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Abstract

Utility elicitation is a critical function of any au-
tomated decision aid, allowing decisions to be tai-
lored to the preferences of a specific user. How-
ever, the size and complexity of utility functions
often precludes full elicitation, requiring that de-
cisions be made without full utility information.
Adopting theminimax regretcriterion for decision
making with incomplete utility information, we de-
scribe and empirically compare several new pro-
cedures for incremental elicitation of utility func-
tions that attempt to reduce minimax regret with as
few questions as possible. Specifically, using the
(continuous) space of standard gamble queries, we
show that myopically optimal queries can be com-
puted effectively (in polynomial time) for several
different improvement criteria. One such criterion,
in particular, empirically outperforms the others we
examine considerably, and has provable improve-
ment guarantees.

1 Introduction
As software for decision making under uncertainty becomes
increasingly common, the process of utility elicitation takes
on added importance. Tailoring decisions to a specific user
requires knowledge of the user’s utility function, information
that generally cannot be built into software in advance. In
domains as varied as travel planning, product configuration,
and resource allocation, to name but a few, assessing a user’s
utility function is an integral part of interactive decision mak-
ing. Unfortunately, as is well-known among decision ana-
lysts, utility functions are unwieldy, complex, and difficult
for users to articulate[5]. To mitigate these difficulties, ana-
lysts have developed many techniques for easing the burden
of elicitation. For example, structuring of multiattribute util-
ity functions reduces the number of parameters that need to be
assessed[6]; and the use ofstandard gamble queriesand sen-
sitivity analysis allows users to calibrate utilities more easily
[5].

More recently, emphasis has been placed on decision mak-
ing with incomplete utility information. The principle of
maximum expected utility (MEU) cannot be used directly
in such cases, since the utility function is unknown; thus

new decision criteria are needed. In addition, methods
for the automatic generation of queries have been devel-
oped that reduce uncertainty or incompleteness in the util-
ity function with minimal effort. Within AI, probabilistic
models of utility function uncertainty have been used[4;
2]. By assuming a density over possible utility functions,
expectations over this density can be taken to determine the
value of a decision; and standard Bayesian updating tech-
niques can be used to account for the responses to queries.
A different perspective is taken in work on imprecisely spec-
ified multiattribute utility theory (ISMAUT)[8; 7] in which
linear constraints on multiattribute utility functions are re-
fined, allowing the set of Pareto optimal decisions to be iden-
tified; these constraints are often refined until one action can
be proven optimal. Boutilier, Bacchus and Brafman[3] and
Blythe[1] adopt a somewhat related perspective, also reason-
ing with linear constraints on utility functions.

In this work, we adopt a distribution-free model, work-
ing with linear constraints on utility functions, much like
ISMAUT. Unlike ISMAUT, we allow for decisions to be
made (or recommended) even when the incompleteness in
utility knowledge prevents us from proving a decision is op-
timal. In such circumstances, we adopt theminimax regret
decision criterion. We also propose and examine several
methods for generating queries that reduce regret quickly,
in contrast to work on ISMAUT (where querygeneration
strategies have not been studied in depth). In this sense,
our model more closely resembles probabilistic models[4;
2], which rely on the fact that decisions of goodexpected
quality can be made with uncertain utility information. Using
the minimax regret criterion, we generate decisions whose
quality (difference from optimal) can be bounded in the face
of incomplete utility information. These bounds can be traded
off against query cost or minimum error requirements to
guide the query process.

The paper is organized as follows. We outline relevant
background in Section 2 and define the minimax regret crite-
rion for decision making with incomplete utility information.
We show how decisions of minimax regret can be computed
using simple linear programs (LPs) if utility constraints are
linear. We also discuss incremental elicitation, focusing on
standard gamble queries (SGQs)[5], the responses to which
impose one-dimensional, linear utility constraints that can be
easily handled using LPs. Our key contribution is described



in Section 3, where we develop several myopic elicitation
strategies. Assuming linear constraints in each utility dimen-
sion (an assumption consistent with the use of SGQs), we
show that the minimax regret improvement offered by any
response to a SGQ, as a function of the (continuous) query
parameter, is piecewise linear (PWL) and weakly monotonic
(decreasing or increasing, depending on the response). This
fact allows optimal queries under each query strategy to be
computed efficiently, in time linear in the number of utility
attributes, despite the fact that query space is continuous. We
present empirical results comparing the different strategies in
Section 4, demonstrating the effectiveness, in particular, of
themaximum expected improvementstrategy.

2 Minimax Regret with Incomplete Utility
Information

We assume a system charged with making a decision on be-
half of a user in a specificdecision scenario. By a decision
scenario, we refer to a setting in which a fixed set of choices
(e.g., actions, policies, recommendations) are available to the
system, and the (possibly stochastic) effects of these choices
are known. For example, the decisions could be courses of
medical treatment with known probabilities for specific out-
comes[4]. The system’s task is to take the optimal decision
with respect to the user’s utility function over outcomes, or
some approximation thereof. The system may have little in-
formation about the user’s utility function, so to achieve this,
it must find out enough information about this utility function
to enable a good decision to be made. We assume that The
system has available to it a set of queries it can ask of the user
that provide such information. We make these concepts more
precise below.

2.1 The Minimax Criterion

Formally, adecision scenarioconsists of a finite set of possi-
bledecisionsD, a finite set ofn possible outcomes (or states)
S, and a distribution functionPrd ∈ ∆(S), for eachd ∈ D.1

The termPrd(s) denotes the probability of outcomes be-
ing realized if the system takes decisiond. A utility function
u : S → [0, 1] associates utilityu(s) with each outcome
s. We often viewu as an-dimensional vectoru whoseith
componentui is simply u(si). We assume that utilities are
normalized in the range[0, 1] for convenience. Theexpected
utility of decisiond with respect to utility functionu is:

EU (d, u) =
∑

i∈S

Prd(si)ui.

Note thatEU (d, u) is linear inu. The optimal decisiond∗
w.r.t. u is that withmaximum expected utility (MEU).

In general the utility functionu will not be known with cer-
tainty at the start of the elicitation process, nor at its end. As
in ISMAUT [8; 7], we model this uncertainty by assuming a
set of linear constraintsC over the set of possibly utility func-
tionsU = [0, 1]n. More precisely, we assume that constraints

1The extension of our elicitation methods to a set of possible
decision scenarios is straightforward.

over unknown utility valuesui are linear. We useC ⊆ U to
denote the subspace ofU satisfyingC.

If a system makes a decisiond under such conditions of
incomplete utility information, some new decision criterion
must be adopted to rank decisions. Following[3], we adopt
the minimax regret decision criterion.2 Define the optimal
decisiond∗u with respect to utility vectoru to be

d∗u = argmax
di

EU (di, u).

If the utility function were known,d∗u would be the correct
decision. Theregretof decisiondi with respect tou is

R(di, u) = EU (d∗u, u) − EU (di, u).

i.e., the loss associated with executingdi instead of acting
optimally. LetC ⊆ U be the feasible utility set. Define the
maximum regretof decisiondi with respect toC to be

MR(di, C) = max
u∈C

R(di, u)

and the decisiond∗C with minimax regretwith respect toC:

d∗C = argmin
di

MR(di, C).

The(minimax) regret levelof feasible utility setC is

MMR(C) = MR(d∗C , C).

If the only information we have about a user’s utility function
is that it lies in the setC, thend∗C is a reasonable decision.
Specifically, without distributional information over the set
of possible utility functions, choosing (or recommending)d∗C
minimizes the worst case loss with respect to possible real-
izations of the utility function (e.g., if the trueu were chosen
by an adversary).

If C is defined by a setC of linear constraints, thend∗C
as well asMMR(C) can be computed using a set of linear
programs[3]. We can compute thepairwise max regret, for
any pair of decisionsdi anddj ,

PMR(di, dj , C) = max
u∈C

EU (dj , u) − EU (di, u)

using an LP (i.e., maximizing a linear function of the un-
known outcome utilities subject toC). SolvingO(|D|2) such
LPs, one for each ordered pair of actions, allows us to iden-
tify the decisiond∗C that achieves minimax regret and to de-
termine the minimax regret levelMMR(C).

2.2 Incremental Elicitation
Given partial knowledge of a utility function in the form of
constraint setC, the optimal decisiond∗C may have an unac-
ceptable level in regret. In such a case, a user could be queried
in order to reduce this level of uncertainty, thus generally im-
proving decision quality.3

2Minimax regret is often used for decision making understrict
or unquantified uncertainty[5], but its application to imprecisely
known utility functions appears not to have been considered in the
decision analysis literature.

3Note that max regret cannot increase with additional utility in-
formation: ifC ⊆ C′, thenMMR(C) ≤ MMR(C′).



A common type of query is a standard gamble w.r.t. out-
comesi, where the user is asked if she preferssi to a gam-
ble in which the best outcomes> occurs with probabilityl
and the worsts⊥ occurs with probability1 − l [6]. We will
designate this queryqi(l) and focus our attention on such
standard gamble queriesor SGQs.4 Given a responseyes
to queryqi(l), the constraintui > l can be imposed on the
user’s utility function, thus (in general) refining our knowl-
edge; similarly, ano response corresponds to the constraint
ui ≤ l. A response to any standard gamble query imposes
a one-dimensional (i.e., axis parallel) linear constraint on the
utility set. Thus if our initial constraint setC is linear, comput-
ing the minimax optimal decision after a sequence of SGQs
can be accomplished using the LP method above. Further-
more, ifC consists of a set of bounds on utility values in each
dimension—i.e.,C forms a hyper-rectangle within[0, 1]n—
then after any sequence of SGQs, the feasible utility set re-
tains this form.

The interactive decision making context we consider is one
in which queries are asked repeatedly until the minimax re-
gret level falls to some acceptable value. At that point the
“optimal” decision, that with minimax regret given the cur-
rent constraints, is recommended. Termination can be based
on simple thresholding, or can take into account the cost of
a query (which can be weighed against the predicted im-
provement in decision quality).5 Generally, queries will be
asked that offer the greatest predicted improvement in deci-
sion quality.

Both query selection and termination rely critically on the
way in which “predicted improvement in decision quality”
is defined for a query. For example, when asking a query
qi(l) with respect to current constraint setC, we obtain two
constraint setsCno andCyes , respectively, given responses,
no andyes . We might then define the improvement in de-
cision quality associated with the query as some function of
MMR(Cno) andMMR(Cyes). Such a method of evaluating
queries ismyopic: the query is evaluated in isolation, without
consideration of its impact on the value or choice of future
queries.

It is important to note that optimal query choice is inher-
ently nonmyopic—in general, a sequence of several queries
may offer much more value than the aggregate myopic values
of the component queries. Unfortunately, nonmyopic meth-
ods require some form of lookahead, and thus often impose
severe computational costs on the process of query selec-
tion. For this reason, we focus on the development of several
myopic query selection strategies in the next section. This
is analogous to the use of myopic methods for the approx-
imation of value of information in cases where uncertainty
is quantified probabilistically; while the computation of true
value of information requires some form of sequential rea-

4Other types of queries could be considered, though we rely on
the special nature of SGQs in some of our results. SGQs are used
widely in decision analysis[5], and have been the main query type
studied in recent Bayesian elicitation schemes[4; 2].

5Of course, elicitation can continue until a zero-regret (i.e., opti-
mal) decision is identified: this occurs wheneverC ⊂ Rd for some
decisiond, the region of utility space for whichd is optimal. The
regionsRd are convex polytopes withinU .

soning, myopic approximations tend to be used frequently in
practice[5; 4].

3 Myopic Elicitation Strategies
In this section we describe three myopic strategies for query
selection under the minimax regret criterion. Throughout this
section we make the following assumptions:

(a) The initial constraints have the form of upper and lower
bounds in each utility dimension (these may be trivial
bounds, 0, 1).

(b) SGQs are asked, assuming some known best and worst
outcome. These ensure that each constraint set (after any
query) has the same form as the initial set (i.e., a hyper-
rectangle). We denote byubi andlbi the current bounds
on the utilityui of outcomesi.

(c) For simplicity, we assume a thresholdτ is used to imple-
ment termination; that is, when the predicted improve-
ment of a query falls belowτ , we terminate the process.

We discuss the impact of relaxing these assumptions later.

3.1 Characterization of Regret Reduction
Query selection is complicated by the fact that, in general,
there aren typesof SGQs that can be asked—one per out-
comesi—and a continuous set of instances of each typei—
qi(l) for eachl ∈ [lbi, ubi]. Whatever criterion is used to
select queries, it must distinguish among queries in thisn-
dimensional continuous space.

Before describing the three strategies, we characterize the
reduction in minimax regret offered by a response to a SGQ.
Assume current constraint setC, with boundsubi andlbi in
dimensioni. Given queryqi(l), with lbi < l < ubi, a nega-
tive response will provide us with a refined set of constraints
Cno = C ∪ {ui ≤ l}—i.e., it reduces the upper boundubi on
ui—with (ideally) reduced regret. A positive response gives
us a similarly refined constraint setCyes .

Focusing on the negative response, note that we’ll end up
with differentCno sets depending on the query pointl. Nat-
urally, the closer the query pointl is to lbi, the more infor-
mative a negative response is (since it constrainsui to be in
the interval[lbi, l]). Intuitively, we’d expect minimax regret
to be smaller given a tighter query. In fact, we can say more.
DefineMMRno(C, i, l) to beMMR(Cno) where theno is in
response to queryqi(l). We have:

Theorem 1 For any i ≤ n, MMRno(C, i, l) is a PWL, non-
decreasing function ofl.

Proof: For space reasons, we provide only an intuitive proof
sketch. DefinePMR(d, d′, C, i, l) = PMR(d, d′, C ∪ {ui =
l}); that is,PMR(d, d′, C, i, l) is the pairwise max regret of
d w.r.t. d′ given the current constraintsplus knowledge that
ui = l. It is not hard to see thatPMR(d, d′, C, i, l) is a
linear function ofl: maximizing the regret ofd w.r.t. d′ is
effected by setting each componentuj of the utility func-
tion to either its upper bound (ifPrd(sj) ≤ Prd′(sj)) or
lower bound (ifPrd(sj) > Prd′(sj)). Since this max is
achieved independently in each dimension, the contribution
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Figure 1: Structure of various functions in dimensioni, as a function ofl: (a) ThePMR for d1 (w.r.t. d1, d2, d3) are shown; as is
MR(d, C, i, l), the max (thin solid line) of pairwise max regret functions.MRno (thick solid upper line) is obtained by replacing thePMR
line d2 −d1 (with negative slope) by the constant line, and again taking the max. (b)MMRno (dashed line) is the min of theMRno functions
for each decision; (c) Intersection ofMMRno andMMRyes gives maximin improvement in MMR.

to max regret in dimensions other thani is constant, while
the contribution to regret in dimensioni givenui = l is lin-
ear in l, with coefficientPrd′(si) − Prd(si). It follows that
MR(d, C, i, l) = maxd′ PMR(d, d′, C, i, l) is a PWL convex
function ofl, since it is the max of these pairwise regret func-
tions (see Figure 1(a)).

Now defineMRno(d, C, i, l) = MR(d, C ∪ {ui ≤ l}), the
max regret ofd after obtaining a negative response to query
qi(l). (Note that this differs fromMR(d, C, i, l), which is de-
fined by assumingui = l, not ui ≤ l.) MRno(d, C, i, l) is
also a PWL convex function, obtained from the set of lin-
earPMR-functions that make upMR(d, C, i, l) as follows:
we replace any linear components with negative slope by the
constant lineMR(d, C, i, lbi). Intuitively, if the regret ofd
w.r.t. d′ after learningui = l decreases withl, then simply
learning thatui ≤ l cannot reduce pairwise max regret, since
this weaker constraint does not rule out the maximum regret
at l = lbi (see Figure 1(a) for this intuitive flattening of the
regret line ford2 − d1). This ensures thatMRno(d, C, i, l) is
also nondecreasing inl, as illustrated in Figure 1(a).

Finally, note that, by definition of minimax regret,
MMRno(C, i, l) = mind MRno(d, C, i, l). The minimum of
a collection of PWL, convex, nondecreasing functions is also
PWL and nondecreasing (though not necessarily convex) (see
Figure 1(b)).J
Note that this proof sketch shows how to construct a finite
representation of the functionMMRno(C, i, l) as a finite col-
lection of linear functions and inflection points. By entirely
analogous reasoning, we also have:

Theorem 2 For anyi ≤ n, MMRyes(C, i, l) is a PWL, non-
increasing function ofl.

3.2 Maximin Improvement

One goal of any query strategy is to determine utility informa-
tion that reduces regret as quickly as possible. Unfortunately,
for any given SGQqi(l), the exact reduction in regret can-
not typically be predicted in advance, since it differs depend-
ing on whether ayes or no response is obtained. Themax-
imin improvement (MMI)query strategy myopically selects
queries with the bestworst-caseresponse. More precisely,
let C be our current constraint set. We define the minimum

improvement of queryqi(l):

MI (qi(l), C) =
MMR(C) − max{MMRyes(C, i, l),MMRno(C, i, l)}.

At each stage, the queryqi(l) is asked whose minimum im-
provement with respect to the current constraint set is max-
imum. The process stops when no query has minimum im-
provement greater than thresholdτ .

To compute the optimal MMI query point, we find the
optimal query point in each dimensioni, and ask the SGQ
corresponding to the dimension with greatest MMI. The
PWL representation of the functionsMMRyes(C, i, l) and
MMRno(C, i, l) described above allows the optimal point in
each dimension to be computed readily. The pointl that of-
fers MMI in dimensioni can be determined by computing the
intersection of the two functions: since one is nondecreas-
ing and the other nonincreasing, the maximum point of the
function max{MMRyes ,MMRno} must lie at the intersec-
tion. Note that the intersection must exist since each has the
same maximum valueMMR(C) (see Figure 1(c)).6 Finally,
the value of the improvement in regret is the difference be-
tween the original minimax regret level and this value.

Computation of the intersection of these functions is
straightforward, requiring only the computation of the inter-
section of the linear segments whose bounds overlap. As
such, this can be accomplished in linear time in the maximum
number of segments in either function. The number of seg-
ments in these functions is (very loosely) bounded by|D|2.7

Since we must compute the optimizing point for each util-
ity dimension, the complexity of this algorithm isO(n|D|2).
The algorithm thus scales linearly in the number of outcomes
and quadratically with the number of decisions.

3.3 Average and Expected Improvement
One difficulty with the MMI criterion for query selection is
that, due to its worst-case nature, we can often find situations
in which no query offers positive (minimum) improvement
(we will see evidence of this in the next section), despite the

6If the intersection occurs where both functions are “flat,” any
query point in the intersection can be used.

7In practice, the number of segments appears to grow sublinearly
in the number of decisions|D|.



fact that the current regret level is positive. This occurs when
at least one of the responses for every query offers no im-
provement, thus stalling the query process. Intuitively, just
because one response to a queryqi(l) offers no improvement
is no reason not to ask the query: the opposite response may
still offer immediate improvement.8 This suggests an alterna-
tive criterion calledmaximum average improvement (MAI):
SGQs are ranked according to the average improvement of-
fered by both positive and negative responses.

Computing the optimal query point according to MAI can
also exploit the PWL nature of the functionsMMRyes(C, i, l)
andMMRno(C, i, l). As with MMI, we compute the optimal
query pointl in each dimensioni independently. It is not hard
to see that the point of maximum average improvement must
occur at an inflection point of one of the two functions. Thus,
each dimension can be optimized in time linear in the number
of segments in the two functions.

The MAI criterion is not subject to stalling in the sense that
MMI is: if MMR(C) is positive, then there exists some query
with positive MAI (this will follow from a result discussed
below). However, it is subject to a different form of stalling:
it may well be the case that the queryqi(l) with MAI occurs
at one of the boundary pointsubi or lbi. In such a case, only
one (consistent) response is possible, imposing no additional
constraints on the utility function. As such, the constraint
setC will remain unchanged, meaning that the same query
remains MAI-optimal at the next stage.

This second type of stalling can be prevented. Suppose
that a queryqi(l) is optimal, wherel = ubi. We know that
MMRyes(C, i, ubi) < MMRno(C, i, ubi) (i.e., ayes offers
greater improvement at the pointubi); but sinceui cannot
exceedubi, the probability of receiving ayes response is
zero, so theyes-improvement cannot be realized. We can thus
make the queryqi(l) appear to be less desirable by accounting
for the odds of receiving a specific response. Themaximum
expected improvement (MEI)criterion does just this. We de-
fine the expected improvement of a query:

EI (qi(l), C) = MMR(C) − [Pr(yes |qi(l), C)MMRyes(C, i, l)

+ Pr(no|qi(l), C)MMRno(C, i, l)].

At each stage, we ask the query with maximum EI.
Computation of expected improvement requires some dis-

tribution over responses. For simplicity, we assume a uni-
form distribution over utility functions and noise-free re-
sponses: thus,Pr(yes |qi(l), C) = (ubi − l)/(ubi − lbi) (with
the negative probability defined similarly). This assumption
also allows for the ready computation of the MEI-optimal
query. Again, we optimize each dimension separately. The
optimization in dimensioni can be effected by doing sep-
arate optimizations in the regions defined by the union of
the inflection points in the functionsMMRyes(C, i, l) and
MMRno(C, i, l). We defer the details, but note that the func-
tion being optimized within each region is a simple quadratic
function ofl that can be solved analytically. Thus the compu-
tational complexity of this criterion is similar to that of MMI
and MAI. Fortunately, MEI is not subject to stalling:

8Note that, since MMI is myopic, even a nonimproving response
may offer information that can be exploited in the future.
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Figure 2:Performance of MEI on three-good problems (40 runs).

Proposition 1 If MMR(C) > 0, then there exists some query
qi(l) with positive expected improvement; and at least one
response to the MEI-optimal query reduces minimax regret.

The MEI criterion could be adopted using other distri-
butional assumptions, though the optimization required by
query selection could become more complicated. It is worth
noting that the manner in which we use distributional in-
formation is consistent with the worst-case perspective im-
posed by the minimax criterion. With some distribution
over utility functions, we could adopt the perspective of[4;
2], and make decisions by taking expectations with respect
to this distribution. However, even in this case, minimax re-
gret allows one to offerguaranteeson decision quality that a
Bayesian approach does not address. The MEI criterion ex-
ploits distributional informationonly to guide the querying
process, hoping to reach a point more quickly where accept-
able guarantees can be provided; the distribution is not used
to evaluate decisionsper se.

While other prior distributions will generally require a dif-
ferent approach to the optimization problem for query selec-
tion, it is interesting to observe that queries associated with a
mixture of uniform distributionscan be determined in exactly
the same manner. The derivation of the optimal query given
such a mixture is straightforward, and these models have the
desirable property (like uniform priors) that they are closed
under update by query responses. Thus, if our prior beliefs
can be approximated well using a mixture of uniforms with
a small number of components, MEI-querying can be used
directly as described here, without distribution-specific opti-
mization. It is important to note, however, that, even if the
approximate priors are used, the decision quality of the MEI
strategy is unaffected—only the number of queries required
may be adversely impacted.



4 Empirical Results
We evaluated the MMI, MAI, and MEI query criteria on
a number of elicitation problems in two different domains.
With the MEI criterion, we have also tested its robustness to
different assumptions about the prior over utility functions.

We first tested our methods in two bidding scenarios in-
volving simultaneous auctions and combinatorial preferences
[2]. In the first scenario, a bidding agent must offer bids for
four different goods auctioned simultaneously in four differ-
ent markets. To discretize the decision space, we assume that
the agent can offer three distinct bids—low, medium, and
high—for each good. Each of these bid levels corresponds
to a precise cost: should the bid win, the user pays the price
associated with each bid (with, of course, higher prices as-
sociated with higher bid levels). To suppress the need for
strategic reasoning, the agent has a fixed, known probability
of winning a good associated with each of the three bid lev-
els. The probabilities of winning each good are independent,
and increasing in the bid level. With four goods and three
bid levels, there are 81 possible decisions (mappings from
markets to bids) and 16 outcomes (subsets of goods the user
might obtain). The user’s utility function need not be addi-
tive with respect to the goods obtained. For instance, the user
might value goodsg1 andg2 in conjunction, but may value
neither individually. Thus utility is associated with each of
the 16 outcomes. We assume that the overall utility function
(accounting for price paid) is quasi-linear; so the price paid
is subtracted from the utility of the subset of goods obtained.
A smaller scenario with three goods was also run: this has 27
decisions and 8 outcomes.

We first discuss the smaller (3-good) scenario. For each
query criterion, we run elicitation using that criterion for 40
steps (or until no query has positive value). For each cri-
terion, 40 trials using random utility functions drawn from
[0, 1]n were run, with elicitation simulated using responses
based on that function. For each query in a run, we record:
(a)predicted MMR—the MMR level that is predicted to hold
after asking the optimal query;9 (b) actual MMR—the MMR
level realized once the actual query response is obtained; and
(c) thetrue regret—the difference in utility between the mini-
max decision and the true optimal decision for the underlying
utility function. While our algorithms don’t have access to
true regret, this measure gives an indication of true decision
quality, not just the quality guarantees the algorithms provide.

Figure 2 shows the performance of the MEI criterion (std.
error bars are shown on actual MMR and true regret, but are
excluded from predicted MMR for legibility). We see that
the algorithm quickly converges to a point where the mini-
max regret guarantees are quite tight: within 20 queries, the
average regret guarantee falls below 0.1 (less than 10%); and
within forty queries, decision quality is guaranteed to be with
4% of optimal. More interesting, we see thattrue regret
falls to under 10% with 5 queries, and to near zero within 20
queries. Thus the actual decision quality associated with act-
ing according the decision with MMR is generally far better
than the MMR guarantee. The MEI criterion seems to select

9For example, MMI predicts the maximum regret over all re-
sponses, while MEI predicts the expected regret.
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Figure 3:Performance of MAI on three-good problems (40 runs).

suitable queries, allowing optimal decisions and tight regret
guarantees to be identified with few interactions. For refer-
ence, we also include the performance of randomly selected
queries (where both dimensioni and query pointl are chosen
uniformly at random from the feasible region). Because the
problem is of relatively low dimension, random queries per-
form reasonably well, though they have difficulty reducing
regret to zero, and do not compete with MEI queries.

Figure 3 shows the same measurements for the MAI crite-
rion. We note that this query strategy does not reduce regret
bounds nearly as quickly as the MEI strategy, reaching only
an average regret guarantee of 0.18 after 40 queries. True re-
gret is generally much better, but still does not approach the
performance of MEI (or even random queries). We note that
the MAI criterion often stalls: in such a case, we complete the
data with the last minimax regret value. Finally, it is worth
noting that the MMI criterion performs extremely badly. We
don’t plot its performance, but note that in all runs, it stalls
after a maximum of five queries; its average minimax regret
bound is 0.8, and average true regret level is 0.3 when it stalls.

The MEI criterion appears to offer much better perfor-
mance than MAI, MMI, or random querying. Figure 4 shows
the performance of MEI, MAI and random querying strate-
gies on the larger four-good (16-outcome, 81-decision) sce-
nario. Again we see that MEI converges quickly and outper-
forms the other strategies. With the increase in dimensional-
ity, random queries fare worse than MAI-optimal queries. We
note that in all experiments, the optimal query (regardless of
criterion) can be computed very quickly.

We have also tested the MEI criterion on a travel plan-
ning domain (as in the previous tests, MEI seems to domi-
nate the other criteria, so we focus on it). In this domain,
an agent must choose a collection of flight segments from
a flight database to take a user from a source to a destina-
tion city [1]. To make the elicitation problem interesting, we
added the following information to the DB: the probability of
any flight arrival being delayed by specific amount of time;
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Figure 4:Performance on four-good problems (40 runs).

the probability of missing a connecting flight as a function of
connection time and airport; a distribution over ground travel
times to a hotel in the destination city as a function of arrival
time (reflecting, e.g., arrival in rush hour or off-peak); and the
probability of losing a hotel room as a function of arrival time
at the hotel. As a result, for any specific flight combination
(decision), a joint distribution over these variables (outcome)
is obtained. A user’s utility function is quasi-linear, given
by her utility for a specific outcome over these four attributes
less the flight price. The specific formulation discretizes these
attributes, so the outcome space is of size 64. In our exper-
iments, the flight DB was designed to allow 20 flights (both
direct and indirect) between pairs of cities.

We tested the MEI strategy using a uniform prior over util-
ity space to select queries, with user utility functions drawn
from the same uniform distribution. The results for a specific
source-destination pair (Toronto-San Francisco) are shown in
Figure 5. As before, we see that the MEI strategy easily out-
performs random querying, both in terms of the regret guar-
antees, and the true regret of the decisions it would recom-
mend at each stage. These results are representative of those
obtained in other decision scenarios.

We also explored the use of strong prior knowledge to
guide the querying process. We repeated the test above, draw-
ing user utility functions from a strongly peaked (truncated)
Gaussian distribution over utility space (with diagonal covari-
ance matrix, and variance0.03 in each dimension). We tested
the MEI-criterion using a (hand-chosen) mixture of three uni-
form distributions over subregions of utility space that very
roughly approximated the Gaussian.10 To test the robustness
of MEI to inaccurate priors, we also used MEI using a single
uniform prior over all of utility space (despite the fact that
the true utility function is drawn from the Gaussian). The re-
sults illustrated in Figure 6 demonstrate that MEI can benefit

10In principle, this mixture could have been fit to the actual prior
using, say, EM; but our goal is not accurate modeling of the prior.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

M
in

im
ax

 a
nd

 T
ru

e 
R

eg
re

t

MMR by Random Queries
MMR by MEI
True Regret by Random Queries
True Regret by MEI

Figure 5:Performance on YYZ-SFO, with utility functions drawn
from uniform (40 runs).

considerably from strong prior information. Indeed, minimax
regret is reduced very quickly when a reasonable prior is used
to select queries; and true regret is reduced to zero in every
instance of this scenario within four queries. Random query-
ing does very poorly, indicating that this problem is not easy
to solve without sufficient utility information. The robustness
of MEI to inaccurate priors is also in evidence. We see that
minimax regret and true regret are also reduced very quickly
when an uniformative uniform prior is used to guide the MEI-
querying process.

5 Concluding Remarks

We have presented a new procedure for decision making with
incomplete utility information which recommends decisions
that minimize maximum regret. We defined several different
myopic query selection criteria, and showed that myopically
optimal queries under each criterion can be computed effec-
tively, in polynomial time. The empirical performance of one
such criterion, maximum expected improvement, proved to
be rather attractive: not only did it provide strong guarantees
after few queries, but true decision quality tended to exceed
these guarantees significantly.

Our work differs from existing approaches to preference
elicitation in several important ways. Like recent Bayesian
approaches[4; 2], our approach identifies a concrete decision
in the face of utility function uncertainty. Unlike these meth-
ods, for the purposes of decision making, we assume only
constraints on possible utility functions, not distributions. As
a result, the minimax regret criterion is used to identify de-
cisions with guaranteed error bounds on quality. Our use of
constraints on utility functions is more closely related to work
on ISMAUT [8; 7]. However, the focus in ISMAUT is the
identification of Pareto optimal decisions in the face of utility
function uncertainty, as opposed to the choice of a specific de-
cision that maximizes some decision criterion. Furthermore,
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Figure 6:Performance on YYZ-SFO, with utility functions drawn
from a strongly peaked Gaussian. MEI querying using both a uni-
form prior and a 3-component mixture are shown (40 runs).

little attention has been paid to query strategies in ISMAUT,
which, in contrast, is our main focus.

There are a number of directions in which this work can
be extended. Obviously, scaling issues are of paramount
importance. We are currently exploring pruning techniques
for removing decisions from consideration that can never be
minimax optimal, thus reducing the quadratic dependence
on the number of decisions. We are also exploring meth-
ods for dealing with more general linear constraints (apart
from one-dimensional bounds), as well as more expressive
query types. Also of interest are methods for dealing with
noisy/inconsistent query responses, and visualization tech-
niques. Finally, we are developing heuristics that simulate
some of the effects of nonmyopic elicitation without explicit
lookahead. One such technique involves enumerating the ver-
tices of the regionsRd of utility space in which each decision
d is optimal (the regions are convex polytopes). Queries at
those points can quickly help rule out suboptimal actions. We
hope to combine the computationally attractive methods de-
vised in this paper with more intensive techniques like this to
help reduce the number of required queries even further.
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