
below node HCR is the partial tree (see Stage3). Finally, the
variable W must be explained. W is relevant at all points in
the partial tree, so its is added to each leaf node (Stage4).

Finally, with the probability labels, the value tree V 1, the
reward tree, and the discounting factor (here � = 0:9), the
leaf nodes can be labeled with the values for V 2 (Figure 4).
In this example, abductive repartitioning gives rise to six
distinct values in the estimates V 1 and V 2. Our mechanism
generates a tree with eight leaves, but two pairs of these can
be identified as necessarily having the same value (indicated
by the broken ovals); see Section 5. Thus, in principle, only
six value computations need be performed rather than 64.

To deal with general policies instead of single actions, SSA
proceeds as follows. We assume the policy � is represented
structurally as Tree(�). For each action a that occurs in �, the
explanation algorithm is run, as above. The tree generated
for an action a is then appended to the leaves of Tree(�) at
which a occurs. Since Tree(�) may make certain distinctions
that occur in the appended “action trees,” we delete any re-
dundant nodes to simplify the tree (either during or after its
construction).

The SSA algorithm requires some number of rounds of
successive approximation before a reasonable estimate of the
policy’s value can be determined and the policy improvement
phase can be invoked. While the number of backups per step
can potentially be reduced exponentially, there may be con-
siderable overhead involved in determining the appropriate
partitions (or the reduced “state space”). We first note that
the reduction will often be worth the additional computation,
especially as state spaces become (realistically) large — even
as domains increase, the effects of actions may be quite local-
ized in many problem settings. We can expect this reduction
for a particular policy to be quite valuable. In addition, and
more importantly, this repartitioning need not be performed at
each successive approximation step. As the following theo-
rem indicates, once the partition stabilizes for two successive
approximations, it cannot change subsequently.

Theorem 1 Let f'ijg and f'i+1j g be the partitions con-
structed for value estimates V i and V i+1, respectively. Iff'ijg = f'i+1j g, then V k(s) = V k(s0) for any k � i, and
states s; s0 such that s j= 'ij, s0 j= 'ij for some j.

Thus, the backups for successive estimates can proceed
without any repartitioning. Essentially, the very same com-
putationsare performed for each partitionas are performed for
each state in (unstructured) SA, with no additional overhead.
In our example, we reach such convergence quickly. When
repartitioning to compute V 2, we discover that the partition is
unchanged: the tree-representation of V 2 is identical to that
for V 1. Thus, after one repartitioning the partition of our
value vector has stabilized and backups can proceed apace.
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Figure 4: Fifty Iterations of SSA
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The value vector V 50 contains the values that are within 0:4%
of the true value vector V� , as shown in Figure 4.

It is important to note that while the value vector approx-
imates the true value function for the specified policy, the
approximation is an inherent part of the policy evaluation
algorithm. No loss of information results from our partition-
ing. The structured value estimates V i are the same as those
generated in the classic successive approximation (or MPI)
algorithm: they are simply expressed more compactly.

4.2 Structured Policy Improvement
When we enter Phase 2 of the SPI algorithm, we have a current
structured policy � and a structured value vector V�. The
policy improvement phase of MPI requires that we determine
possible “local” improvements in the policy — for each state
we determine the action that maximizes the one-step expected
reward, using our value estimate V� as a terminal reward
function; that is, the a that maximizes Va(s). Should a be
different from �(s), we replace �(s) by a in our new policy.

Once again, we want to exploit the structure in the net-
work to avoid explicit calculation of all jSjjAj values. While
there are several ways one might approach this problem,
one rather simple method is based on the observation made
above. For any fixed structured value vector V� and actiona, we can determine the value vector Va using the algorithm
Explain(a; Tree(V i)) described above. Abductive reparti-
tioning is used to identify the relevant pre-action conditions
that influence this outcome, and provides us with a new parti-
tion of the state space for a, dividing the space into clusters of
states whose value

Pt2S Pr(s; a; t) � V�(t) is identical. We
determine one such partitioning of the state space for each
action a and compute the value of a for each partition.

Figure 6 illustrates the value trees generated by the abduc-
tive repartitioning scheme for the two actions DelC (the tree

V 50 from Figure 4). and Go. The values labeling the leaves
indicate the values V DelC and V Go in the policy improve-
ment phase of the algorithm — these are determined by using
the probability labels generated by abductive repartitioning
and the tree for V�. (We ignore actions BuyC and GetU which
generate similar trees to DelC but which are dominated by
DelC at this stage of the algorithm.) We note that these values
are undiscounted and do not reflect immediate reward. With-
out action costs, these factors cannot cause a change in the
relative magnitude of total reward for an action. Thus, actions
need only be compared for expected future rewards (although
action costs are easily incorporated).9

With these values, we must now determine a new locally
improved policy choosing either Go or DelC for each state.
Given that the expected value of the action only varies be-
tween partitions, we can use the trees to quickly determine
which action is best in each partition. In the worst case,
where the partitions are orthogonal, we must consider their
cross-product. Here, however, the trees share much structure.
Our current algorithm performs a reasonably straightforward
merging of the trees in question, keeping the coarsest parti-
tions possible to produce a tree with the dominating values
and action choices. The result of this process is illustrated in
Figure 6 which shows the maximally improved policy. While
there are a number of methods for merging the trees for each
action, our current implementation reorders the trees so that
the variable orderings are consistent (with the current value

9We should point out that while Tree(Go) has 20 value partitions,
in fact, there are only 12 distinct values among these twenty. More-
over, these coincident values are due to structural properties of the
problem and can be identified beforehand as necessarily having the
same value. For legibility, we omit the ovals that join these leaves
with the same value.
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ordering if feasible); this allows a straightforward comparison
of leaves to determine dominance and the structure of the new
policy tree.

We note that if both Go and DelC provide equal value at a
given state, the action of the earlier policy � is chosen for that
state, as is usual in policy iteration. Thus, some of the states
where DelC is chosen may have had equal value if Go had
been chosen; but the persistence condition dictates our choice
of DelC. The net effect is often a simpler policy tree. It also
allows the easier detection of the termination condition.

4.3 Analysis
The final policy produced by the SPI algorithm (i.e., some
number of SSA and improvement steps) is shown in Figure 7
along with the value function it produces. This policy is pro-
duced on the fourth iteration. A fifth policy improvement
step is attempted, but no improvement is possible (note that
for this fifth iteration no value approximation of the policy’s
value is performed). Thus, the state space is partitioned into
8 clusters allowing a very compact specification of the pol-
icy. The value tree corresponds to 50 backups of successive
approximation. Since all value trees for prior iterations are
(strictly) smaller than this, we see that we had to consider
at most 18 distinct “states” at any given time (the first three
policies peaked at 8, 10 and 14 partitions), rather than the 64
states of the original state space. In fact, the 4 sets of dupli-
cate values are easily show to have exactly the same value
because of structural properties of the problem. Though we
have not yet implemented the algorithm to take advantage of
this property, in principle we could use at most 14 clusters
and compute at most 14 value estimates instead of 64.

The intent of this paper is to suggest methods by which
structure implicit in problem representations can be imposed
on policy and value vectors in policy construction. Clearly
we cannot expect SPI or related methods to work well on
all MDPs, for not all problems have compact representations
that can be exploited; or even if a compact representation
is possible, the optimal policy may not be compact. The
most we might hope for is that a problem with a compact
description (input) and optimal policy (output) can be com-
puted efficiently using SPI (e.g., in polytime in the size of
the input/output). Unfortunately, even this cannot be guar-
anteed. Consider the following example, whose network is
diagramed in Figure 8. We assume n propositions Pi and
actionsAi (i � n). ActionAi will cause Pi to become true as

P

Pi+1

i-1

iP

nP

1P

P

Pi+1

i-1

iP

nP

1P

Figure 8: Description of ActionAi
long as P1; � � � ; Pi�1 are all true; but it has the side effect of
setting each of P1; � � � ; Pi�1 false. Each of the n actions can
be represented in O(n) space. Our reward function assigns 1
to the state making allPi true and 0 to all other states. Thus the
problem is representable in O(n2) space. With a discounting
rate � < 1, the optimal policy has the form “If :P1 do A1;
else if :P2 doA2, else : : : ” which in tree form requiresO(n)
space. But the value V�(s) is different at each state s. Since
SPI makes all distinctions relevant to value, it must produce
a complete tree of size O(2n) (requiring time exponential in
the problem description and solution).10

Our initial experiments have provided some suggestions
about the types of problems on which SPI should work well,
and where further optimizations can be made. Not surpris-
ingly, SPI spends relatively more time on policy improvement
vs. evaluation compared to MPI. This is due to the overhead
involved in merging action trees. Good tree manipulation al-
gorithms will play a role here. The evaluation phase of SPI
compares favorably to MPI even when overhead is accounted
for. When many iterations of successive approximation are
needed, the overhead is amortized (due to Theorem 1) and
SPI outperforms MPI considerably.

Naturally, as trees become larger the overhead of SPI be-
comes a crucial factor. Our experience with small (64–800
state) problems suggests that SPI requires problems whose
structure allows (the equivalent of) deletion of roughly 4–6
variables (i.e., overhead appears to be proportional to tree-

10Essentially, the optimal policy winds through the state space
like a binary counter. V�(s) could be compactly encoded with an
appropriate of “parameterized” metric representation.
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Figure 7: The Optimal Policy and Value Function

size); further experimentation with large problems is neces-
sary to verify this conjecture. The performance of SPI with
relatively small trees suggests that a hybrid approach (using
SPI and switching to MPI if trees become too large) may
work well in practice. In other words, we can use SPI until
the effort required to discover irrelevant distinctions ceases
to pay off. As a general remark, goal-based problems with
competing objectives seem to be especially well-suited to SPI
(as opposed to process-oriented problems), since choosing a
particular goal to pursue tends to render features related to
other objectives irrelevant.

5 Concluding Remarks
We have presented a natural representational methodology
for MDPs that lays bare much of a problem’s structure, and
have presented an algorithm that exploits this structure in the
construction of optimal policies. The key component of our
algorithm uses an abductive mechanism that generates parti-
tions of the state space that, at any point in the computation,
group together states with the same estimated value or best ac-
tion. This allows the computation of value estimates and best
actions to be performed for partitions as a whole rather than
for individual states. This work contributes both to AI (a spe-
cific DTP algorithm) and OR (a representational methodology
and clustering technique for MDPs).

Currently we are investigating a number of extensions to
this model. Our experimental results point out two important
bottlenecks. The first involves multivalued variables, which
if relevant, cause branching on all values. In many domains,
features are relevant if a variable has one value, but not oth-
ers. Using decision lists (or hybrids) to quantify Bayes nets
will help in this regard; they can be used also to represent
policies and value vectors. The second involves the ordering
of variables in trees: good heuristics may help keep the size
of policy and value trees close to optimal. Related is the use
of acyclic graph representations instead of trees.

One of the most promising aspects of this work is the fact
that it provides structures that should help in approximating
optimal policies. The conditional relevance of variables can
be quantified and trees can be pruned by deletingnodes having
the least impact on value, even at intermediate stages. In
this way, abstraction methods such as those of (Boutilier and
Dearden 1994) can be made far more “adaptive.”
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