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Abstract

We identify a fundamental source of error in Q-learning and other forms of dy-
namic programming with function approximation. Delusional bias arises when the
approximation architecture limits the class of expressible greedy policies. Since
standard Q-updates make globally uncoordinated action choices with respect to
the expressible policy class, inconsistent or even conflicting Q-value estimates
can result, leading to pathological behaviour such as over/under-estimation, insta-
bility and even divergence. To solve this problem, we introduce a new notion of
policy consistency and define a local backup process that ensures global consis-
tency through the use of information sets—sets that record constraints on policies
consistent with backed-up Q-values. We prove that both the model-based and
model-free algorithms using this backup remove delusional bias, yielding the first
known algorithms that guarantee optimal results under general conditions. These
algorithms furthermore only require polynomially many information sets (from a
potentially exponential support). Finally, we suggest other practical heuristics for
value-iteration and Q-learning that attempt to reduce delusional bias.

1 Introduction

Q-learning is a foundational algorithm in reinforcement learning (RL) [34, 26]. Although Q-learning
is guaranteed to converge to an optimal state-action value function (or Q-function) when state-
action pairs are explicitly enumerated [34], it is potentially unstable when combined with function
approximation (even simple linear approximation) [1, 8, 29, 26]. Numerous modifications of the basic
update, restrictions on approximators, and training regimes have been proposed to ensure convergence
or improve approximation error [12, 13, 27, 18, 17, 21]. Unfortunately, simple modifications are
unlikely to ensure near-optimal performance, since it is NP-complete to determine whether even
a linear approximator can achieve small worst-case Bellman error [23]. Developing variants of Q-
learning with good worst-case behaviour for standard function approximators has remained elusive.

Despite these challenges, Q-learning remains a workhorse of applied RL. The recent success of
deep Q-learning, and its role in high-profile achievements [19], seems to obviate concerns about
the algorithm’s performance: the use of deep neural networks (DNNs), together with various aug-
mentations (such as experience replay, hyperparameter tuning, etc.) can reduce instability and poor
approximation. However, deep Q-learning is far from robust, and can rarely be applied successfully
by inexperienced users. Modifications to mitigate systematic risks in Q-learning include double
Q-learning [30], distributional Q-learning [4], and dueling network architectures [32]. A study of
these and other variations reveals surprising results regarding the relative benefits of each under
ablation [14]. Still, the full range of risks of approximation in Q-learning has yet to be delineated.

In this paper, we identify a fundamental problem with Q-learning (and other forms of dynamic
programming) with function approximation, distinct from those previously discussed in the literature.
Specifically, we show that approximate Q-learning suffers from delusional bias, in which updates are
based on mutually inconsistent values. This inconsistency arises because the Q-update for a state-
action pair, (s, a), is based on the maximum value estimate over all actions at the next state, which
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ignores the fact that the actions so-considered (including the choice of a at s) might not be jointly
realizable given the set of admissible policies derived from the approximator. These “unconstrained”
updates induce errors in the target values, and cause a distinct source of value estimation error:
Q-learning readily backs up values based on action choices that the greedy policy class cannot realize.

Our first contribution is the identification and precise definition of delusional bias, and a demonstration
of its detrimental consequences. From this new perspective, we are able to identify anomalies in
the behaviour of Q-learning and value iteration (VI) under function approximation, and provide
new explanations for previously puzzling phenomena. We emphasize that delusion is an inherent
problem affecting the interaction of Q-updates with constrained policy classes—more expressive
approximators, larger training sets and increased computation do not resolve the issue.

Our second contribution is the development of a new policy-consistent backup operator that fully
resolves the problem of delusion. Our notion of consistency is in the same spirit as, but extends,
other recent notions of temporal consistency [5, 22]. This new operator does not simply backup a
single future value at each state-action pair, but instead backs up a set of candidate values, each with
the associated set of policy commitments that justify it. We develop a model-based value iteration
algorithm and a model-free Q-learning algorithm using this backup that carefully integrate value-
and policy-based reasoning. These methods complement the value-based nature of value iteration
and Q-learning with explicit constraints on the policies consistent with generated values, and use
the values to select policies from the admissible policy class. We show that in the tabular case with
policy constraints—isolating delusion-error from approximation error—the algorithms converge to
an optimal policy in the admissible policy class. We also show that the number of information sets is
bounded polynomially when the greedy policy class has finite VC-dimension; hence, the algorithms
have polynomial-time iteration complexity in the tabular case.

Finally, we suggest several heuristic methods for imposing policy consistency in batch Q-learning for
larger problems. Since consistent backups can cause information sets to proliferate, we suggest search
heuristics that focus attention on promising information sets, as well as methods that impose (or
approximate) policy consistency within batches of training data, in an effort to drive the approximator
toward better estimates.

2 Preliminaries

A Markov decision process (MDP) is defined by a tuple M = (S,A, p, p0, R, γ) specifying a set of
states S and actions A; a transition kernel p; an initial state distribution p0; a reward function R; and
a discount factor γ ∈ [0, 1]. A (stationary, deterministic) policy π : S→A specifies the agent’s action
at every state s. The state-value function for π is given by V π(s) = E[

∑
t≥0 γ

tR(st, π(st))] while
the state-action value (or Q-function) isQπ(s, a) = R(s, a)+γ Ep(s′|s,a) V

π(s′), where expectations
are taken over random transitions and rewards. Given any Q-function, the policy “Greedy” is defined
by selecting an action a at state s that maximizes Q(s, a). If Q = Q∗, then Greedy is optimal.

When p is unknown, Q-learning can be used to acquire the optimal Q∗ by observing trajectories
generated by some (sufficiently exploratory) behavior policy. In domains where tabular Q-learning
is impractical, function approximation is typically used [33, 28, 26]. With function approximation,
Q-values are approximated by some function from a class parameterized by Θ (e.g., the weights
of a linear function or neural network). We let F = {fθ : S×A → R | θ ∈Θ} denote the set of
expressible value function approximators, and denote the class of admissible greedy policies by

G(Θ) =
{
πθ

∣∣∣ πθ(s) = argmax
a∈A

fθ(s, a), θ ∈ Θ
}
. (1)

In such cases, online Q-learning at transition s, a, r, s′ (action a is taken at state s, leading to reward
r and next state s′) uses the following update given a previously estimated Q-function Qθ ∈ F ,

θ ← θ + α
(
r + γmax

a′∈A
Qθ(s

′, a′)−Qθ(s, a)
)
∇θQθ(s, a). (2)

Batch versions of Q-learning (e.g., fitted Q-iteration, batch experience replay) are similar, but fit a
regressor repeatedly to batches of training examples (and are usually more data efficient and stable).
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s1 s2 s3 s4

R(s1, a1)

a1 prob. 1− q
a1 prob. q

a2 a2 a2 a2

a1 a1 a1

R(s4, a2)

Figure 1: A simple MDP that illustrates delusional bias (see text for details).

3 Delusional bias and its consequences

The problem of delusion can be given a precise statement (which is articulated mathematically in
Section 4): delusional bias occurs whenever a backed-up value estimate is derived from action
choices that are not realizable in the underlying policy class. A Q-update backs up values for each
state-action pair (s, a) by independently choosing actions at the corresponding next states s′ via the
max operator; this process implicitly assumes that maxa′∈AQθ(s

′, a′) is achievable. However, the
update can become inconsistent under function approximation: if no policy in the admissible class can
jointly express all past (implicit) action selections, backed-up values do not correspond to Q-values
that can be achieved by any expressible policy. (We note that the source of this potential estimation
error is quite different than the optimistic bias of maximizing over noisy Q-values addressed by
double Q-learning; see Appendix A.5.) Although the consequences of such delusional bias might
appear subtle, we demonstrate how delusion can profoundly affect both Q-learning and value iteration.
Moreover, these detrimental effects manifest themselves in diverse ways that appear disconnected, but
are symptoms of the same underlying cause. To make these points, we provide a series of concrete
counter-examples. Although we use linear approximation for clarity, the conclusions apply to any
approximator class with finite capacity (e.g., DNNs with fixed architectures), since there will always
be a set of d + 1 state-action choices that are jointly infeasible given a function approximation
architecture with VC-dimension d <∞ [31] (see Theorem 1 for the precise statement).

3.1 A concrete demonstration

We begin with a simple illustration. Consider the undiscounted MDP in Fig. 1, where episodes start
at s1, and there are two actions: a1 causes termination, except at s1 where it can move to s4 with
probability q; a2 moves deterministically to the next state in the sequence s1 to s4 (with termination
when a2 taken at s4). All rewards are 0 except for R(s1, a1) and R(s4, a2). For concreteness, let
q = 0.1, R(s1, a1) = 0.3 and R(s4, a2) = 2. Now consider a linear approximator fθ(φ(s, a))
with two state-action features: φ(s1, a1) = φ(s4, a1) = (0, 1); φ(s1, a2) = φ(s2, a2) = (0.8, 0);
φ(s3, a2) = φ(s4, a2) = (−1, 0); and φ(s2, a1) = φ(s3, a1) = (0, 0). Observe that no π ∈ G(Θ)
can satisfy both π(s2) = a2 and π(s3) = a2, hence the optimal unconstrained policy (take a2

everywhere, with expected value 2) is not realizable. Q-updating can therefore never converge to the
unconstrained optimal policy. Instead, the optimal achievable policy in G(Θ) takes a1 at s1 and a2 at
s4 (achieving a value of 0.5, realizable with θ∗ = (−2, 0.5)).

Unfortunately, Q-updating is unable to find the optimal admissible policy πθ∗ in this example. How
this inability materializes depends on the update regime, so consider online Q-learning (Eq. 2) with
data generated using an εGreedy behavior policy (ε = 0.5). In this case, it is not hard to show that Q-
learning must converge to a fixed point θ̂ = (θ̂1, θ̂2) where−θ̂1 ≤ θ̂2, implying that πθ̂(s2) 6= a2, i.e.,
πθ̂ 6= πθ∗ (we also show this for any ε ∈ [0, 1/2] when R(s1, a1) = R(s4, a2) = 1; see derivations in
Appendix A.1). Instead, Q-learning converges to a fixed point that gives a “compromised” admissible
policy which takes a1 at both s1 and s4 (with a value of 0.3; θ̂ ≈ (−0.235, 0.279)).

This example shows how delusional bias prevents Q-learning from reaching a reasonable fixed-point.
Consider the backups at (s2, a2) and (s3, a2). Suppose θ̂ assigns a “high” value to (s3, a2) (i.e., so
that Qθ̂(s3, a2) > Qθ̂(s3, a1)) as required by πθ∗ ; intuitively, this requires that θ̂1 < 0, and generates
a “high” bootstrapped value for (s2, a2). But any update to θ̂ that tries to fit this value (i.e., makes
Qθ̂(s2, a2) > Qθ̂(s2, a1)) forces θ̂1 > 0, which is inconsistent with the assumption, θ̂1 < 0, needed
to generate the high bootstrapped value. In other words, any update that moves (s2, a2) higher
undercuts the justification for it to be higher. The result is that the Q-updates compete with each
other, with Qθ̂(s2, a2) converging to a compromise value that is not realizable by any policy in G(Θ).
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This induces an inferior policy with lower expected value than πθ∗ . We show in Appendix A.1 that
avoiding any backup of these inconsistent edges results in Q-learning converging to the optimal
expressible policy. Critically, this outcome is not due to approximation error itself, but the inability
of Q-learning to find the value of the optimal representable policy.

3.2 Consequences of delusion

There are several additional manifestations of delusional bias that cause detrimental outcomes under
Q-updating. Concrete examples are provided to illustrate each, but we relegate details to the appendix.

Divergence: Delusional bias can cause Q-updating to diverge. We provide a detailed example
of divergence in Appendix A.2 using a simple linear approximator. While divergence is typically
attributed to the interaction of the approximator with Bellman or Q-backups, the example shows that
if we correct for delusional bias, convergent behavior is restored. Lack of convergence due to cyclic
behavior (with a lower-bound on learning rates) can also be caused by delusion: see Appendix A.3.

The Discounting Paradox: Another phenomenon induced by delusional bias is the discounting
paradox: given an MDP with a specific discount factor γeval, Q-learning with a different discount
γtrain results in a Q-function whose greedy policy has better performance, relative to the target γeval,
than when trained with γeval. In Appendix A.4, we provide an example where the paradox is extreme:
a policy trained with γ= 1 is provably worse than one trained myopically with γ= 0, even when
evaluated using γ=1. We also provide an example where the gap can be made arbitrarily large. These
results suggest that treating the discount as hyperparameter might yield systematic training benefits;
we demonstrate that this is indeed the case on some benchmark (Atari) tasks in Appendix A.10.

Approximate Dynamic Programming: Delusional bias arises not only in Q-learning, but also in
approximate dynamic programming (ADP) (e.g., [6, 9]), such as approximate value iteration (VI).
With value function approximation, VI performs full state Bellman backups (as opposed to sampled
backups as in Q-learning), but, like Q-learning, applies the max operator independently at successor
states when computing expected next state values. When these choices fall outside the greedy policy
class admitted by the function approximator, delusional bias can arise. Delusion can also occur with
other forms of policy constraints (without requiring the value function itself to be approximated).

Batch Q-learning: In the example above, we saw that delusional bias can cause convergence to
Q-functions that induce poor (greedy) policies in standard online Q-learning. The precise behavior
depends on the training regime, but poor behavior can emerge in batch methods as well. For instance,
batch Q-learning with experience replay and replay buffer shuffling will induce the same tension
between the conflicting updates. Specific (nonrandom) batching schemes can cause even greater
degrees of delusion; for example, training in a sequence of batches that run through a batch of
transitions at s4, followed by batches at s3, then s2, then s1 will induce a Q-function that deludes
itself into estimating the value of (s1, a2) to be that of the optimal unconstrained policy.

4 Non-delusional Q-learning and dynamic programming

We now develop a provably correct solution that directly tackles the source of the problem: the
potential inconsistency of the set of Q-values used to generate a Bellman or Q-backup. Our approach
avoids delusion by using information sets to track the “dependencies” contained in all Q-values,
i.e., the policy assumptions required to justify any such Q-value. Backups then prune infeasible
values whose information sets are not policy-class consistent. Since backed-up values might be
designated inconsistent when new dependencies are added, this policy-consistent backup must
maintain alternative information sets and their corresponding Q-values, allowing the (implicit)
backtracking of prior decisions (i.e., max Q-value choices). Such a policy-consistent backup can be
viewed as unifying both value- and policy-based RL methods, a perspective we detail in Sec. 4.3.

We develop policy consistent backups in the tabular case while allowing for an arbitrary policy class
(or arbitrary policy constraints)—the case of greedy policies with respect to some approximation
architecture fθ is simply a special case. This allows the method to focus on delusion, without
making any assumptions about the specific value approximation. Because delusion is a general
phenomenon, we first develop a model-based consistent backup, which gives rise to non-delusional
policy-class value iteration, and then describe the sample-backup version, policy-class Q-learning.
Our main theorem establishes the convergence, correctness and optimality of the algorithm (including
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Algorithm 1 Policy-Class Value Iteration (PCVI)
Input: S,A, p(s′ | s, a), R, γ,Θ, initial state s0

1: Q[sa]← initialize to mapping Θ 7→ 0 for all s, a
2: ConQ[sa]← initialize to mapping [s 7→ a] 7→ 0 for all s, a
3: Update ConQ[s] for all s (i.e., combine all table entries in ConQ[sa1], . . . , ConQ[sam])
4: repeat
5: for all s, a do
6: Q[sa]← Rsa + γ

⊕
s′ p(s

′ | s, a)ConQ[s′]
7: ConQ[sa](Z)← Q[sa](X) for all X such that Z = X ∩ [s 7→ a] is non-empty
8: Update ConQ[s] by combining table entries of ConQ[sa′] for all a′
9: end for

10: until Q converges: dom(Q(sa)) and Q(sa)(X) does not change for all s, a,X
11: /* Then recover an optimal policy */
12: X∗ ← argmaxX ConQ[s0](X)
13: q∗ ← ConQ[s0](X∗)
14: θ∗ ←Witness(X∗)
15: return πθ∗ and q∗.

the complete removal of delusional bias), and computational tractability (subject to a tractable
consistency oracle).

4.1 Policy-class value iteration

We begin by defining policy-class value iteration (PCVI), a new VI method that operates on collections
of information sets to guarantee discovery of the optimal policy in a given class. For concreteness, we
specify a policy class using Q-function parameters, which determines the class of realizable greedy
policies (just as in classical VI). Proofs and more formal definitions can be found in Appendix A.6.
We provide a detailed illustration of the PCVI algorithm in Appendix A.7, walking through the steps
of PCVI on the example MDP in Fig. 1.

Assume an MDP with n states S = {s1, . . . , sn} and m actions A = {a1, . . . , am}. Let Θ be the
parameter class defining Q-functions. Let F and G(Θ), as above, denote the class of expressible
value functions and admissible greedy policies respectively. (We assume ties are broken in some
canonical fashion.) Define [s 7→ a] = {θ ∈ Θ | πθ(s) = a}. An information set X ⊆ Θ is a set of
parameters (more generally, policy constraints) that justify assigning a particular Q-value q to some
(s, a) pair. Below we use the term “information set” to refer both to X and (X, q) as needed.

Information sets will be organized into finite partitions of Θ, i.e., a set of non-empty subsets
P = {X1, . . . , Xk} such that X1 ∪ · · · ∪Xk = Θ and Xi ∩Xj = ∅, for all i 6= j. We abstractly
refer to the elements of P as cells. A partition P ′ is a refinement of P if for all X ′ ∈ P ′ there
exists an X ∈ P such that X ′ ⊆ X . Let P(Θ) be the set of all finite partitions of Θ. A partition
function h : P → R associates values (e.g., Q-values) with all cells (e.g., information sets). Let
H = {h : P → R | P ∈ P(Θ)} denote the set of all such partition functions. Define the intersection
sum for h1, h2 ∈ H to be:

(h1 ⊕ h2)(X1 ∩X2) = h1(X1) + h2(X2), ∀X1 ∈ dom(h1), X2 ∈ dom(h2), X1 ∩X2 6= ∅.
Note that the intersection sum incurs at most a quadratic blowup: |dom(h)| ≤ |dom(h1)| · |dom(h2)|.
The methods below require an oracle to check whether a policy πθ is consistent with a set of state-to-
action constraints: i.e., given {(s, a)} ⊆ S×A, whether there exists a θ ∈ Θ such that πθ(s) = a for
all pairs. We assume access to such an oracle, “Witness”. For linear Q-function parameterizations,
Witness can be implemented in polynomial time by checking the consistency of a system of linear
inequalities.

PCVI, shown in Alg. 1, computes the optimal policy πθ∗ ∈ G(Θ) by using information sets and
their associated Q-values organized into partitions (i.e., partition functions over Θ). We represent
Q-functions using a table Q with one entry Q[sa] for each (s, a) pair. Each such Q[sa] is a partition
function over dom(Q[sa]) ∈ P(Θ). For eachXi ∈ dom(Q[sa]) (i.e., for each information setXi ⊆ Θ
associated with (s, a)), we assign a unique Q-value Q[sa](Xi). Intuitively, the Q-value Q[sa](Xi) is
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justified only if we limit attention to policies {πθ : θ ∈ Xi}. Since dom(Q[sa]) is a partition, we have
a Q-value for any realizable policy. (The partitions dom(Q[sa]) for each (s, a) generally differ.)

ConQ[sa] is a restriction of Q[sa] obtained by intersecting each cell in its domain, dom(Q[sa]), with
[s 7→ a]. In other words, ConQ[sa] is a partition function defined on some partition of [s 7→ a]
(rather than all of Θ), and represents Q-values of cells that are consistent with [s 7→ a]. Thus, if
Xi ∩ [s 7→ a] = ∅ for some Xi ∈ dom(Q[sa]), the corresponding Q-value disappears in ConQ[sa].
Finally, ConQ[s] = ∪aConQ[sa] is the partition function over Θ obtained by collecting all the
“restricted” action value functions. Since ∪a[s 7→ a] is a partition of Θ, so is ConQ[s].

The key update in Alg. 1 is Line 6, which jointly updates all Q-values of the relevant sets of policies
in G(Θ). Notice that the maximization typically found in VI is not present—this is because the
operation computes and records Q-values for all choices of actions at the successor state s′. This is
the key to allowing VI to maintain consistency: if a future Bellman backup is inconsistent with some
previous max-choice at a reachable state, the corresponding cell will be pruned and an alternative
maximum will take its place. Pruning of cells, using the oracle Witness, is implicit in Line 6 (pruning
of ⊕) and Line 7 (where non-emptiness is tested).1 Convergence of PCVI requires that each Q[sa]
table—both its partition and associated Q-value—converge to a fixed point.
Theorem 1 (PCVI Theorem). PCVI (Alg. 1) has the following guarantees:

(a) (Convergence and correctness) The function Q converges and, for each s ∈ S, a ∈ A, and
any θ ∈ Θ: there is a unique X ∈ dom(Q[sa]) such that θ ∈ X and Qπθ (s, a) = Q[sa](X).

(b) (Optimality and non-delusion) πθ∗ is an optimal policy within G(Θ) and q∗ is its value.

(c) (Runtime bound) Assume⊕ and non-emptiness checks (lines 6 and 7) have access to Witness.
Let G = {gθ(s, a, a′) := 1[fθ(s, a) − fθ(s, a′) > 0], ∀s, a 6= a′ | θ ∈ Θ}. Each iteration
of Alg. 1 runs in time O(nm · [

(
m
2

)
n]2VCDim(G)(m − 1)w) where VCDim(·) denotes the

VC-dimension of a set of boolean-valued functions, and w is the worst-case running time of
Witness (with at most nm state-action constraints). Combined with Part (a), if VCDim(G)
is finite then Q converges in time polynomial in n,m and w.

Corollary 2. Alg. 1 runs in polynomial time for linear greedy policies. It runs in polynomial time in
the presence of a polynomial time Witness for deep Q-network (DQN) greedy policies.

(A more complete statement of the Cor. 2 is found in Appendix A.6.) The number of cells in a
partition may be significantly less than suggested by the bounds, as it depends on the reachability
structure of the MDP. For example, in an MDP with only self-transitions, the partition for each state
has a single cell. We note that Witness is tractable for linear approximators, but is NP-hard for
DNNs [7]. The poly-time result in Cor. 2 does not contradict the NP-hardness of finding a linear
approximator with small worst-case Bellman error [23], since nothing is asserted about the Bellman
error and we are treating the approximator’s VC-dimension as a constant.

Demonstrating PCVI: We illustrate PCVI with a simple example that shows how poorly classical
approaches can perform with function approximation, even in “easy” environments. Consider a
simple deterministic grid world with the 4 standard actions and rewards of 0, except 1 at the top-right,
2 at the bottom-left, and 10 at the bottom-right corners; the discount is γ = 0.95. The agent starts at
the top-left. The optimal policy is to move down the left side to the left-bottom corner, then along the
bottom to the right bottom corner, then staying. To illustrate the effects of function approximation,
we considered linear approximators defined over random feature representations: feature vectors
were produced for each state-action pair by drawing independent standard normal values.

Fig. 2 shows the estimated maximum value achievable from the start state produced by each method
(dark lines), along with the actual expected value achieved by the greedy policies produced by each
method (light lines). The left figure shows results for a 4× 4 grid with 4 random features, and the
right for a 5× 5 grid with 5 random features. Results are averaged over 10 runs with different random
feature sets (shared by the algorithms). Surprisingly, even when the linear approximator can support
near-optimal policies, classical methods can utterly fail to realize this possibility: in 9 of 10 trials
(4× 4) and 10 of 10 trials (5× 5) the classical methods produce greedy policies with an expected
value of zero, while PCVI produces policies with value comparable to the global optimum.

1If arbitrary policy constraints are allowed, there may be no feasible policies, in which case Witness will
prune each cell immediately, leaving no Q-functions, as desired.
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Figure 2: Planning and learning in a grid world with random feature representations. (Left: 4× 4
grid using 4 features; Right: 5 × 5 grid using 5 features.) Here “iterations” means a full sweep
over state-action pairs, except for Q-learning and PCQL, where an iteration is an episode of length
3/(1− γ) = 60 using εGreedy exploration with ε = 0.7. Dark lines: estimated maximum achievable
expected value. Light lines: actual expected value achieved by greedy policy.

4.2 Policy-class Q-learning

A tabular version of Q-learning using the same partition-function representation of Q-values as in
PCVI yields policy-class Q-learning PCQL, shown in Alg. 2.2 The key difference with PCVI is
simply that we use sample backups in Line 4 instead of full Bellman backups as in PCVI.

Algorithm 2 Policy-Class Q-learning (PCQL)
Input: Batch B = {(st, at, rt, s′t)}Tt=1, γ,Θ, scalars αsat .

1: for (s, a, r, s′) ∈ B, t is iteration counter do
2: For all a′, if s′a′ 6∈ ConQ then initialize ConQ[s′a′]← ([s′ 7→ a′] 7→ 0).
3: Update ConQ[s′] by combining ConQ[s′a′](X), for all a′, X ∈ dom(ConQ[s′a′])
4: Q[sa]← (1− αsat )Q[sa]⊕ αsat (r + γConQ[s′])
5: ConQ[sa](Z)← Q[sa](X) for all X such that Z = X ∩ [s 7→ a] is non-empty
6: end for
7: Return ConQ, Q

The method converges under the usual assumptions for Q-learning: a straightforward extension of
the proof for PCVI, replacing full VI backups with Q-learning-style sample backups, yields the
following:

Theorem 3. The (a) convergence and correctness properties and (b) optimality and non-delusion
properties associated with the PCVI Theorem 1 hold for PCQL, assuming the usual sampling
requirements, the Robbins-Monro stochastic convergence conditions on learning rates αsat and
access to the Witness oracle.

Demonstrating PCQL: We illustrate PCQL in the same grid world tasks as before, again using
random features. Figure 2 shows that PCQL achieves comparable performance to PCVI, but with
lighter time and space requirements, and is still significantly better than classical methods.

We also applied PCQL to the initial illustrative example in Fig. 1 withR(s1, a1) = 0.3,R(s4, a2) = 2
and uniform random exploration as the behaviour policy, adding the use of a value approximator (a
linear regressor). We use a heuristic that maintains a global partition of Θ with each cell X holding
a regressor ConQ(s, a;wX), for wX ∈ Θ predicting the consistent Q-value at s, a (see details in
Sec. 5 and Appendix A.8). The method converges with eight cells corresponding to the realizable
policies. The policy (equivalence class) is ConQ(s1, πX(s1);wX) where πX(s1) is the cell’s action

2PCQL uses the same type of initialization and optimal policy extraction as PCVI; details are omitted.
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at s1; the value is wX · φ(s, πX(s1)). The cell X∗ with the largest such value at s1 is indeed the
optimal realizable policy: it takes a1 at s1 and s2, and a2 elsewhere. The regressor wX∗ ≈ (−2, 0.5)
fits the consistent Q-values perfectly, yielding optimal (policy-consistent) Q-values, because ConQ
need not make tradeoffs to fit inconsistent values.

4.3 Unification of value- and policy-based RL

We can in some sense interpret PCQL (and, from the perspective of model-based approximate dynamic
programming, PCVI) as unifying value- and policy-based RL. One prevalent view of value-based RL
methods with function approximation, such Q-learning, is to find an approximate value function or
Q-function (VF/QF) with low Bellman error (BE), i.e., where the (pointwise) difference between
the approximate VF/QF and its Bellman backup is small. In approximate dynamic programming
one often tries to minimize this directly, while in Q-learning, one usually fits a regression model to
minimize the mean-squared temporal difference (a sampled form of Bellman error minimization)
over a training data set. One reason for this emphasis on small BE is that the max norm of BE can be
used to directly bound the (max norm) loss of the value of greedy policy induced by the approximate
VF/QF and the value of the optimal policy. It is this difference in performance that is of primary
interest.

Unfortunately, the bounds on induced policy quality using the BE approximation are quite loose,
typically 2||BE||∞/(1 − γ) (see [6], bounds with `p norm are similar [20]). As such, minimizing
BE does not generally provide policy guarantees of practical import (see, e.g., [11]). As we see in the
cases above (and also in the appendix) that involve delusional bias, a small BE can in fact be rather
misleading with respect to the induced policy quality. For example, Q-learning, using least squares to
minimize the TD-error as a proxy for BE, often produces policies of poor quality.

PCQL and PCVI take a different perspective, embracing the fact that the VF/QF approximator strictly
limits that class of greedy policies that can be realized. In these algorithms, no Bellman backup or
Q-update ever involves values that cannot be realized by an admissible policy. This will often result
in VFs/QFs with greater BE than their classical counterparts. But, in the exact tabular case, we derive
the true value of the induced (approximator-constrained) policy and guarantee that it is optimal. In
the regression case (see Sec. 5), we might view this as attempting to minimize BE within the class of
admissible policies, since we only regress toward policy-consistent values.

The use of information sets and consistent cells effectively means that PCQL and PCVI are engaging
in policy search—indeed, in the algorithms presented here, they can be viewed as enumerating all
consistent policies (in the case of Q-learning, distinguishing only those that might differ on sampled
data). In contrast to other policy-search methods (e.g., policy gradient), both PCQL and PCVI use
(sampled or full) Bellman backups to direct the search through policy space, while simultaneously
using policy constraints to limit the Bellman backups that are actually realized. They also use these
values to select an optimal policy from the feasible policies generated within each cell.

5 Toward practical non-delusional Q-learning

The PCVI and PCQL algorithms can be viewed as constructs that demonstrate how delusion arises
and how it can be eliminated in Q-learning and approximate dynamic programming by preventing
inadmissible policy choices from influencing Q-values. However, the algorithms maintain information
sets and partition functions, which is impractical with massive state and action sets. In this section,
we suggest several heuristic methods that allow the propagation of some dependency information in
practical Q-learning to mitigate the effects of delusional bias.

Multiple regressors: With multiple information sets (or cells), we no longer have a unique set of
labels with which to fit an approximate Q-function regressor (e.g., DNN or linear approximator).
Instead, each cell has its own set of labels. Thus, if we maintain a global collection of cells, each with
its own Q-regressor, we have a set of approximate Q-functions that give both a compact representation
and the ability to generalize across state-action pairs for any set of policy consistent assumptions.
This works in both batch and pure online Q-learning (see Appendix A.8 for details.)

The main challenge is the proliferation of information sets. One obvious way to address this is to
simply limit the total number of cells and regressors: given the current set of regressors, at any update,
we first create the (larger number of) new cells needed for the new examples, fit the regressor for
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each new consistent cell, then prune cells according to some criterion to keep the total number of
regressors manageable. This is effectively a search through the space of information sets and can be
managed using a variety of methods (branch-and-bound, beam search, etc.). Criteria for generating,
sampling and/or pruning cells can involve: (a) the magnitude to the Q-labels (higher expected values
are better); (b) the constraints imposed by the cell (less restrictive is better, since it minimizes future
inconsistency); the diversity of the cell assignments (since the search frontier is used to manage
“backtracking”).

If cell search maintains a restricted frontier, our cells may no longer cover all of policy space (i.e, Q is
no longer a partition of Θ). This runs the risk that some future Q-updates may not be consistent with
any cell. If we simply ignore such updates, the approach is hyper-vigilant, guaranteeing policy-class
consistency at the expense of losing training data. An alternative relaxed approach is to merge cells to
maintain a full partition of policy space (or prune cells and in some other fashion relax the constraints
of the remaining cells to recover a partition). This relaxed approach ensures that all training data
is used, but risks allowing some delusion to creep into values by not strictly enforcing all Q-value
dependencies.

Q-learning with locally consistent data: An alternative approach is to simply maintain a single
regressor, but ensure that any batch of Q-labels is self-consistent before updating the regressor.
Specifically, given a batch of training data and the current regressor, we first create a single set of
consistent labels for each example (see below), then update the regressor using these labels. With no
information sets, the dependencies that justified the previous regressor are not accounted for when
constructing the new labels. This may allow delusion to creep in; but the aim is that this heuristic
approach may mitigate its effects since each new regressor is at least “locally” consistent with respect
to its own updates. Ideally, this will keep the sequence of approximations in a region of θ-space where
delusional bias is less severe. Apart from the use of a consistent labeling procedure, this approach
incurs no extra overhead relative to Q-learning.

Oracles and consistent labeling: The first approach above requires an oracle, Witness, to test
consistency of policy choices, which is tractable for linear approximators (linear feasibility test),
but requires solving an integer-quadratic program when using DQN (e.g., a ReLU network). The
second approach needs some means for generating consistent labels. Given a batch of examples
B = {(st, at, rt, s′t)}Tt=1, and a current regressor Q̃, labels are generated by selecting an a′t for each
s′t as the max. The selection should satisfy: (a) ∩t[s′t 7→ a′t] 6= ∅ (i.e., selected max actions are
mutually consistent); and (b) [st 7→ at] ∩ [s′t 7→ a′t] 6= ∅, for all t (i.e., choice at s′t is consistent with
taking at at st). We can find a consistent labeling maximizing some objective (e.g., sum of resulting
labels), subject to these constraints. For a linear approximator, the problem can be formulated as a
(linear) mixed integer program (MIP); and is amenable to several heuristics (see Appendix A.9).

6 Conclusion

We have identified delusional bias, a fundamental problem in Q-learning and approximate dynamic
programming with function approximation or other policy constraints. Delusion manifests itself in
different ways that lead to poor approximation quality or divergence for reasons quite independent
of approximation error itself. Delusional bias thus becomes an important entry in the catalog of
risks that emerge in the deployment of Q-learning. We have developed and analyzed a new policy-
class consistent backup operator, and the corresponding model-based PCVI and model-free PCQL
algorithms, that fully remove delusional bias. We also suggested several practical heuristics for
large-scale RL problems to mitigate the effect of delusional bias.

A number of important direction remain. The further development and testing of practical heuristics
for policy-class consistent updates, as well as large-scale experiments on well-known benchmarks, is
critical. This is also important for identifying the prevalence of delusional bias in practice. Further
development of practical consistency oracles for DNNs and consistent label generation is also of
interest. We are also engaged in a more systematic study of the discounting paradox and the use of
the discount factor as a hyper-parameter.
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A Appendix: supplementary material

A.1 Example 1: Q-learning fixed point derivation

We first characterize the set of fixed points, θ̂ = (θ̂1, θ̂2), produced by online Q-learning (or QL).
(Note that the initial parameters θ(0) do not influence this analysis.) Using the ε-greedy behaviour
policy πb = εGreedy, any fixed point must satisfy two conditions:
(1) The behaviour policy must not change with each update; If πθ̂(s) = a then εGreedy takes a with
probability 1− ε and any other action a′ 6= a with uniform probability.
(2) The expected update values for θ summed across all state-action pairs must be zero under the
stationary visitation frequencies µ(s, a) of the behaviour policy.

The second condition imposes the following set of constraints,∑
s,a

µ(s, a)φ(s, a)
(
R(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Qθ̂(s
′, a′)−Qθ̂(s, a)

)
= 0 . (3)

In Fig. 1, we first check if there exist a fixed point that corresponds to the optimal policy. The optimal
policy takes a1 in s1 and a2 in s4 deriving expected value R(s1, a1) + qR(s4, a2) if s1 is the initial
state. For linear function approximators, this implies θ2 ≥ 0.8θ1 (choose a1 over a2 in s1) and
−θ1 > θ2 (choose a2 over a1 in s4), which then implies θ1 < 0 (hence the policy takes a1 in s2 and
a2 in s3). Under εGreedy, the stationary visitation frequencies µ is given in Table 1.

Table 1: µ(s, a) is the expected number of times action a is taken at state s in an episode under
εGreedy for the optimal (greedy) policy.

s, a µ(s, a) s, a µ(s, a)

s1, a1 1− ε s3, a1 ε3

s1, a2 ε s3, a2 ε2(1− ε)
s2, a1 ε(1− ε) s4, a1 ε3(1− ε) + ε(1− ε)q
s2, a2 ε2 s4, a2 ε2(1− ε)2 + (1− ε)2q

We can calculate the expected update at each state-action pair, i.e.

∆θ(s, a) = µ(s, a)φ(s, a)
(
R(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Qθ(s
′, a′)−Qθ(s, a)

)
.

For example, at (s1, a1) we can transition to either a terminal state (with probability 1−q) or s4 (with
probability q and after which the best action is a′ = a2 with bootstrapped value −θ1). Therefore at
steady state the expected update at (s1, a1) is

[(1− ε)(1− q)(R(s1, a1)− θ2) + (1− ε)q(R(s1, a1)− θ1 − θ2)] φ(s1, a1) .

Table 2 lists the expected updates for each state-action pair. If we sum the expected updates and set
to (0, 0) we get two equations with two unknowns, from which we solve for θ. The equation from
the first component implies

θ1 =
−(1− ε)2(ε2 + q)R(s4, a2)

(1− ε)2(ε2 + q) + 0.64ε+ 1.44ε2
.

The equation from the second component implies

θ2 =
(1− q)R(s1, a1) + qR(s1, a1)− qθ1

1 + ε(ε2 + q)
.

If we let R(s1, a1) = 0.3, R(s4, a2) = 2 and ε = 1/2 then θ̂ ≈ (−0.114, 0.861), contradicting the
constraint that θ2 < −θ1 (i.e., a2 is taken at s4). Fig. 3 shows that for R(s1, a1) = R(s4, a2) = 1,
θ2 ≮ −θ1 for all ε ∈ [0, 1/2] and again violating the assumed constraints. Therefore we conclude QL
does not converge to the optimal greedy policy for these parameter configurations.
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Now consider if QL may converge to the second best policy where πθ(s1) = a1 and πθ(s4) = a1

deriving expected value of R(s1, a1) starting at state s1. Say θ1 < 0. The corresponding state-action
visitation frequencies at convergence is identical to Table 1 except µ(s4, a1) = (ε2 + q)(1− ε)2 and
µ(s4, a2) = ε(1− ε)(ε2 + q). The expected updates are identical to Table 2 except at (s1, a1) it is
(0, (1− ε)(1− q)(R(s1, a1)− θ2) + (1− ε)qR(s1, a1)), at (s3, a2) it is (−ε2(1− ε)(θ1 + θ2), 0),
at (s4, a1) it is (0,−(1− ε)2(ε2 + q)θ2) and at (s4, a2) it is (−ε(1− ε)(ε2 + q)(R(s4, a2) + θ1), 0).
Again, we can solve these equations and get

θ2 =
−R(s1, a1)

εq + ε3 − ε2 − 1
,

θ1 =
−ε2(1− ε)θ2 − (1− ε)2(ε2 + q)R(s4, a2)

−(1− ε)2(ε2 + q)− ε2(1− ε)− 1.44ε2 − 0.64ε
.

Plugging in R(s1, a1) = 0.3, R(s4, a2) = 2 and ε = 1/2 we have θ̂ ≈ (−0.235, 0.279) which is a
feasible solution. In particular, we empirically verified that starting with initial θ(0) = (0, 0), QL
converges to this solution. This second best policy is also a fixed point forR(s1, a1) = R(s4, a2) = 1
with any ε ∈ [0, 1/2].

The delusion is caused by the backup at (s2, a2). Since we assume θ1 < 0 the bootstrapped future
Q-value is Qθ(s3, a2). But this is inconsistent: there is no θ taking a2 at s2 and a2 at s3. Such a
backup increases θ2 in order to propagate a higher value along two edges that are inconsistent (these
edges can never belong to the same policy, and can pollute the value of the Q-learned policy). In
fact, if we enforce consistency by backing up (s3, a1), the expected update at (s2, a2) reduces from
−1.44ε2θ1 to −0.64ε2θ1. The consistent backup reduces two opposing effects: backup at (s2, a2)
wants to increase θ1 while backup at (s3, a2) wants to decrease θ1—resulting in a compromise that
corresponds to an inferior policy. When R(s1, a1) = 0.3, R(s4, a2) = 2, and ε = 1/2 this reduction
in the expected update quantity implies QL (with a consistent backup) converges to the optimal policy
with θ̂ ≈ (−0.308, 0.282); whereas with an inconsistent backup it converges to the second best policy
(and cannot converge to the optimal policy for any initial condition).

Table 2: Expected update ∆θ(s, a) for each state-action pair under the optimal greedy policy.

s, a Expected update ∆θ(s, a)

s1, a1 (0, (1− ε)(1− q)(R(s1, a1)− θ2) + (1− ε)q(R(s1, a1)− θ1 − θ2))
s1, a2 (−0.64εθ1, 0)
s2, a1 (0, 0)
s2, a2 (−1.44ε2θ1, 0)
s3, a1 (0, 0)
s3, a2 (0, 0)
s4, a1 (0,−ε(1− ε)(ε2 + q)θ2)
s4, a2 (−(1− ε)2(ε2 + q)(R(s4, a2) + θ1), 0)

0.0 0.1 0.2 0.3 0.4 0.5

ε

0.2

0.4

0.6

θ1 + θ2

Figure 3: This shows θ1 + θ2 > 0, implying QL cannot converge to the optimal greedy policy for
various ε exploration probabilities. Here, R(s1, a1) = R(s4, a2) = 1 and q = 0.1.
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A.2 Divergence due to delusional bias

We show that delusional bias can actually lead to divergence of Q-learning with function approxima-
tion. In fact, a trivial example suffices. Consider a deterministic MDP with states S = {s1, s2} and
actions A = {a1, a2}, where from any state, action a1 always transitions to s1 and action a2 always
transitions to state s2. Rewards are always 0.

Define a linear approximator for the Q-function by a single basis feature φ; i.e. we approximate
Q(s, a) by φ(s, a)θ for some scalar θ. Let Z =

√
12 + 2η + η2 for η > 0 arbitrarily close to

0 (η is used merely for tie breaking). Then define φ(s1, a1) = (1 + η)/Z; φ(s1, a2) = 1/Z;
φ(s2, a1) = 1/Z; and φ(s2, a2) = 3/Z, which ensures ‖φ‖2 = 1. Clearly, this Q-approximation
severely restricts the set of expressible greedy policies: for θ > 0 the greedy policy always stays at the
current state; otherwise, for θ < 0, the greedy policy always chooses to switch states. Interestingly,
as in [1], this limited basis is still sufficient to express the optimal Q-function via θ = 0 (there are no
rewards).

We will show that the behaviour of approximate Q-learning with ε-greedy exploration can still diverge
due to delusional bias; in particular that, after initializing to θ0 = 1, θ grows positively without
bound. To do so, we examine the expected behaviour of the approximate Q-learning update under the
stationary visitation frequencies. Note that, since θ > 0 will hold throughout the analysis, the ε-greedy
policy chooses to stay at the same state with probability 1− ε and switches states with probability
ε. Therefore, the stationary visitation frequencies, µ(s, a), is given by µ(s1, a1) = (1 − ε)/2;
µ(s1, a2) = ε/2; µ(s2, a1) = ε/2; and µ(s2, a2) = (1− ε)/2.

Consider the learning update, θ ← θ + α∆θ, where the expected update is given by

E[∆θ] =
∑
s,a

µ(s, a)φ(s, a)δ(s, a),

using the Q-learning temporal difference error, δ, given by

δ(s, a) = γ
∑
s′

p(s′|s, a) max
a′

φ(s′, a′)θ − φ(s, a)θ

(recall the rewards are 0). In this example, the temporal differences are δ(s1, a1) = −(1− γ)θ/Z;
δ(s1, a2) = (3γ − 1)θ/Z; δ(s2, a1) = −(1− γ)θ/Z; and δ(s2, a2) = −3(1− γ)θ/Z, in the limit
when η → 0. Observe that δ(s1, a2) demonstrates a large delusional bias in this case (whenever
θ > 0). In particular, the other δ values are small negative numbers (assuming γ ≈ 1), while δ(s1, a2)
is close to 2/Z. The delusion occurs because the update through (s1, a2) thinks that a large future
value can be obtained by switching to s2, but the greedy policy allows no such switch. In particular,
E[∆θ] can be explicitly computed to be

E[∆θ] =

(
(5− 3ε)θ

Z

)
γ −

(
(5− 4ε)θ

Z

)
,

which is bounded above zero for all θ ≥ 1 whenever δ > (5− 4ε)/(5− 3ε). Note that, since φ > 0,
δ is positive homogeneous in θ. Therefore, the expected value of θk is

E[θk] = E[θk−1 + αE[∆θk−1]]

= E[θk−1 + αθk−1 E[∆θ0]]

= (1 + αE[∆θ0])E[θk−1],

leading to divergence w.p. 1 (see, e.g., [10, Chap.4]) since we have established E[∆θ0] > 0 for some
γ < 1.

A.3 Q-learning cyclic behaviour due to delusion

We show that delusion caused by the online Q-learning backup along an infeasible path leads to
cycling of solutions and hence does not converge when the learning rate αsat is lower bounded by
α > 0 (i.e. some schedule where α is the smallest learning rate). Consider Fig. 4. The path (s1, a2),
(s2, a2) is infeasible: as it requires that θ2 > 0 (choosing a2 over a1 at s1) and θ2 < 0 (taking a2 at
s2). We assume γ = 1 for this episodic MDP.
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There are four potential updates, each at a different (s, a)-pair. Any backup at (s1, a1) or (s2, a1)
does not change the weight vector. Consider the first update at (s2, a2) at iteration k such that αk = α.
Assume θ(k−1) = (b, c). A reward of R(s2, a2) = 1/

√
α is obtained, hence we have the update

θ(k) = (b, c) + α ·
(

0,− 1√
α

)
·
(

1√
α

+ γ · 0−
(
− c√

α

))
= (b,−1) .

The next backup with non-zero updates occurs at (s1, a2) at step k′ (since an update at (s2, a2) would
not change θ and updates at (s1, a1) and (s2, a1) gets multiplied by all zero features), θ(k′−1) =
(b,−1) and

θ(k′) = (b,−1) + α ·
(

0,
1√
α

)
·
(

0 + γ · 1√
α
−
(
− 1√

α

))
= (b, 1) .

This shows the cyclic behaviour of Q-learning when the two jointly infeasible state-action pairs
“undo” each others’ updates. We can easily extend this small example to larger feature spaces with
larger collections of infeasible state-action pairs.

s1 s2
R(s2, a2)

a2

a1 a1

a2

Figure 4: This two state MDP has φ(s1, a2) = (0, 1/
√
α), φ(s2, a2) = (0,−1/

√
α), φ(s1, a1) =

φ(s2, a1) = (0, 0). There is a single non-zero reward R(s2, a2) = 1/
√
α. All transitions are

deterministic and only one is non-terminal: s1, a2 → s2.

A.4 The discounting paradox

We first illustrate the discounting paradox with the simple MDP in Fig. 5. Delusional bias causes
approximate QL to behave paradoxically: a policy trained with γ= 1 will be worse than a policy
trained with γ=0, even when evaluated non-myopically using γ=1.3

We use a linear approximator

Qθ(s, a) = θ1φ(s) + θ2φ(a) + θ3, (4)

with the feature embeddings φ(s1)=2; φ(s2)=1; φ(s′2)=0; φ(a1)=−1; and φ(a2)=1. The two
discounts γ=0 and γ=1 each give rise to different optimal parameters, inducing the corresponding
greedy policies:

θ̂γ=0 = QL(γ = 0, θ(0), εGreedy), π̂0 = Greedy(Qθ̂γ=0),

θ̂γ=1 = QL(γ = 1, θ′(0), εGreedy), π̂1 = Greedy(Qθ̂γ=1).

For all ε ≤ 1/2 we will show that V π̂0
γ=1 > V π̂1

γ=1.

The (greedy) policy class representable by the linear approximator, G(Θ) = {Greedy(Qθ) : θ ∈
R3} = {πa1 , πa2}, is extremely limited: if θ2 < 0, the greedy policy always takes a1 (policy πa1),
while if θ2 > 0, it always takes a2 (policy πa2). When evaluating these policies using γ = 1, we
find that V πa2γ=1 = 2 > 2 − δ = V

πa1
γ=1 , hence the optimal policy in G(Θ) is πa2 . By contrast, the

unconstrained optimal policy π∗ takes a1 in s1 and a2 in s2. The paradox arises because, as we will
see, the myopic learner (γ= 0) converges to the best representable policy π̂0 = πa2 , whereas the
non-myopic learner (γ=1) converges to the worse policy π̂1 = πa1 .

To prove this result, we characterize the fixed points, θ̂γ=0 and θ̂γ=1, produced by QL with γ=0 and
γ=1, respectively. (Note that the initial parameters θ(0), θ′(0) do not influence this analysis.) Using

3Note that we use these discount rates of 0 and 1 to illustrate how extreme the paradox can be—there is
nothing intrinsic to the paradox that depends on the use of the purely myopic variant versus the infinite-horizon
variant.
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Figure 5: A deterministic MDP starting at state s1 and terminating at T , Qθ(T, a) = 0. Directed
edges are transitions of the form a/r where a is the action taken and r the reward. Parameter δ > 0.

0.0 0.1 0.2 0.3 0.4 0.5

ε

−0.15

−0.10

−0.05

0.00

0.05

0.10

θ̂γ=1
2

θ̂γ=0
2

Figure 6: Fixed points θ̂γ2 when training with γ = 0, 1; δ = 0.1.

the behaviour policy πb = εGreedy, any fixed point θ̂ of QL must satisfy two conditions (see also
Appendix A.1):
(1) The behaviour policy must not change with each update; if sgn(θ̂2) = −1 (resp. +1) then
εGreedy takes a1 with probability 1− ε (resp. a2).
(2) The expected update values for θ must be zero under the stationary visitation frequencies µ(s, a)
of the behaviour policy.4

The set of fixed points is entirely characterized by the sign of θ̂2. For fixed points where θ̂2 < 0 the
second condition imposes the following set of constraints,∑

s,a

µa1(s, a)φ(s, a)
(
R(s, a) + (γs′ − s)θ̂1 − (γ + a)θ̂2 + (γ − 1)θ̂3

)
= 0 ; θ̂2 < 0 , (5)

where s′ follows s, a. Similarly, when θ̂2 > 0, we have∑
s,a

µa2(s, a)φ(s, a)
(
R(s, a) + (γs′ − s)θ̂1 + (γ − a)θ̂2 + (γ − 1)θ̂3

)
= 0 ; θ̂2 > 0 . (6)

Note that there is no fixed point where θ̂2 = 0.

If we set δ = 0.1, ε= 0.1 and γ = 1 and solve for (5), we obtain θ̂γ=1 ≈ (0.793,−0.128, 0.265),
whereas there is no solution for (6). Alternatively, by setting γ=0, there is a solution to (6) given by
θ̂γ=0≈(−0.005, 0.03, 0.986), but there is no solution to (5). (Fig. 6 shows the entire family of fixed
points as ε varies.) Thus, Greedy(Qθ̂γ=1) (the non-myopically trained policy) always takes action a1,
whereas Greedy(Qθ̂γ=0) (the myopically trained policy) always takes action a2. When evaluating
these policies under γ = 1, the myopic policy has value 2, while paradoxically the non-myopic policy
has lower value 2− δ.

This discounting paradox arises precisely because Q-learning fails to account for the fact that the class
of (greedy) policies admitted by the simple linear approximator is extremely limited. In particular,
under non-myopic (γ = 1) training, QL “believes” that taking a1 in s1 results in a better long-term
reward, which is in fact true if we can execute the unconstrained optimal policy: take a1, then a2

(i.e., the top path), receiving a total reward of 2 + δ. However, this policy is infeasible, since the

4 If θ̂2 < 0, the greedy policy is πa1 , which induces the stationary distribution µa1(s1, a1) = 1 − ε;
µa1(s1, a2) = ε; µa1(s2, a1) = (1−ε)2; µa1(s2, a2) = ε(1−ε); µa1(s′2, a1) = ε(1−ε); and µa1(s′2, a2) =

ε2. When θ̂2 > 0, the greedy policy πa2 induces a similar distribution, but with ε and 1− ε switched.
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Figure 7: An MDP similar to Fig. 5; non-myopic is much worse.

policy class G(Θ) consists of greedy policies that can only take a1 or a2 at all states: if a1 is taken at
s1, it must also be taken at s2.

More specifically, the paradox emerges because, in the temporal difference, the γmaxa′∈AQ(s′, a′)
term maximizes over all possible actions, without regard to actions that may have been taken to
reach s′. If reaching s′ requires taking some prior action that renders a specific a′ infeasible at s′
w.r.t. G(Θ), then Q-learning “deludes” itself, believing it can achieve future values that are, in fact,
infeasible under the constrained policy class G(Θ).

The example above illustrates one instance of the discounting paradox, showing that training using the
larger correct discount factor can give rise to a slightly worse policy than training using an “incorrect”
smaller discount. We now consider how bad the performance loss can be and also show that the
paradox can occur in the opposite direction (smaller target discount outperformed by larger incorrect
discount).

The two induced greedy policies above, πa1 and πa2 , have a difference in value δ (see Fig. 5) when
evaluated with γ = 1; δ must be relatively small for the paradox to arise (e.g., if ε = 0.1, δ / 0.23).
A different MDP (see Fig. 7) induces a delusional bias in which the non-myopic Q-learned policy
can be arbitrarily worse (in the competitive-ratio sense) than the myopic Q-learned policy. To show
this we use the same linear approximator (4) and action embeddings, but new feature embeddings
φ(s1)=3, φ(s2)=2, φ(s′2)=1.9999, φ(s3)=1.1, and φ(s′3)=1.0999. When evaluating with γ = 1,
the policy πa2 (with value 3) has an advantage of 0.1δ over πa1 (with value 3− 0.1δ). Assume the
behaviour policy is εGreedy with ε = 0.2 (other ε also work), whose distribution µ(s, a) can be
computed as in Footnote 4.

For Q-learning with γ = 1, we solve the constraints in (5) to find fixed points where θ̂2 < 0. The
system of equations has the form Aθ̂ = b; solving for θ̂ gives:

θ̂γ=1 = A−1b ≈
[

1.03320 + 0.09723δ
−0.00002− 0.08667δ
−0.09960− 0.65835δ

]
.

This implies, for any δ ≥ 0, the Q-learned greedy policy is πa1 . Similarly, fixed points with γ = 0,
where θ̂2 > 0, we have θ̂γ=0

2 ≈ 0.10333δ. This implies the Q-learned greedy policy is πa2 for any
δ > 0. In particular, we have that

lim
δ→30−

V
Greedy(θ̂γ=1)
γ=1

V
Greedy(θ̂γ=0)
γ=1

=
3− 0.1(30)

3
= 0 .

Therefore the non-myopic policy may be arbitrarily worse than the myopic policy. (Other fixed points,
where θ̂γ=1

2 > 0, θ̂γ=0
2 < 0 may be reached depending on the initial θ(0).)

The paradox can also arise in the “opposite” direction, when evaluating policies purely myopically
with γ = 0: the myopic Q-learned policy can be arbitrarily worse than a non-myopic policy. As
shown above, for any δ > 0, the non-myopic policy chooses a1 at s1, thus its value is 1 + δ (since
subsequent rewards are fully discounted) whereas the myopic policy chooses a2 receiving a value of
1. Thus, the non-myopic policy has a value advantage of δ, which translates into an arbitrarily large
improvement ratio over the myopic policy: limδ→∞(1 + δ)/1 =∞.
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A.5 Comparisons to double Q-learning

The maximization bias in Q-learning [30] is an over-estimation bias of the bootstrap term
maxa′∈A Q̂(s′, a′) in Q-updates. If the action space is large, and there are not enough transi-
tion examples to confidently estimate the true Q(s′, a′), then the variance of each Q̂(s, a) for any
a is large. Taking the max of random variables with high variance will over-estimate, even if
maxa′∈A E[Q̂(s, a)] = maxa′∈AQ(s, a).

Double Q-learning aim to fix the maximization bias by randomly choosing to update one of two
Q-functions, Q1 and Q2. For any given transition (s, a, r, s), if Q1 is chosen to be updated with
probability 1/2, then the update becomes

Q1(s, a)← Q1(s, a) + α(r + γQ2(argmax
a′∈A

Q1(s′, a′)−Q1(s, a))∇Q1(s, a)

IfQ2 is randomly chosen, a similar update is applied by switching the roles ofQ1 andQ2. A common
behaviour policy is εGreedy(Q1 +Q2). The idea behind this update is to reduce bias by having Q2,
trained with different transitions, evaluate the max action of Q1.

This type of maximization bias is due to lack of samples, which causes large variance that biases the
max value. The MDP counter-example in Fig. 5 is deterministic, both in the rewards and transitions,
so in fact there is no maximization bias. To make this concrete, we can derive the double Q-learning
fixed points Qθ and Qθ′ of Fig. 5. Using similar reasoning as in Eq. 5, we can write the constraints
for fixed points where θ2 + θ′2 < 0 (resp. > 0)—i.e. Greedy always selects a1 (resp. always a2).∑

s,a

µ(s, a)φ(s, a)(R(s, a) + γ(θ1s
′ + θ2a

′ + θ3)− θ′1s− θ′2a− θ′3) = 0 (7)

∑
s,a

µ(s, a)φ(s, a)(R(s, a) + γ(θ′1s
′ + θ′2a

′′ + θ′3)− θ1s− θ2a− θ3) = 0 (8)

The weighting µ(s, a) = 1
2µb(s, a) where µb(s, a) corresponds to the behaviour policy. If θ2 + θ′2 <

0, εGreedy prefers a1, and there are one of three possibilities. First, a′ = a′′ = a1 implying
θ2, θ

′
2 < 0; second, (a′, a′′) = (a1, a2) implying θ2 > 0, θ′2 < 0; third, (a′, a′′) = (a2, a1) implying

θ2 < 0, θ′2 > 0. We can substitute all three cases into Eqs. 7, 8, solve the system of equations,
and check if θ, θ′ satisfy the constraints. One solution is a fixed point of regular Q-learning where
Qθ = Q′θ. For both γ = 0, 1, we check for other possible solutions with the MDP of Fig 5, they do
not exist. Fixed points when θ2 + θ′2 > 0 can be found similarly. Thus double Q-learning does not
mitigate the delusional bias issue.

A.6 Concepts and proofs for PCVI and PCQL

In this section, we elaborate on various definitions and provide proofs of the results in Section 4.

We formally define functions and binary operators acting on partitions of Θ.
Definition 4. LetX be a set, a finite partition ofX is any set of non-empty subsetsP = {X1, . . . , Xk}
such that X1 ∪ · · · ∪Xk = X and Xi ∩Xj = ∅, for all i 6= j. We call any Xi ∈ P a cell. A partition
P ′ of X is a refinement of P if for all X ′ ∈ P ′ there exists a X ∈ P such that X ′ ⊆ X . Let P(X )
denote the set of all finite partitions of X .
Definition 5. Let P ∈ P(X ). A mapping h : P → R is called a function of partition P . Let
H = {h : P → R | P ∈ P(X )} be the set of all such functions of partitions. Let h1, h2 ∈ H, an
intersection sum is a binary operator h = h1 ⊕ h2 defined by

h(X1 ∩X2) = h1(X1) + h2(X2), ∀X1 ∈ dom(h1), X2 ∈ dom(h2), X1 ∩X2 6= ∅
where dom(·) is the domain of a function (in this case a partition of X ). We say h1 is a refinement of
h2 if partition dom(h1) is a refinement of dom(h2).

Note there is at most a quadratic blowup: |dom(h)| ≤ |dom(h1)| · |dom(h2)|. The tuple (H,⊕) is
almost an abelian group, but without the inverse element property.
Proposition 6. The following properties hold for the intersection sum.

• (Identity) Let e = X 7→ 0, then h⊕ e = e⊕ h = h for all h ∈ H.
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• (Refinement) For all h1, h2 ∈ H, we have: (i) h1 ⊕ h2 is a refinement of h1 and of h2. (ii) if
h′1 and h′2 is a refinement of h1 and h2, respectively, then h′1⊕h′2 is a refinement of h1⊕h2.

• (Closure) h1 ⊕ h2 ∈ H, for all h1, h2 ∈ H
• (Commutative) h1 ⊕ h2 = h2 ⊕ h1, for all h1, h2 ∈ H
• (Associative) (h1 ⊕ h2)⊕ h3 = h1 ⊕ (h2 ⊕ h3), for all h1, h2, h3 ∈ H

Proof. The identity element e property follows trivially. Refinement (i) follows from the fact
that for any two partitions P1, P2 ∈ P(X), say P1 = dom(h1) and P2 = dom(h2), the set P =
dom(h1⊕h2) = {X1∩X2 |X1 ∈ P1, X2 ∈ P2, X1∩X2 6= ∅} is also a partition whereX1∩X2 ∈ P
is a subset of both X1 ∈ P1 and X2 ∈ P2. Refinement (ii) is straightforward, let X ′ ∈ dom(h′1)
and Y ′ ∈ dom(h′2) where there is a non-empty intersection. By definition, X ′ ⊆ X ∈ dom(h1) and
Y ′ ⊆ Y ∈ dom(h2). We have X ′ ∩ Y ′ ∈ dom(h′1 ⊕ h′2) and (X ′ ∩ Y ′) ⊆ (X ∩ Y ), so refinement
(ii) holds. Commutative and associative properties essentially follow from that of the corresponding
properties of set intersection and the addition operators. Closure follows from the refinement property
since h1 ⊕ h2 is a mapping whose domain is the refined (finite) partition.

Assumption 7. We have access to an oracle Witness where for any X ⊆ Θ defined by a conjunction
of a collection of state to action constraints, outputs ∅ if X is an inconsistent set of constraints, and
outputs any witness θ ∈ X otherwise.

Theorem 1. PCVI (Alg. 1) has the following guarantees:

(a) (Convergence and correctness) The Q function converges and, for each s ∈ S, a ∈ A, and
any θ ∈ Θ: there is a unique X ∈ dom(Q[sa]) s.t. θ ∈ X and

Qπθ (s, a) = Q[sa](X). (9)

(b) (Optimality and Non-delusion) Given initial state s0, πθ∗ is an optimal policy within G(Θ)
and q∗ is its value.

(c) (Runtime bound) Assume⊕ and non-emptiness checks (lines 6 and 7) have access to Witness.
Let

G = {gθ(s, a, a′) := 1[fθ(s, a)− fθ(s, a′) > 0],∀s, a 6= a′ | θ ∈ Θ}, (10)

where 1[·] is the indicator function. Then each iteration of Alg. 1 runs in time O(nm ·
[
(
m
2

)
n]2VCDim(G)(m− 1)w) where VCDim(·) is the VC-dimension [31] of a set of boolean-

valued functions, and w is the worst-case running time of the oracle called on at most nm
state-action constraints. Combined with Part (a), if VCDim(G) is finite then Q converges in
time polynomial in n,m,w.

Corollary 8. Let φ : S ×A→ Rd be a vector representation of state-action pairs. Define

• Flinear = {fθ(s, a) = θTφ(s, a) + θ0 | θ ∈ Rd, θ0 ∈ R} and

• FDNN the class of real-valued ReLU neural networks with input φ(s, a), identity output
activation, W the number of weight parameters, and L the number of layers.

Let Glinear and GDNN be the corresponding boolean-valued function class as in Eqn. 10. Then

• VCDim(Glinear) = d and

• VCDim(GDNN) = O(WL logW ).

Furthermore, the Witness oracle can be implemented in polynomial time for Flinear but is NP-hard
for neural networks. Therefore Alg. 1 runs in polynomial time for linear greedy policies and runs
in polynomial time as a function of the number of oracle calls for deep Q-network (DQN) greedy
policies.

Proof. Let gθ ∈ Glinear then gθ(s, a, a′) = 1[θT (φ(s, a)−φ(s, a′)) > 0], these linear functions have
VC-dimension d. For any fθ ∈ FDNN we construct a ReLU network gθ as follows. The first input
φ(s, a) goes through the network fθ with identity output activation and the second input φ(s, a′) goes
through the same network, they are then combined with the difference fθ(s, a) − fθ(s, a′) before
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being passed through the 1[·] output activation function. Such as network has 2W number of weight
parameters (with redundancy) and the same L number of layers. Then the VC-dimension of this
network follows from bounds given in [2].

The oracle can be implemented for linear policies by formulating it as set of linear inequalities and
solving with linear programming methods. For neural networks, the problem of deciding if a training
set can be correctly classified is a classical NP-hardness result [7] and can be reduced to this oracle
problem by converting the training data into state to action constraints.

Before proving the main theorem, we first show that the number of unique policies is polynomial in
n when the VC-dimension is finite. This implies a bound on the blowup in the number of cells under
the ⊕ operator.
Proposition 9. Let G be defined as in Eqn. 10, then we have

|G(Θ)| ≤
VCDim(G)∑
i=0

((m
2

)
n

i

)
= O

([(
m

2

)
n

]VCDim(G)
)
.

Proof. We construct a one-to-one mapping from functions inG(Θ) to functions in G. Let πθ ∈ G(Θ).
Suppose πθ(s) = a for some state s. This implies fθ(s, a) > fθ(s, a

′) for all a′ 6= a, or equivalently
1[fθ(s, a) − fθ(s, a

′) > 0] = 1 for all a′ 6= a. The converse is also true by definition. Thus
the mapping πθ 7→ gθ is one-to-one, but not necessarily onto since gθ is sensitive to all pairwise
comparisons of a and a′. For ties we can assume both f and g selects the action with smallest index
in A). The Sauer-Shelah Lemma [24, 25] gives us the bound |G| ≤ ∑VCDim(G)

i=0

(|dom(G)|
i

)
where

|dom(G)| = |S ×A×A− {(a, a) | a ∈ A}| =
(
m
2

)
n.

Proof of Theorem 1. Part (a): first, let us argue that for any state-action pair s, a, these two condi-
tions hold when executing the algorithm,

(1) dom(Q[sa]) is always a partition of Θ and

(2) dom(ConQ[sa]) is always a partition of [s 7→ a].

Note that the initialization in lines 1 and 2 satisfy these two conditions. Consider any iteration of the al-
gorithm. We have that dom(ConQ[s]) is a partition of Θ since dom(ConQ[s]) =

⋃̇
a∈Adom(ConQ[sa])

and each dom(ConQ[sa]) is a partition of [s 7→ a] (this is the invariant condition in the loop). Hence
ConQ[s] is a function of a partition of Θ. Line 6 is an update that is well-defined and results in
dom(Q[sa]) ∈ P(Θ), this is due to the commutative, associative and closure properties of the in-
tersection sum (see Prop. 6). Thus condition (1) is satisfied. The update in line (7) ensures that
dom(ConQ[sa]) has no empty sets and that each set Z in its domain comes from dom(Q[sa]) but with
the constraint that πθ(s) = a. Thus condition (2) is satisfied.

To show convergence of Q, we first show the partitions dom(ConQ[s]) ∈ P(Θ) eventually converges—
i.e. they do not change. Since partitions in Q is derived from partitions in ConQ, then Q would also
converge. Once partitions converge, we show that the backups in line 6 contain value iteration updates
for policies within each cell. An application of standard convergence rates for value iteration gives us
the desired results.

We first show that after each iteration of the inner loop, ConQ[s] is a refinement of the old ConQ[s] of
a previous iteration. Let Q(i), ConQ(i), denote the tables at iteration i of the outer loop—that is, after
executing i full passes of the inner loop. We claim that ConQ(i)[s] is a refinement of ConQ(i−1)[s]
for all s. We prove this by induction on i. Base case: i = 1; ConQ(0)[s] are partitions of the form
{[s 7→ a1], . . . , [s 7→ am]}. Line 7 ensures ConQ(1)[sa] is a refinement of [s 7→ a] since Q[sa] is a
partition of Θ (shown above). Since this is true for any a then ConQ(1)[s] is a refinement of ConQ(0)[s].
For i > 1, line 6 ensures that dom(Q(i)[sa]) = dom(

⊕
s′ ConQ

(i−1)[s′]) and dom(Q(i−1)[sa]) =

dom(
⊕

s′ ConQ
(i−2)[s′]). By inductive hypothesis ConQ(i−1)[s′] is a refinement of ConQ(i−2)[s′].

Therefore by Prop. 6’s refinement property, Q(i)[sa] is a refinement of Q(i−1)[sa]. By line 7 it follows
that ConQ(i)[sa] is a refinement of ConQ(i−1)[sa]. Finally ConQ(i)[s] is the combination of all such
relevant refinements, resulting in a refinement of ConQ(i−1)[s]. This ends the induction proof.
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Thus a full pass of the inner loop may result in new cells for ConQ(i)[s] (part of a refine-
ment) but never reduce the number of cells (i.e. never be an “anti-refinement”). If no new
cells in ConQ(i)[s] are introduced in a full pass of the inner loop, i.e. dom(ConQ(i)[s]) =
dom(ConQ(i−1)[s]) for all s, then dom(Q) (and hence dom(ConQ[s])) has converged. To see this, note
that dom(Q(i+1)[sa]) = dom(

⊕
s′ ConQ

(i)[s′]) = dom(
⊕

s′ ConQ
(i−1)[s′]) = dom(ConQ(i)[s]).

This implies dom(ConQ(i+1)[s]) = dom(ConQ(i)[s]) for all s. Hence in all subsequent iterations the
partitions in Q and ConQ does not change, i.e. it converges. The maximum number of full passes of
the inner loop before no new cells are introduced in a full inner pass is the maximum total number of
cells in ConQ[s] summed across all states (in the worst case when each full pass of inner loop results
in only one new cell), since this maximum total is bounded, Q converges eventually.

Assume that cells in Q and ConQ has converged. Let θ ∈ Θ, now we will show the update in line 6
contains the update

Qπθ (s, a)← Rsa + γ
∑
s′∈S

p(s′ | s, a)Qπθ (s′, π(s′)).

This is the on-policy value iteration update, which converges to the Q-function of πθ with enough
updates, thus Eqn. (9) would hold. Fix s, a. For any next state s′, there exists a Xs′ ∈ dom(ConQ[s′])
such that θ ∈ Xs′ (as we’ve established above that dom(ConQ[s′]) ∈ P(Θ)). Moreover, let Y =⋂
s′∈S Xs′ , then by definition θ ∈ Y ∈ dom(Q[sa]). Thus the update in line 6 has the intersection

sum where sets Xs′ , for all s′, are combined through an intersection, that is, it contains the update

Q[sa](Y )← Rsa + γ
∑
s′∈S

p(s′ | s, a)ConQ[s′](Xs′),

where ConQ[s′](Xs′) stores the backed-up Q-value of θ in state s′ performing action πθ(s′), the
consistent action for θ. Line 7 ensures that only ConQ[s πθ(s)] contains the cellZ ′ = Y ′∩[s 7→ πθ(s)]
containing parameter θ (all other ConQ[sa′] does not contain a cell that contains θ, for a′ 6= πθ(s)).
Thus, only ConQ[s πθ(s)](Z

′) is updated with Q[s πθ(s)](Y
′) which is consistent with θ’s action

in state s. Hence, we’ve established that for any πθ its corresponding Q-values is updated at every
iteration and stored in Q while only the consistent Q-values are stored in ConQ.

Part (b): by construction and from above results, dom(ConQ[s0]) ∈ P(Θ). By Part (a), for any policy
πθ, there exists aXθ such that the policy has value Q[s0 πθ(s0)](Xθ) = ConQ[s0 πθ(s0)](Xθ∩ [s0 7→
πθ(s0)]) = ConQ[s0](Xθ ∩ [s0 7→ πθ(s0)]) when starting from s0. Thus q∗ = ConQ[s0][X∗] ≥
ConQ[s0][Xθ] is the largest Q-value of any policy in G(Θ), upon convergence of Q. The oracle returns
a particular witness in X∗ whose greedy policy attains value q∗.

Part (c): line 6 dominates the running time. There are m − 1 applications of ⊕ operator, which
is implemented by intersecting all pairs of cells from two partitions. There is a call to Witness
to determine if the intersection of any pair of cells results in an inconsistent set of constraints,
taking time at most w. Prop. 9 upper bounds the number of cells in a partition, thus we require
O([
(
m
2

)
n]VCDimG(m − 1)w) time for line 6, which is executed nm times within the inner loop.

The number of iterations until dom(Q[s]) converges is the maximum number of cells in ConQ[s]
summed across all states s (shown in proof of Part (a)). For finite VC-dimension, this summed total
is polynomial. Once the partitions of Q[s] converges, standard results concerning polynomial time
convergence of Q-values within each cell apply.

A.7 PCVI example

We walk through the steps of the PCVI Algorithm for the example MDP in Fig. 1 and show how
it computes the optimal admissible policy. We assume the same feature representation as in the
discussion of Sec. 3.1; see Table 3 for the features and rewards.

Recall that the optimal admissible policy has parameters θ∗ = (−2, 0.5), and its greedy policy πθ∗
selects a1 at s1 and a2 at s4, giving expected value of 0.5 at initial state s1. We walk through each
step of PCVL below. Table 4 describes the critical data structures used during PCVL updates.
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Table 3: Features and rewards for MDP in Fig. 1. Transitions are as in Fig. 1 with a stochastic
transition at s1, a1 which goes to s4 with probability 0.1 and terminates with probability 0.9. Initial
state is s1 and γ = 1.

s, a φ(s, a) R(s, a) s, a φ(s, a) R(s, a)

s1, a1 (0, 1) 0.3 s3, a1 (0, 0) 0
s1, a2 (0.8, 0) 0 s3, a2 (−1, 0) 0
s2, a1 (0, 0) 0 s4, a1 (0, 1) 0
s2, a2 (0.8, 0) 0 s4, a2 (−1, 0) 2

Table 4: Explanation of critical data structures used in PCVL algorithm.

Data structure Description
Q[sa] A table mapping an element (set) X of a partition of Θ to R. Q[sa](X)

is the Q-value of taking action a at s and then following a greedy policy
parameterized by θ ∈ X . It may be that πθ(s) 6= a.

ConQ[sa] A table mapping an element (set) X of a partition of [s→ a] = {θ ∈ Θ :
πθ(s) = a} to R. ConQ[sa](X) is the Q-value of taking action a at s and
then following a greedy policy parameterized by θ ∈ X . It must be that
πθ(s) = a. ConQ is short for consistent Q-values.

ConQ[s] A table formed from concatenating tables ConQ[sa] for all a at s. The
domain of ConQ[s] is a partition of Θ.

Initialization. First initialize Q and ConQ tables for all i ∈ {1, 2, 3, 4} and j ∈ {1, 2}.

Q[siaj ] =

[
Partition of Θ Q-values

Θ 0

]
ConQ[siaj ] =

[
Partition of [si 7→ aj ] Q-values

[si 7→ aj ] 0

]
ConQ[si] =

[
Partition of Θ Q-values

Θ 0

]

Let ⊥ be the terminal state and let ConQ[⊥] be initialized as above, in the same way as ConQ[si].

s1 s2 s3 s4

r = 0.3

a1 prob. 0.9
a1 prob. 0.1

a2 a2 a2 a2

a1 a1 a1

r = 2

ConQ[s4]
Partition of Θ Q-val

[s4 → a2] 2
[s4 → a1] 0

ConQ[s3]
Partition of Θ Q-val

[s3 → a2][s4 → a2] 2
[s3 → a2][s4 → a1] 0

[s3 → a1] 0

ConQ[s2]
Partition of Θ Q-val

[s2 → a2][s3 → a1] 0
[s2 → a1] 0

ConQ[s2]
Partition of Θ Q-val

[s1 → a2][s2 → a2][s3 → a1] 0
[s1 → a2][s2 → a1] 0
[s1 → a1][s4 → a1] 0.3
[s1 → a1][s4 → a2] 0.5

Figure 8: Example run of PCVI on MDP in Fig. 1. The blue, green, red and gray arrows indicate the
direction of backups for constructing the tables ConQ[si] for i = 1..4 in that order.
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Iteration #1. We now go through PCVL’s updates within the for loop (lines 5-8). We run the updates
backwards, starting with s4, a2. The updates are:

Q[s4a2] = R(s4, a2) + γ[p(⊥ |s4, a2)ConQ[⊥]]

=

[
Partition of Θ Q-values

Θ 2

]
ConQ[s4a2] =

[
Partition of [s4 7→ a2] Q-values

Θ ∩ [s4 7→ a2] = [s4 7→ a2] 2

]

ConQ[s4] =

[ Partition of Θ Q-values
[s4 7→ a1] 0
[s4 7→ a2] 2

]

Iteration #2. Update s4, a1.

Q[s4a1] = R(s4, a1) + γ[p(⊥ |s4, a1)ConQ[⊥]]

=

[
Partition of Θ Q-values

Θ 0

]
ConQ[s4a2] =

[
Partition of [s4 7→ a1] Q-values

Θ ∩ [s4 7→ a1] = [s4 7→ a1] 0

]

ConQ[s4] =

[ Partition of Θ Q-values
[s4 7→ a1] 0
[s4 7→ a2] 2

]

Iteration #3. Update s3, a2.

Q[s3a2] = R(s3, a2) + γ[p(s4|s3, a2)ConQ[s4]]

= ConQ[s4]

=

[ Partition of Θ Q-values
[s4 7→ a1] 0
[s4 7→ a2] 2

]

ConQ[s3a2] =

[ Partition of [s3 7→ a2] Q-values
[s4 7→ a1] ∩ [s3 7→ a2] = [s4 7→ a1][s3 7→ a2] 0
[s4 7→ a2] ∩ [s3 7→ a2] = [s4 7→ a2][s3 7→ a2] 2

]

ConQ[s3] =

 Partition of Θ Q-values
[s3 7→ a1] 0

[s4 7→ a1][s3 7→ a2] 0
[s4 7→ a2][s3 7→ a2] 2



Iteration #4. Update s3, a1.

Q[s3a1] = R(s3, a1) + γ[p(⊥ |s3, a1)ConQ[⊥]]

= ConQ[⊥]

=

[
Partition of Θ Q-values

Θ 0

]
ConQ[s3a1] =

[
Partition of [s3 7→ a1] Q-values

Θ ∩ [s3 7→ a1] = [s3 7→ a1] 0

]

ConQ[s3] =

 Partition of Θ Q-values
[s3 7→ a1] 0

[s4 7→ a1][s3 7→ a2] 0
[s4 7→ a2][s3 7→ a2] 2



23



Iteration #5. Update s2, a2.
Q[s2a2] = R(s2, a2) + γ[p(s3|s2, a2)ConQ[s3]]

= ConQ[s3]

=

 Partition of Θ Q-values
[s3 7→ a1] 0

[s4 7→ a1][s3 7→ a2] 0
[s4 7→ a2][s3 7→ a2] 2



ConQ[s2a2] =

 Partition of [s2 7→ a2] Q-values
[s3 7→ a1][s2 7→ a2] 0

[s4 7→ a1][s3 7→ a2] ∩ [s2 7→ a2] = ∅ −
[s4 7→ a2][s3 7→ a2] ∩ [s2 7→ a2] = ∅ −


=

[
Partition of [s2 7→ a2] Q-values
[s3 7→ a1][s2 7→ a2] 0

]

The witness oracle checks feasibility of [s3 7→ a2][s2 7→ a2] by solving a system of linear inequalities.
In this case,

[s2 7→ a2] =⇒ θ · φ(s2, a2) > θ · φ(s2, a1) =⇒ θ1 > 0,

[s3 7→ a2] =⇒ θ · φ(s3, a2) > θ · φ(s3, a1) =⇒ θ1 < 0.

Hence the assignment of these two policy actions to these two states is infeasible and PCVI eliminates
those two entries in the ConQ[s2a2] table.

ConQ[s2] =

[ Partition of Θ Q-values
[s2 7→ a1] 0

[s3 7→ a1][s2 7→ a2] 0

]

Iteration #6. Update s2, a1.
Q[s2a1] = R(s2, a1) + γ[p(⊥ |s2, a1)ConQ[⊥]]

= ConQ[⊥]

=

[
Partition of Θ Q-values

Θ 0

]
ConQ[s2a1] =

[
Partition of [s2 7→ a1] Q-values

Θ ∩ [s2 7→ a1] = [s2 7→ a1] 0

]

ConQ[s2] =

[ Partition of Θ Q-values
[s2 7→ a1] 0

[s3 7→ a1][s2 7→ a2] 0

]

Iteration #7. Update s1, a2.
Q[s1a2] = R(s1, a2) + γ[p(s2|s1, a2)ConQ[s2]]

= ConQ[s2]

=

[ Partition of Θ Q-values
[s2 7→ a1] 0

[s3 7→ a1][s2 7→ a2] 0

]

ConQ[s1a2] =

[ Partition of [s1 7→ a2] Q-values
[s2 7→ a1][s1 7→ a2] 0

[s3 7→ a1][s2 7→ a2][s1 7→ a2] 0

]

ConQ[s1] =

 Partition of Θ Q-values
[s1 7→ a1] 0

[s2 7→ a1][s1 7→ a2] 0
[s3 7→ a1][s2 7→ a2][s1 7→ a2] 0
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Iteration #8. Update s1, a1.

Q[s1a1] = R(s1, a1) + γ[p(⊥ |s1, a1)ConQ[⊥]⊕ p(s4|s1, a1)ConQ[s4]]

= 0.3 + 0.9ConQ[⊥]⊕ 0.1ConQ[s4]

=

[ Partition of Θ Q-values
Θ ∩ [s4 7→ a1] 0.3 + 0.9ConQ[⊥](Θ) + 0.1ConQ[s4]([s4 7→ a1]) = 0.3
Θ ∩ [s4 7→ a2] 0.3 + 0.9ConQ[⊥](Θ) + 0.1ConQ[s4]([s4 7→ a2]) = 0.5

]

ConQ[s1a1] =

[ Partition of [s1 7→ a1] Q-values
[s4 7→ a1][s1 7→ a1] 0.3
[s4 7→ a2][s1 7→ a1] 0.5

]

ConQ[s1] =


Partition of Θ Q-values

[s2 7→ a1][s1 7→ a2] 0
[s3 7→ a1][s2 7→ a2][s1 7→ a2] 0

[s4 7→ a1][s1 7→ a1] 0.3
[s4 7→ a2][s1 7→ a1] 0.5



In iteration #9, we would update s4, a2 but none of the Q or ConQ data structures change. Likewise,
subsequent iteration updates to any other s, a does not change these tables. Thus we have convergence
and can recover the optimal admissible policy as follows. For initial state s1 we look up table ConQ[s1]
and find that the feasible set with highest value is X∗ = [s4 7→ a2][s1 7→ a1] with value 0.5. A
feasible parameter θ∗ = (−2, 0.5) can also be found via, for example, solving a system of linear
inequalities by linear programming. Fig. 8 summarizes the backups performed by PCVL and the
resulting ConQ tables.

A.8 PCQL with ConQ regression

While Policy-class Q-Learning allows one to generalize in the sense that a parameterized policy is
returned, it does not explicitly model a corresponding Q-function. Such a Q-function allows one to
predict and generalize state-action values of unobserved states. For example, when an initial state is
never observed in the training data, the Q-function can be used to assess how good a particular cell or
equivalence class of policies are.

This is the general idea behind our heuristic. It keeps a global collection of information sets that are
gradually refined based on training data. The information set contains both the constraints defining
a cell and a regressor that predicts consistent Q-values for that cell’s policies. When there are too
many information sets, one can use a pruning heuristic, such as removing information sets with low
Q-values. The backup operation must respect the consistency requirement: a cell’s Q-regressor gets
updated only if [s 7→ a] is consistent with its constraints. As discussed earlier, pruning feasible
information sets may result in no updates to any cell given a sample transition (since no cell may be
consistent). But this can be avoided if our heuristic merges instead of deleting cells.

The algorithm pseudo-code is given in Algorithm 3. Every information set is a pair (X,w) where X
is a set of parameters consistent with some set of constraints and w are the weights of a Q-regressor.
In general w may be from a different function class than Θ. The Q-labels that w learns from is
generated in the consistent manner stated above, that is, it predicts the consistent Q-value ConQw(s, a)
for any state-action pair. While it produces values for any (s, a) that is inconsistent with X , such
values are not used for backups or finding an optimal policy.

A.9 Constructing consistent labels

We formulate the problem of consistent labeling as an mixed integer program (MIP).

Assume a batch of training examples B = {(st, at, rt, s′t)}Tt=1, and a current regressor Q̃ used to
create “bootstrapped” labels. The nominal Q-update generates labels of the following form for each
pair (st, at): qt = rt + γmaxa′t Q̃(s′t, a

′
t). The updated regressor is trained in supervised fashion

with inputs (st, at) and label qt.

To ensure policy class consistency, we must restrict the selection of the maximizing action a′t so that:

25



Algorithm 3 Policy-Class Q-Learning with Regression
Input: Batch B = {(st, at, rt, s′t)}Tt=1, γ,Θ, scalars αsat , initial state s0.

1: Initialize information sets I ← {(Θ, wΘ)}.
2: visited← ∅
3: for (s, a, r, s′) ∈ B, t is iteration counter do
4: If s 6∈ visited then Refine(s)
5: If s′ 6∈ visited then Refine(s′)
6: for (X,w) ∈ I do
7: if X ∩ [s 7→ a] 6= ∅ then
8: w ← w + αsat (r + γConQw(s′, πX(s′))− ConQw(s, a))∇wConQw(s, a)
9: end if

10: Prune I if too many information sets
11: end for
12: end for
13:
14: /* Then recover an optimal policy */
15: If s0 6∈ visited then Refine(s0)
16: (X∗, w∗)← argmax(X,w) ConQw(s0, πX(s0))
17: Select some witness θ∗ ∈ X∗ then return πθ∗
18:
19: Procedure Refine(s)
20: Inew ← ∅
21: for (X,w)← I .pop() do
22: Xi ← X ∩ [s 7→ ai] for all ai
23: If Xi 6= ∅ then Inew.add((Xi, w))
24: end for
25: I ← Inew
26: visited.add(s)

• ∩t[s′t 7→ a′t] 6= ∅ (i.e., selected maximizing actions are mutually consistent); and

• [st 7→ at] ∩ [s′t 7→ a′t] 6= ∅, for all t (i.e., choice at s′t is consistent with taking at at st).

We construct a consistent labeling by finding an assignment σ : s′t → A(s′t), assuming some
reasonable maximization objective that satisfies these constraints. We illustrate this using the sum of
the resulting labels as the optimization objective, though other objectives are certainly possible.

With a linear approximator, the problem can be formulated as a (linear) mixed integer program (MIP).
For any parameter vector θ ∈ Θ, we write θ(s, a) to denote the linear expression of Q(s, a; θ). To
meet the first requirement, we assume a single (global) parameter vector θg. For the second, we
have a separate parameter vector θt for each training example (st, at, rt, s

′
t). We have variables qt

representing the bootstrapped (partial) label for each training example. Finally, we have an indicator
variable Ita′ for each t ≤ T , a′ ∈ A(s′): this denotes the selection of a′ as the maximizing action for
s′t. We assume rewards are non-negative for ease of exposition. The following IP

over the interval becomes linear:

max
It
a′ ,qt,θg,θt

∑
t≤T

qt (11)

s.t. θt(st, at) ≥ θt(st, b)∀b ∈ A(st), ∀t (12)

θt(s
′
t, a
′
t) ≥ Ita′θt(s′t, b′)∀b′ ∈ A(s′t),∀t (13)

θg(s
′
t, a
′
t) ≥ Ita′θg(s′t, b′)∀b′ ∈ A(s′t),∀t (14)

qt = rt + γ
∑

a′∈A(s′t)

Ita′θg(s′t, a′t)∀t (15)

∑
a′∈A(s′t)

Ita′ = 1, ∀t (16)
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The nonlinear term Ita′θg(s′t, a′t) in the fourth constraint can be linearized trivially using a standard
transformation since it is the product of a real-valued and a binary (0-1) indicator variable. This IP
can be tackled heuristically using various greedy heuristics as well.

A.10 Discounting Hyperparameter Experiments

Our experiments use the Atari learning environment [3] to demonstrate the impact of changing the
training discount factor, γ`, used in Q-learning on the resulting greedy policy. The delusional bias is
particularly pronounced as γ` becomes close to 1, since incorrect temporal difference terms become
magnified in the updates to the function approximator. As shown above, the delusional bias problem
cannot be solved solely by choosing the right γ`; instead we show here that sweeping a range of γ`
values can reveal the discounting paradoxes in realistic environments, while also showing how γ`
tuning might mitigate some of the ill effects. Recall that it is possible for a larger γ` might lead to a
better policy when evaluated on a smaller γe—this is in contrast to [15, 16] which suggest using a
smaller γ` ≤ γe. In fact we see both phenomena.

We use a state-of-the-art implementation of Deep Q-Networks (DQN) [19], where we trained Qθ̂γ` by
varying γ` used in the Q-updates while holding other hyperparameters constant. We use εGreedy with
ε = 0.07 as the behaviour policy, and run training iterations until the training scores converge. Each
iteration consists of at most 2.5× 105 training steps (i.e., transitions), with max steps per episode
set to 27× 103. We use experience replay with a buffer size of 106 and a mini-batch size of 32. We
evaluate converged Q-functions using the corresponding greedy policy5 over episodes of 1.2× 106

steps. We do 5 training restarts for each game tested.

We vary γ` to reflect varying effective horizon lengths, h = 1/(1− γ`), of h ∈ {100− 10n : n =
0, 1, . . . , 8}. (γ` > 0.99 tends to cause divergence. For evaluation, we use the same values for γe,
plus γe ∈ {0.995, 1}—the latter is commonly reported as total undiscounted return.

Figs. 9 and 10 show (normalized) returns across four benchmark Atari games, averaged across the 5
training restarts. The implementation we use is known to have low variability in performance/value
in Atari once DQN has converged. Indeed, training scores converged to very similar values across
restarts (i.e., the return of εGreedy(ε = 0.07) with γe = 1); however, the resulting greedy policies
can still exhibit differences (e.g., SpaceInvaders, γ` = 0.9833 vs. γ` = 0.9857 rows).

These heatmaps reveal several insights. Training with smaller γ` usually results in better policies,
even when evaluated at maximum horizons, e.g., if we compare the first two rows to the last two
across all four games. This is particularly true in Seaquest, where the two smallest γ` values give
the best policies across a range of γe. The last row of Seaquest shows the most non-myopic policy
performs worst.

Most critically, the heatmaps are clearly not diagonally dominant. One might expect each column
to be single-peaked at the “correct” discount factor γ` = γe, which should exhibit the highest
(normalized) discounted return, with returns are monotonically non-decreasing when γ` < γe and
monotonically non-increasing when γ` > γe. But this does not occur in any domain. Qbert is perhaps
the closest to being diagonally dominant, where smaller (resp. larger) γ` tend to perform better for
smaller (resp. larger) γe.

In SpaceInvaders, a myopic policy π1 (trained with γ` = 0.9667) is generally better, than a more
non-myopic policy π2 (e.g. γ` = 0.9889). Policy π1 consistently achieves the best average evaluation
score for for a variety of γe. about 29.7% better than π2 for γe = 1. Figs. 11 and 12 show additional
heatmaps demonstrating a different view of relative performance. Our results show that the “opposite”
counter-example (Sec. 3.2) can also arise in practice. See Fig. 11, Qbert heatmap—in particular
policy trained with γ` = 0.975 generally performs better than policy trained with γ` = 0.99. Prior
work has only uncovered outperformance of myopically trained policies (though not with Q-learning),
while we show that the opposite can also occur.

Figs. 11 and 12 have been normalized across each column so that average discounted sum of rewards
in each column are in the unit interval. This allows for easier comparison across the different policies
learned from varying γ`. Note that this also exacerbates potentially small differences in the values
(e.g. when original values in columns lie in a small range).

5We use εGreedy with ε = 0.005 to prevent in-game loops.
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In Seaquest, one can clearly see the relative outperformance of models trained with γ` = 0.95, 0.9667
over more non-myopic models (e.g. last three rows). For Qbert, the best policy for γe < 0.995 is
the policy trained with γ` = 0.975 while the best policy for γe = 1 is trained with γ` = 0.9857. For
Pong, at first place, the performance of model trained with γ` = 0.95 gradually becomes worse. But
this in fact is due to scaling by ever larger discount factors—if the undiscounted scores are negative
then larger discount scaling only decreases its performance.
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Figure 9: Each entry sij of left (red) heatmap shows the normalized scores for evaluating
εGreedy(Qθ̂γ` , ε = 0.005) (row i) using γe (column j). The normalization is across each col-
umn: sij ← (1 − γe)sij . The right heatmaps (blue) show avg. unnormalized undiscounted total
returns. Results averaged over 5 training restarts.
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Figure 10: Similar to Fig. 9 with heatmaps for SpaceInvaders and Seaquest.
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Figure 11: Each entry sij of a heatmap shows the scores normalized to the unit interval for evaluating
εGreedy(Qθ̂γ` , ε = 0.005) (row i) using γe (column j). The normalization is across each column:
sij ← (sij −mink skj)/(maxk skj −mink skj). Results averaged over 5 training restarts.
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Figure 12: Similar to Fig. 11 with heatmaps for SpaceInvaders and Seaquest.
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