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Abstract

We present a logic for belief revision in which revision
of a theory by a sentence is represented using a con-
ditional connective. The conditional is not primitive,
but rather defined using two unary modal operators.
Our approach captures and extends the classic AGM
model without relying on the Limit Assumption. Rea-
soning about counterfactual or hypothetical situations
is also crucial for AI. Existing logics for such subjunc-
tive queries are lacking in several respects, however, pri-
marily in failing to make explicit the epistemic nature
of such queries. We present a logical model for subjunc-
tives based on our logic of revision that appeals explic-
itly to the Ramsey test. We discuss a framework for
answering subjunctive queries, and show how integrity
constraints on the revision process can be expressed.

Introduction

An important and well-studied problem in philosoph-
ical logic, artificial intelligence and database theory is
that of modeling theory change or belief revision. That
is, given a knowledge base KB, we want to characterize
semantically the set that results after learning a new
fact α. However, the question of how to revise KB is
important not just in the case of changing information
or mistaken premises, but also when we want to inves-
tigate questions of the form “What if A were true?” A
subjunctive conditional A > B is one of the form1 “If
A were the case then B would be true.” Subjunctives
have been widely studied in philosophy and it is gener-
ally accepted that (some variant of) the Ramsey test is
adequate for evaluating the truth of such conditionals:

First add the antecedent (hypothetically) to your
stock of beliefs; second make whatever adjust-
ments are required to maintain consistency (with-
out modifying the hypothetical belief in the an-

1At least, in “deep structure.”

tecedent); finally, consider whether or not the con-
sequent is true. (Stalnaker 1968, p.44)

The connection to belief revision is quite clearly spelled
out in this formulation of the Ramsey test: to evaluate
a subjunctive conditional A > B, we revise our beliefs
to include A and see if B is believed. If we take KB to
represent some initial state of knowledge, a characteri-
zation of subjunctive reasoning must include an account
of how to revise KB with new information.
In this paper, we will develop a logic for belief revi-

sion using a conditional connective
KB

−→, where A
KB

−→ B

is interpreted roughly as “If KB were revised by A, then
B would be believed.” The connective will not be prim-
itive however; instead it is defined in terms of two unary
modal operators, which refer to truth at accessible and
inaccessible worlds. Our model of revision will satisfy
the classic AGM postulates and will be general enough
to represent any AGM revision function. However, our
approach is based on a very expressive logical calculus
rather than extra-logical postulates, and can be used
to express natural constraints on the revision process.
Furthermore, this is accomplished without reliance on
the Limit Assumption. We will then use this logic to
develop a framework in which subjunctive queries of
a knowledge base can be answered, and show that it
improves on existing subjunctive logics and systems in
several crucial respects. Finally, we provide a seman-
tic characterization of integrity constraints suitable for
this type of subjunctive reasoning.

Revision and the AGM Postulates Recently,
work on the logic of theory change has been adopted
by the AI community for use in the task of belief revi-
sion. By far the most influential approach to revision
has been that of Alchourrón, Gärdenfors and Makin-
son (1985; 1988), which we refer to as the AGM theory
of revision. We assume beliefs sets to be deductively
closed sets of sentences, and for concreteness we will
assume that the underlying logic of beliefs is classical



propositional, CPL. We let |= and Cn denote classical
entailment and consequence, respectively, and use K to
denote arbitrary belief sets. If K = Cn(KB) for some
finite set of sentences KB, we say K is finitely specified
by KB.
Revising a belief set K is required when new infor-

mation must be accommodated with these beliefs. If
K 6|= ¬A, learning A is relatively unproblematic as the
new belief set Cn(K ∪ {A}) seems adequate for mod-
eling this change. This process is known as expansion
and the expanded belief set is denoted K+

A . More trou-
blesome is the revision of K by A when K |= ¬A. Some
beliefs in K must be given up before A can be accom-
modated. The problem is in determining which part of
K to give up, as there are a multitude of choices. Fur-
thermore, in general, there are no logical grounds for
choosing which of these alternative revisions is accept-
able (Stalnaker 1984), the issue depending largely on
context.
Fortunately, there are some logical criteria for reduc-

ing this set of possibilities, the main criterion for pre-
ferring certain choices being that of minimal change.
Informational economy dictates that as “few” beliefs as
possible from K be discarded to facilitate belief in A

(Gärdenfors 1988), where by “few” we intend that, as
much as possible, the informational content of K be
kept intact. While pragmatic considerations will often
enter into these deliberations, the main emphasis of the
work of AGM is in logically delimiting the scope of ac-
ceptable revisions. To this end, the AGM postulates,
given below, are maintained to hold for any reasonable
notion of revision (Gärdenfors 1988). We use K∗A to
denote the belief set that results from the revision of K
by A and ⊥ to denote falsity.

(R1) K∗A is a belief set.

(R2) A ∈ K∗A.

(R3) K∗A ⊆ K+

A .

(R4) If ¬A 6∈ K then K+

A ⊆ K∗A.

(R5) K∗A = Cn(⊥) iff |= ¬A.

(R6) If |= A ≡ B then K∗A = K∗B.

(R7) K∗A∧B ⊆ (K∗A)
+

B
.

(R8) If ¬B 6∈ K∗A then (K∗A)
+

B
⊆ K∗A∧B.

Of particular interest are (R3) and (R4), which taken
together assert that if A is consistent with K then K∗A
should merely be the expansion of K by A. This seems
to reflect our intuitions about informational economy,
that beliefs should not be given up gratuitously.

Revision and Subjunctive Conditionals Coun-
terfactuals and subjunctives have received a great deal
of attention in the philosophical literature, one classic
work being that of Lewis (1973). A number of peo-
ple have argued that these conditionals have an impor-
tant role to play in AI, logic programming and database
theory. Bonner (1988) has proposed a logic for hypo-
thetical reasoning in which logic programs or deduc-
tive databases are augmented with hypothetical impli-
cations. Ginsberg (1986) has identified a number of
areas in AI in which counterfactuals may play an im-
portant role in the semantic analysis of various tasks
(e.g., planning, diagnosis). He proposes a system for
reasoning about counterfactuals based on the ideas of
Lewis. Unfortunately, this model suffers form certain
shortcomings, including a sensitivity to the syntactic
structure of KB. Jackson (1989) considers the problems
with this approach and presents a model-theoretic sys-
tem for counterfactual reasoning based on the possible
models approach to update of Winslett (1990). Again,
this system is extra-logical in nature, and is committed
to specific minimality criteria.

The systems of Ginsberg and Jackson both take very
seriously the idea that counterfactuals are intimately
tied to belief revision. However, this connection had
not gone unappreciated by the revision community.
Gärdenfors (1988) provides an explicit postulate for re-
vision and conditional reasoning based on the Ramsey
test. If we assume that conditionals can be part of our
belief sets, a concise statement of the Ramsey test is

(RT) A > B ∈ K iff B ∈ K∗A.

Gärdenfors also describes a formal semantics for condi-
tionals. Variants of postulates (R1) through (R8), to-
gether with (RT), determine a conditional logic based
on a “revision style” semantics that corresponds exactly
to Lewis’s (1973) counterfactual logic VC.

A Conditional for Revision

The Modal Logic CO* We now present a modal
logic for revision in which we define a conditional con-

nective
KB

−→. A
KB

−→ B is read “If (implicit theory) KB
is revised by A, then B will be believed.” The modal
logic CO is based on a standard propositional modal
language (over variables P) augmented with an addi-

tional modal operator
←
2. The sentence

←
2α is read “α

is true at all inaccessible worlds” (in contrast to the
usual 2α that refers to truth at accessible worlds). A
CO-model is a triple M = 〈W,R,ϕ〉, where W is a
set of worlds with valuation ϕ and R is an accessibility
relation over W . We insist that R be transitive and



connected.2 Satisfaction is defined in the usual way,
with the truth of a modal formula at a world defined
as:

1. M |=w 2α iff for each v such that wRv, M |=v α.

2. M |=w

←
2α iff for each v such that not wRv, M |=v α.

We define several new connectives as follows: 3α ≡df

¬2¬α;
←
3α ≡df ¬

←
2¬α;

↔
2α ≡df 2α ∧

←
2α; and

↔
3α ≡df

3α ∨
←
3α. It is easy to verify that these connectives

have the following truth conditions: 3α (
←
3α) is true

at a world if α holds at some accessible (inaccessible)

world;
↔
2α (

↔
3α) holds iff α holds at all (some) worlds.

The following set of axioms and rules is complete for
CO (Boutilier 1991):

K 2(A ⊃ B) ⊃ (2A ⊃ 2B)

K′
←
2(A ⊃ B) ⊃ (

←
2A ⊃

←
2B)

T 2A ⊃ A

4 2A ⊃ 22A

S A ⊃
←
23A

H
↔
3(2A ∧

←
2B) ⊃

↔
2(A ∨B)

Nes From A infer
↔
2A.

MP From A ⊃ B and A infer B.

For the purposes of revision, we consider the exten-
sion of CO based on the class of CO-models in which
all propositional valuations are represented in W ; that
is, {f : f maps P into {0, 1}} ⊆ {w∗ : w ∈ W}.3 The
logic CO*, complete for this class of structures, is the
smallest extension of CO containing instances of the
following schema:

LP
↔
3α for all satisfiable propositional α.

We note that CO*-structures consist of a totally-
ordered set of clusters of mutually accessible worlds.

2R is (totally) connected if wRv or vRw for any v, w ∈
W (this implies reflexivity). CO was first presented in
(Boutilier 1991) to handle the problem of irrelevance in de-
fault reasoning.

3For all w ∈ W , w∗ is defined as the map from P into
{0, 1} such that w∗(A) = 1 iff w ∈ ϕ(A); in other words, w∗

is the valuation associated with w.

Revision as a Conditional A key observation of
Grove (1988) is that revision can be viewed as an order-
ing on possible worlds reflecting an agent’s preference
on epistemically possible states of affairs. We take this
as a starting point for our semantics, based on struc-
tures consisting of a set of possible worlds W and a
binary accessibility relation R over W . Implicit in any
such structure for revision will be some theory of in-
terest or belief set K that is intended as the object
of revision. We return momentarily to the problem of
specifying K within the structure. The interpretation
of R is as follows: wRv iff v is as plausible as w given
theory K. As usual, v is more plausible than w iff wRv

but not vRw. Plausibility is a pragmatic measure that
reflects the degree to which one would accept w as a
possible state of affairs given that belief in K may have
to be given up. If v is more plausible than w, loosely
speaking, v is “more consistent” with our beliefs than
w, and is a preferable alternative world to adopt. This
view may be based on some notion of comparative sim-
ilarity, for instance.4

We take as minimal requirements that R be reflexive
and transitive.5 Another requirement we adopt in this
paper is that of connectedness. In other words, any
two states of affairs must be comparable in terms of
similarity. If neither is more plausible than the other,
then they are equally plausible. We also insist that all
worlds be represented in our structures.
Given these restrictions, we can use CO*-models to

represent the revision of a theoryK. However, arbitrary
CO*-models are inappropriate, for we must insist that
those worlds consistent with our belief set K should
be exactly those minimal in R. That is, vRw for all
v ∈ W iff M |=w K. This condition ensures that no
world is more plausible than any world consistent with
K, and that all K-worlds are equally plausible. Such a
constraint can be expressed in our language as

↔
2(KB ⊃ (2KB ∧

←
2¬KB)) (1)

for any K that is finitely expressible as KB. This en-
sures that any KB-world sees every other KB-world

(
←
2¬KB), and that it sees only KB-worlds (2KB). All
statements about revision are implicitly evaluated with
respect to KB. We abbreviate sentence (1) as O(KB)
and intend it to mean we “only know” KB.6 Such mod-
els are called K-revision models.
Given this structure, we want the set of A-worlds

minimal in R to represent the state of affairs believed

4See (Lewis 1973; Stalnaker 1984) on this notion.
5In (Boutilier 1992) we develop this minimal logic in the

context of preorder revision.
6This terminology is discussed in the next section.



when K is revised by A. These are the most plausible
worlds, the ones we are most willing to adopt, given A.
Of course such a minimal set may not exist (consider
an infinite chain of more and more plausible A-worlds).
Still, we can circumvent this problem by adopting a
conditional perspective toward revision. Often when
revising a belief set, we do not care to characterize the
entire new belief state, but only certain consequences
of interest of the revised theory (i.e., conditionals).

The sentence A
KB

−→ B should be true if, at any point
on the chain of decreasingA-worlds, B holds at all more
plausible A-worlds (hence, B is true at some hypothet-
ical limit of this chain). We can define the connective
as follows:

A
KB

−→ B ≡df

↔
2¬A ∨

↔
3(A ∧2(A ⊃ B)). (2)

This sentence is true in the trivial case when A is im-
possible, while the second disjunct states that there is
some world w such that A holds and A ⊃ B holds at all
worlds still more plausible than w. Thus B holds at the
most plausible A-worlds (whether this is a “hypotheti-
cal” or actual limit). In this manner we avoid the Limit
Assumption (see below). It is important to note that
KB

−→ is a connective in the usual sense, not a family of
connectives indexed by “KB”. Given the Ramsey test,
KB

−→ is nothing more than a subjunctive conditional.
We can define for any propositional A ∈ LCPL, the

belief set resulting from revision of K by A as

K∗
M

A = {B ∈ LCPL : M |= A
KB

−→ B}. (3)

Theorem 1 If M is a K-revision model for any K,
then ∗M satisfies postulates (R1)–(R8).

Theorem 2 Let ∗ be any revision operator satisfying
(R1) through (R8). Then there exists a K-revision
model, for any theory K, such that ∗ = ∗M.

Thus, CO* is an appropriate logical characterization of
AGM revision and, in fact, is the first logical calculus
of this type suited to the AGM theory. However, the
modal approach suggests a number of generalizations of
AGM revision, for example, by using CO or dropping
connectedness (Boutilier 1992). It also provides con-
siderable expressive power with which we can constrain
the revision process in novel ways.

The Limit Assumption Our approach to revision
makes no assumption about the existence of minimal
A-worlds, which Grove (1988) claims forms an integral
part of any model of revision. As Lewis (1973) empha-
sizes, there is no justification for such an assumption
other than convenience. Consider a KB that contains
the proposition “I am 6 feet tall.” Revising by A = “I

am over 7 feet tall” would allow one to evaluate Lewis’s
classic counterfactual “If I were over 7 feet tall I would
play basketball.” However, it doesn’t seem that there
should exist a most plausibleA-world, merely an infinite
sequence of such worlds approaching the limit world
where “I am 7 feet tall” is true. Our model allows one
to assume the truth of the counterfactual A

KB

−→ B if
the consequent B (“I play basketball”) is strictly im-
plied (i.e., if 2(A ⊃ B) holds) at any world in this
sequence of A-worlds. In this respect, we take Lewis’s
semantic analysis to be appropriate.
Models of revision that rely on the the Limit As-

sumption (e.g., (Grove 1988; Katsuno and Mendelzon

1991b)) would also make A
KB

−→ B true, but for the
wrong reasons. It holds vacuously since there are no

minimal A-worlds. Of course, A
KB

−→ ¬B is true in this
case too, which is strongly counterintuitive. How can
this be reconciled with Theorems 1 and 2, which show
that our notion of revision is equivalent to the AGM
version, including those that make the Limit Assump-
tion?
In fact, this points to a key advantage of the modal

approach, its increased expressive power. We can easily
state that worlds of decreasing height (ht), down to my
actual height of 6 feet, are more plausible using:7

↔
2∀y > 6[y < x ⊃ (ht(Me) = x ≡

←
2ht(Me) 6= y)]. (4)

Not only can we constrain the revision process directly
using conditionals, but also indirectly using such inten-
sional constraints. Of course, there must be some AGM
operator that has β ∈ K∗α exactly when our model sat-

isfies α
KB

−→ β, including B ∈ K∗A (the basketball coun-
terfactual). But models making the Limit Assumption
do not reflect the same structure as our CO*-model.
They cannot express nor represent the constraint relat-
ing plausibility to height. In order to ensure B ∈ K∗A
they must violate sentence (4). The modal language
also improves on AGM revision in general, where such
a constraint can only be expressed by some infinite set
of conditions β ∈ K∗α. In (Boutilier 1992) we exam-
ine the Limit Assumption and intensional constraints
in more detail. In particular, we show how constraints
on the entrenchment and plausibility of sentences and
beliefs can also be expressed at the object level.
When reasoning about the revision of a knowledge

base KB, we require a background theory with the
sentence O(KB), which implicitly constrains the condi-
tional connective to refer to KB, and a set of conditional
assertions from which we can derive new revision asser-

7We assume the obvious first order extension of CO-
models, a partial theory of < over (say) the rationals, etc.



tions. For instance, to take an example from default
reasoning, if one asserts

{bird
KB

−→ fly, penguin
KB

−→ ¬fly, penguin
KB

−→ bird}

then the conclusion bird ∧ penguin
KB

−→ ¬fly can be
derived. Indeed this should be the case as penguins are
a specific subclass of birds and properties associated
with them should take precedence over those associated
with birds. Beliefs in KB can influence revision as well.
If we take KB to be {A ⊃ B,C ⊃ D} (where A,B,C,D

are distinct atoms) then from O(KB) we can infer, for

instance, A
KB

−→ B and A ∨ C
KB

−→ B ∨D. We can also

derive ¬(A
KB

−→ C) since revision by A does not force
acceptance of C. Other derived theorems include (see
(Boutilier 1992) for more examples):

• (A
KB

−→ B) ∧ (A
KB

−→ C) ⊃ (A
KB

−→ B ∧ C)

• (A
KB

−→ C) ∧ (B
KB

−→ C) ⊃ (A ∨B
KB

−→ C)

• (A
KB

−→ B) ⊃ ((A ∧B
KB

−→ C) ⊃ (A
KB

−→ C))

• (A
KB

−→ B) ∧ (A
KB

−→ C) ⊃ (A ∧B
KB

−→ C)

• (A
KB

−→ C) ∧ ¬(A ∧B
KB

−→ C) ⊃ A
KB

−→ ¬B

We now turn our attention to a systematic framework
for representing knowledge about belief revision.

A Framework for Subjunctive Queries

Let KB be as usual a set of beliefs representing our
knowledge of the world. We also expect there to be
some conditional beliefs among these that constrain the
manner in which we are willing to revise our (objective)

beliefs. These take the form α
KB

−→ β (or α > β when
we intend Lewis’ connective), and will be referred to as
subjunctive premises. By a subjunctive query we mean
something of the form “If A were true, would B hold?”
In other words, is A > B a consequence of our beliefs
and subjunctive premises?
Given the connection between VC and belief revi-

sion, and assuming the Ramsey test is an appropriate
truth test for subjunctives, it would appear that VC
is exactly the logical calculus required for formulating
subjunctive queries. However, we have misrepresented
the Gärdenfors result to a certain degree; in fact, his
semantics does not account for the postulate of consis-
tent revision (R4). It is excluded because it results in
triviality (see (Gärdenfors 1988)) and, together with the
other postulates, is far too strong to be of use. Because
(R4) is unaccounted for in VC, it is inadequate for the
representation of certain subjunctive queries.

Example Suppose KB = {B}, a belief set consisting
of a single propositional letter. If we were to ask “If A
then B?” intuitively we would expect the answer YES,
when A is some distinct atomic proposition. With
no constraints (such as A > ¬B), the postulate of
consistent revision should hold sway and revising by
A should result in KB′ = {A,B}. Hence, A > B

should be true of KB. Similarly, ¬(A > C) should
also be true of KB for any distinct atom C.

In VC there is no mechanism for drawing these types
of conclusions. At most one could hope to assert B as a
premise and derive A > B or ¬(A > C), but neither of
B ⊢V C A > B or B ⊢V C ¬(A > C) is true, nor should
they be. It should be the case that if A is consistent
with our beliefs that A > B holds, but merely assert-
ing B doesn’t carry this force. When B is a premise
we mean “B is believed;” but this does not preclude
the possibility of A, ¬A, C, or anything else being be-
lieved. When KB = {B} we intend something stronger,
that “B is all that is believed.” Because B is the only
sentence in KB, we convey the added information that,
say, neither A nor ¬A is believed. In Levesque’s (1990)
terminology, we only know KB.

To only know some sentence is to both know (or be-
lieve) B and to know nothing more than B. To know
B is to restrict one’s set of epistemic possibilities to
those states of affairs where B is true. If some ¬B-
world were considered possible an agent could not be
said to know B, for the possibility of ¬B has not been
ruled out. To know nothing more than B is is to in-
clude all possible A-worlds among one’s set of epistemic
possibilities. Adding knowledge to a belief set is just re-
stricting one’s set of epistemic possibilities to exclude
worlds where these new beliefs fail, so if some B-world
were excluded from consideration, intuitively an agent
would have some knowledge other than B that ruled
out this world.

In our logic CO* we have precisely the mechanism
for stating that we only know a KB. We consider the
set of minimal worlds to represent our knowledge of the
actual world. Exactly those possible worlds consistent
with our beliefs KB are minimal in any KB-revision
model. This is precisely what the sentence O(KB) as-
serts, that KB is believed (since only KB-worlds are
minimal) and that KB is all that is believed (since only
minimal worlds are KB-worlds).

Returning to the query A
KB

−→ B, this analysis sug-

gests that B ⊢CO∗ A
KB

−→ B is not the proper formula-
tion of the query. This derivation is not valid (just as

it is not in VC). Rather, we ought to ask if A
KB

−→ B



holds if we only know B. In fact, both

O(B) ⊢CO∗ A
KB

−→ B and O(B) ⊢CO∗ ¬(A
KB

−→ C)

are legitimate derivations.
This leads to an obvious framework for subjunctive

query answering, given a set of beliefs KB. Our knowl-
edge of the world is divided into two components, a set
KB of objective (propositional) facts or beliefs, and a
set S of subjunctive conditionals acting as premises, or
constraints on the manner in which we revise our be-
liefs. To ask a subjunctive query Q of the form α

KB

−→ β

is to ask if β would be true if we believed α, given
that our only current beliefs about the world are rep-
resented by KB, and that our deliberations of revision
are constrained by subjunctive premises S.8 The ex-
pected answers YES, NO and UNK (unknown) to Q are
characterized as follows.

ASK(Q) =







YES if {O(KB)} ∪ S |=CO∗ Q

NO if {O(KB)} ∪ S |=CO∗ ¬Q
UNK otherwise

Objective queries about the actual state of affairs (or,
more precisely, about our beliefs) can be phrased as

⊤
KB

−→ β where β is the objective query of interest. It’s
easy to see that for such a Q

ASK(Q) = YES iff ⊢CO∗ KB ⊃ β.

The ability to express that only a certain set of sen-
tences is believed allows us to give a purely logical char-
acterization of subjunctive queries of a knowledge base.
The logic VC seems adequate for reasoning from sub-
junctive premises and for deriving new conditionals, but
it cannot account for the influence of factual informa-
tion on the truth of conditionals in a completely satisfy-
ing manner; for it lacks the expressive power to enforce
compliance with postulate (R4).9 The approaches of
Ginsberg and Jackson take VC to be the underlying
counterfactual logic. Indeed, their approaches (under
certain assumptions) satisfy the Lewis axioms. How-
ever, they recognize that the ability to only know a
knowledge base is crucial for revision and subjunctive
reasoning, an expressive task not achievable in VC.
Therein lies the motivation for their extra-logical char-
acterizations, and the underlying idea that KB is rep-
resentable as a set of sentences or set of possible worlds

8We note that S can be part ofKB, lying within the scope
of O, but prefer to keep them separate for this exposition
(see (?)).

9In fact, it is not hard to verify that the axioms for VC
are each valid in CO* if we replace nonsubjunctive informa-
tion (say α) by statements to the effect that α is believed,
also expressible in CO*; see (?)).

from which we construct new sets in the course of re-
vision. CO* can be viewed as a logic in which one can
capture just this process.10

Integrity Constraints

Often it is the case that only certain states of knowl-
edge, certain belief sets, are permissible. The concept of
integrity constraints, widely studied in database theory,
is a way to capture just such conditions. For a database
(or in our case, a belief set) to be considered a valid rep-
resentation of the world, it must satisfy these integrity
constraints. For instance, we may not consider feasi-
ble any belief set in which certain commonsense laws of
physics are violated; or a database in which there exists
some student with an unknown student number may be
prohibited.
This apparently straightforward concept actually has

several distinct interpretations. Reiter (1990) surveys
these and proposes the definition we favor, which es-
sentially asserts that an integrity constraint C should
be entailed by KB. The distinguishing characteristic
of Reiter’s definition is that integrity constraints can
be phrased using a modal knowledge operator, which
refers to “what is known by the database.” We will as-
sume constraints are propositional and that KB satisfies
C just when KB entails C.11

As emphasized in (Fagin, Ullman and Vardi 1983)
and (Winslett 1990), integrity constraints are particu-
larly important when updating a database. Any new
database (or belief set) should satisfy these constraints,
therefore any reasonable model of update or revision
must explicitly account for integrity constraints.

Example Let the constraint C, that a department has
only one chair, be expressed as

chair(x,d)∧ chair(y,d) ⊃ x=y (5)

Suppose we update KB with chair(Ken,DCS) ∨
chair(Maria,DCS), and assume

KB = {chair(Derek,DCS)}

so this new fact in inconsistent with the existing KB
(assuming Unique Names). The constraint can not
be enforced in the updated KB′, for nothing about
C says it must be true in the revised state of affairs,
even if it is an explicit fact in the original KB.

10Other distinctions exist (see Section 1), e.g., Ginsberg’s
proposal is syntax-sensitive, while Jackson’s system is com-
mitted to specific minimality criteria.

11We can express constraints involving a knowledge
modality (see (?) for details).



This example illuminates the need for integrity con-
straints to be expressed intensionally. They refer not
only to the actual world, but to all (preferred) ways in
which we view the world.
We can ensure a revised belief set or database sat-

isfies a constraint C by asserting
↔
2C as a premise in

our background theory (on the same level as O(KB)).
This has the effect of ensuring any possible worlds ever
considered satisfy C (thus requiring the logic CO). How-
ever, this may be too strong an assertion in many ap-
plications. Such a statement will force any revision of
KB by a fact inconsistent with C to result in the in-
consistent belief set Cn(⊥). In certain (maybe most)
circumstances, we can imagine the violation of a con-
straint C ought not force us into inconsistency.
Instead of abolishing ¬C-worlds outright, we’d like

to say all C-worlds are “preferred” to any world violat-
ing the constraint. Such a condition is expressible as
↔
2(C ⊃ 2C). To see this, imagine some ¬C-world v is
more plausible than some C-world w. Then wRv and
M 6|=w C ⊃ 2C. We denote this formula by WIC.
Since we are often concerned with a set of constraints
C = {C1 , · · · , Cn}, in such a case we use C to denote
their conjunction, and

WIC =
↔
2(C ⊃ 2C) where C =

∧

i≤n

Ci.

Definition M is a revision model for K with weak in-
tegrity constraints C iff M is a revision model for K

and M |=
↔
2(C ⊃ 2C).

Theorem 3 Let M be a revision model for K with

weak integrity constraints C. Then K∗
M

A |= C for all
A consistent with C.

Thus we validate the definition of integrity constraint.
If a sentence A is consistent with C it must be the case
that revising by A results in a belief set that satisfies
C. Of course, this requires that the original belief set
K must also satisfy the integrity constraints, not just

revised belief sets K∗
M

A (imagine revising by ⊤).

Example Let KB = {chair(Derek,DCS)} and C be
the previous constraint (5). If we update KB with
chair(Ken,DCS) ∨ chair(Maria,DCS), then from
{O(KB)} ∪WIC we can derive in CO*

chair(Ken,DCS)∨ chair(Maria,DCS)
KB

−→

chair(Ken,DCS)≡ ¬chair(Maria,DCS).

This definition of integrity constraint has the unap-
pealing quality of being unable to ensure that as many
constraints as possible be satisfied. For instance, if

some update A violates some Ci of C, then revision
by A is not guaranteed to satisfy other constraints. In
(Boutilier 1992) we introduce strong constraints that
accomplish this. We can also prioritize constraints, as-
signing unequal weight to some constraints in C. Fagin,
Ullman and Vardi (1983) have argued that sentences
in a database can have different priorities and that up-
dates should respect these priorities by “hanging on to”
sentences of higher priority whenever possible during
the course of revision. Consider two constraints assert-
ing that a department has one chair and that the chair
of Computer Science (CS) is the only person without a
course to teach. It might be that certain information
cannot satisfy both of the constraints, but could satisfy
either one singly — for example, when we learn that
Maria is the chair and Ken has no course load. We
may also prefer to violate the constraint that a non-
chair faculty member teaches no course, deferring to
the fact that CS has only one chair.
Suppose that the set C = {C1, · · · , Cn} is now an or-

dered set of integrity constraints with Ci having higher
priority than Cj whenever i < j. We prefer Ci when a
conflict arises with Cj . Let Pi denote the conjunction
of the i highest priority integrity constraints

Pi = C1 ∧ C2 ∧ · · ·Ci.

The set of prioritized integrity constraints is

ICP = {
↔
2(Pi ⊃ 2Pi) : i ≤ n}.

Definition M is a revision model forK with prioritized
integrity constraints C1, · · · , Cn iff M is a revision
model for K and M |= ICP .

Theorem 4 Let M be a revision model for K with pri-
oritized integrity constraints C1, · · · , Cn. If A is consis-
tent with the conjunction Pj of all constraints Ci, i ≤ j,

then K∗
M

A |= Ci for all i ≤ j.

Example Let KB = {chair(Derek,DCS)} and C =
{C1, C2}, where C1 is constraint (5) and

C2 = chair(x,DCS)≡ teachnocourse(x).

From {O(KB)} ∪ ICP we can derive in CO*

teachnocourse(Ken)∧ chair(Maria,DCS)
KB

−→

chair(x,DCS)≡ x = Maria.

Concluding Remarks

We have presented a modal logic for revision and sub-
junctive reasoning that, unlike current logics, can ac-
count for the effect of only knowing a knowledge base.



CO* can be viewed as a logical calculus for AGM re-
vision. Furthermore, it characterizes these processes
without making the Limit Assumption, as advocated
by Lewis (1973), and allows integrity constraints to be
expressed naturally within the logic. In (?) we show
that CO*, with its ability to reason about knowledge,
can be viewed as a generalization of autoepistemic logic,
and that our subjunctive bears a remarkable similar-
ity to the normative conditionals postulated for default
reasoning. Indeed, we show that default reasoning can
be viewed as a special case of revision by using our
subjunctive. Furthermore, we show that the triviality
result of Gärdenfors (1988) is avoided in our logic at
the expense of postulate (R4), which we claim cannot
be correct for belief sets that include conditionals. The
triviality result has also led to a distinction between re-
vision and update (Winslett 1990; Katsuno and Mendel-
zon 1991a), which has also be used to define subjunc-
tives (Grahne 1991). An interesting avenue of research
would be to pursue the connection between the two, ex-
amining the extent to which update can be captured by
unary modal operators, and the extent to which either
problem subsumes the other. The generalizations of re-
vision afforded by the modal approach may also apply
to update.
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