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Abstract

Existing algorithms for discrete partially observable Markov decision
processes can at best solve problems of a few thousand states due to
two important sources of intractability: the curse of dimensionality and
the policy space complexity. This paper describes a new algorithm
(VDCBPI) that mitigates both sources of intractability by combining the
Value Directed Compression (VDC) technique [13] with Bounded Pol-
icy Iteration (BPI) [14]. The scalability of VDCBPI is demonstrated on
synthetic network management problems with up to 33 million states.

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a natural and expres-
sive framework for decision making, but their use in practice has been limited by the lack
of scalable solution algorithms. Two important sources of intractability plague discrete
model-based POMDPs: high dimensionality of belief space, and the complexity of policy
or value function (VF) space. Classic solution algorithms [4, 10, 7], for example, compute
value functions represented by exponentially many value vectors, each of exponential size.
As a result, they can only solve POMDPs with on the order of 100 states. Consequently,
much research has been devoted to mitigating these two sources of intractability.

The complexity of policy/VF space has been addressed by observing that there are often
very good policies whose value functions are representable by a small number of vectors.
Various algorithms such as approximate vector pruning [9], point-based value iteration
(PBVI) [12, 16], bounded policy iteration (BPI) [14], gradient ascent (GA) [11, 1] and
stochastic local search (SLS) [3] exploit this fact to produce (often near-optimal) policies
of low complexity (i.e., few vectors) allowing larger POMDPs to be solved. Still these
scale to problems of only roughly 1000 states, since each value vector may still have ex-
ponential dimensionality. Conversely, it has been observed that belief states often carry
more information than necessary. Hence, one can often reduce vector dimensionality by
using compact representations such as decision trees (DTs) [2], algebraic decision dia-
grams (ADDs) [8, 9], or linear combinations of small basis functions (LCBFs) [6], or by
indirectly compressing the belief space into a small subspace by a value-directed compres-
sion (VDC) [14] or exponential PCA [15]. Once compressed, classic solution methods can
be used. However, since none of these approaches address the exponential complexity of



policy/VF space, they can only solve slightly larger POMDPs (up to 8250 states [15]).

Scalable POMDP algorithms can only be realized when both sources of intractability are
tackled simultaneously. While Hansen and Feng [9] implemented such an algorithm by
combining approximate state abstraction with approximate vector pruning, they didn’t
demonstrate the scalability of the approach on large problems. In this paper, we describe
how to combine value directed compression (VDC) with bounded policy iteration (BPI)
and demonstrate the scalability of the resulting algorithm (VDCBPI) on synthetic network
management problems of up to 33 million states. Among the techniques that deal with the
curse of dimensionality, VDC offers the advantage that the compressed POMDP can be di-
rectly fed into existing POMDP algorithms with no (or only slight) adjustments. This is not
the case for exponential-PCA, nor compact representations (DTs, ADDs, LCBFs). Among
algorithms that mitigate policy space complexity, BPI distinguishes itself by its ability to
avoid local optima (cf. GA), its efficiency (cf. SLS) and the fact that belief state monitoring
is not required (cf. PBVI, approximate vector pruning). Beyond the combination of VDC
with BPI, we offer two other contributions. We propose a new simple heuristic to compute
good lossy value directed compressions. We also augment BPI with the ability to bias its
policy search to reachable belief states. As a result, BPI can often find a much smaller
policy of similar quality for a given initial belief state.

2 POMDP Background

A POMDP is defined by: statesS; actionsA; observationsZ; transition functionT , where
T (s, a, s′) denotesPr(s′|s, a); observation functionZ, whereZ(s, z) is the probability
Pr(z|s, a) of observationz in states after executinga; and reward functionR, where
R(s, a) is the immediate reward associated withs when executinga. We assume discrete
state, action and observation sets and focus on discounted, infinite horizon POMDPs with
discount factor0 ≤ γ < 1.

Policies and value functions for POMDPs are typically defined overbelief spaceB, where
a belief stateb is a distribution overS capturing an agent’s knowledge about the current
state of the world. Belief stateb can be updated in response to a specific action-observation
pair〈a, z〉 using Bayes rule. We denote the (unnormalized) belief update mapping byT a,z,
whereT a,z

ij = Pr(sj |a, si) Pr(z|sj). A factored POMDP, with exponentially many states,
thus gives rise to a belief space of exponential dimensionality.

Policies represented by finite state controllers (FSCs) are defined by a (possibly cyclic) di-
rected graphπ = 〈N , E〉, where nodesn ∈ N correspond to stochastic action choices and
edgese ∈ E to stochastic transitions. An FSC can be viewed as a policyπ = 〈α, β〉, where
action strategyα associates each noden with a distribution over actionsα(n) = Pr(a|n),
andobservation strategyβ associates each noden and observationz with a distribution
over successor nodesβ(n, z) = Pr(n′|n, z) (corresponding to the edge fromn labeled
with z). The value functionV π of FSCπ is given by:

V π(n, s) =
∑

a

Pr(a|n)R(s, a) + γ
∑

z

Pr(s′|s, a)Pr(z|s′, a)
∑

n′
Pr(n′|n, z)V π(n′, s′) (1)

The valueV (n, b) of each noden is thus linear w.r.t the belief state; hence the value
function of the controller is piecewise-linear and convex. The optimal value functionV ∗
often has a large (if not infinite) number of vectors, each corresponding to a different node.
The optimal value functionV ∗ satisfies Bellman’s equation:

V ∗(b) = max
a

R(b, a) + γ
∑

z

Pr(z|b, a)V (ba
z) (2)



max ε
s.t. V (n, s) + ε ≤∑

a
[Pr(a|n)R(s, a) + γ

∑
s′,z Pr(s′|s, a)Pr(z|s′, a)Pr(a, n′|n, z)V (n′, s′)], ∀s∑

a
Pr(a|n) = 1;

∑
n′ Pr(a, n′|n, z) = Pr(a|n), ∀a

Pr(a|n) ≥ 0, ∀a; Pr(a, n′|n, z) ≥ 0, ∀a, z

Table 1: LP to uniformly improve the value function of a node.

max
∑

s,n
o(s, n)εs,n

s.t. V (n, s) + εs,n ≤∑
a
[Pr(a|n)R(s, a) + γ

∑
s′,z Pr(s′|s, a)Pr(z|s′, a)Pr(a, n′|n, z)V (n′, s′)], ∀s∑

a
Pr(a|n) = 1;

∑
n′ Pr(a, n′|n, z) = Pr(a|n), ∀a

Pr(a|n) ≥ 0, ∀a; Pr(a, n′|n, z) ≥ 0, ∀a, z

Table 2: LP to improve the value function of a node in a non-uniform way according to the
steady state occupancyo(s, n).

3 Bounded Policy Iteration

We briefly review the bounded policy iteration (BPI) algorithm (see [14] for details) and
describe a simple extension to bias its search toward reachable belief states. BPI incre-
mentally constructs an FSC by alternating policy improvement and policy evaluation. Un-
like policy iteration [7], this is done by slowly increasing the number of nodes (and value
vectors). The policy improvement step greedily improves each noden by optimizing its
action and observation strategies by solving the linear program (LP) in Table 1. This LP
uniformly maximizes the improvementε in the value function by optimizingn’s distribu-
tionsPr(a, n′|n, z). The policy evaluation step computes the value function of the current
controller by solving Eq. 1. The algorithm monotonically improves the policy until con-
vergence to a local optimum, at which point new nodes are introduced to escape the local
optimum. BPI is guaranteed to converge to a policy that is optimal at the “tangent” belief
states while slowly growing the size of the controller [14].

In practice, we often wish to find a policy suitable for a given initial belief state. Since
only a small subset of belief space is often reachable, it is generally possible to construct
much smaller policies tailored to the reachable region. We now describe a simple way to
bias BPI’s efforts toward the reachable region. Recall that the LP in Table 1 optimizes the
parameters of a node to uniformly improve its value at all belief states. We propose a new
LP (Table 2) that weighs the improvement by the (unnormalized) discounted occupancy
distribution induced by the current policy. This accounts for belief states reachable for the
node by aggregating them together. The (unnormalized) discounted occupancy distribution
is given by:

o(s′, n′) = b0(s
′, n′) + γ

∑

s,a,z,n

o(s, n) Pr(a|n) Pr(z|a, s) Pr(n′|n, z) ∀s′, n′

The LP in Table 2 is obtained by introducing variablesεs,n for eachs, replacing the ob-
jectiveε by

∑
s,n o(s, n)εs,n and replacingε in each constraint by the correspondingεs,n.

When using the modified LP, BPI naturally tries to improve the policy at the reachable be-
lief states before the others. Since the modification ensures that the value function doesn’t
decrease at any belief state, focusing the efforts on reachable belief states won’t decrease
policy value at other belief states. Furthermore, though the policy is initially biased toward
reachable states, BPI will eventually improve the policy for all belief states.
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Figure 1: Functional flow of a POMDP (dotted arrows) and a compressed POMDP (solid
arrows).

4 Value-Directed Compression

We briefly review the sufficient conditions for a lossless compression of POMDPs [13] and
describe a simple new algorithm to obtain good lossy compressions. Belief states constitute
a sufficient statistic summarizing all information available to the decision maker (i.e., past
actions and observations). However, as long as enough information is available to evaluate
the value of each policy, one can still choose the best policy. Since belief states often
contain information irrelevant to the estimation of future rewards, one can often compress
belief states into some lower-dimensional representation. Letf be acompression function
that maps each belief stateb into some lower dimensional compressed belief stateb̃ (see
Figure 1). Herẽb can be viewed as abottleneckthat filters the information contained in
b before it is used to estimate future rewards. We desire a compressionf such that̃b
corresponds to the smallest statistic sufficient for accurately predicting the current reward
r as well as the next compressed belief stateb̃′ (since it captures all the information inb′
necessary to accurately predict subsequent rewards). Such a compressionf exists if we can
also find compressed transition dynamicsT̃ a,z and a compressed reward functionR̃ such
that:

R = R̃ ◦ f and f ◦ T a,z = T̃ a,z ◦ f ∀a ∈ A, z ∈ Z (3)

Given anf , R̃ andT̃ a,z satisfying Eq. 3, we can evaluate any policyπ using the compressed
POMDP dynamics to obtaiñV π. SinceV π = Ṽ π◦f , the compressed POMDP is equivalent
to the original.

When restrictingf to be linear (represented by matrixF ), we can rewrite Eq. 3

R = FR̃ and T a,zF = FT̃ a,z ∀a ∈ A, z ∈ Z (4)

That is, the column space ofF spansR and is invariant w.r.t. eachT a,z. Hence, the
columns of the best linear lossless compression mappingF form a basis for the smallest
invariant subspace (w.r.t. eachT a,z) that spansR, i.e., theKrylov subspace. We can find the
columns ofF by Krylov iteration: multiplying R by eachT a,z until the newly generated
vectors are linear combinations of previous ones.1 The dimensionality of the compressed
space is equal to the number of columns ofF , which is necessarily smaller than or equal
to the dimensionality of the original belief space. OnceF is found, we can computẽR and
eachT̃ a,z by solving the system in Eq. 4.

Since linear lossless compressions are not always possible, we can extend the technique of
[13] to find good lossy compressions with early stopping of the Krylov iteration. We retain
only the vectors that are “far” from being linear combinations of prior vectors. For instance,
if v is a linear combination ofv1, v2, . . . , vn, then there are coefficientsc1, c2, . . . , cn s.t.
the error||v−∑

i civi||2 is zero. Given a thresholdε or some upper boundk on the desired
number of columns inF , we run Krylov iteration, retaining only the vectors with an error
greater thanε, or thek vectors with largest error. WhenF is computed by approximate

1For numerical stability, one must orthogonalize each vector before multiplying byT a,z.



Krylov iteration, we cannot computẽR andT̃ a,z by solving the linear system in Eq. 4—
due to the lossy nature of the compression, the system is overconstrained. But we can find
suitableR̃ andT̃ a,z by computing a least square approximation, solving:

F>R = F>FR̃ and F>T a,zF = F>FT̃ a,z ∀a ∈ A, z ∈ Z
While compression is required when the dimensionality of belief space is too large, unfortu-
nately, the columns ofF have the same dimensionality. Factored POMDPs of exponential
dimension can, however, admit practical Krylov iteration if carried out using a compact
representation (e.g., DTs or ADDs) to efficiently computeF , R̃ and each̃T a,z.

5 Bounded Policy Iteration with Value-Directed Compression

In principle, any POMDP algorithm can be used to solve the compressed POMDPs pro-
duced by VDC. If the compression is lossless and the POMDP algorithm exact, the com-
puted policy will be optimal for the original POMDP. In practice, POMDP algorithms are
usually approximate and lossless compressions are not always possible, so care must be
taken to ensure numerical stability and a policy of high quality for the original POMDP.
We now discuss some of the integration issues that arise when combining VDC with BPI.

SinceV = FṼ , maximizing the compressed value vectorṼ of some noden automatically
maximizes the valueV of n w.r.t. the original POMDP whenF is nonnegative; hence it is
essential thatF be nonnegative. Otherwise, the optimal policy of the compressed POMDP
may not be optimal for the original POMDP. Fortunately, whenR is nonnegative thenF
is guaranteed to be nonnegative by the nature of Krylov iteration. If some rewards are
negative, we can add a sufficiently large constant toR to make it nonnegative without
changing the decision problem.

Since most algorithms, including BPI, compute approximately optimal policies it is also
critical to normalize the columns ofF . SupposeF has two columnsf1 andf2 with L1-
lengths 1 and 100, respectively. SinceV = FṼ = ṽ1f1 + ṽ2f2, changes iñv2 have a
much greater impact onV than changes iñv1. Such a difference in sensitivity may bias the
search for a good policy to an undesirable region of the belief space, or may even cause
the algorithm to return a policy that is far from optimal for the original POMDP despite the
fact that it isε-optimal for the compressed POMDP.

We note that it is “safer” to evaluate policies iteratively by successive approximation rather
than solving the system in Eq. 1. By definition, the transition matricesT a,z have eigen-
values with magnitude≤ 1. In contrast, lossy compressed transition matricesT̃ a,z are not
guaranteed to have this property. Hence, solving the system in Eq. 1 may not correspond
to policy evaluation. It is thus safer to evaluate policies by successive approximation for
lossy compressions.

Finally several algorithms including BPI compute witness belief states to verify the domi-
nance of a value vector. Since the compressed belief spaceB̃ is different from the original
belief spaceB, this must be approached with care.B is a simplex corresponding to the
convex hull of the state points. In contrast, since each row vector ofF is the compressed
version of some state point,̃B corresponds to the convex hull of the row vectors ofF .
WhenF is non-negative, it is often possible to ignore this difference. For instance, when
verifying the dominance of a value vector, if there is a compressed witnessb̃, there is al-
ways an uncompressed witnessb, but not vice-versa. This means that we can properly
identify all dominating value vectors, but we may erroneously classify a dominated vector
as dominating. In practice, this doesn’t impact the correctness of algorithms such as policy
iteration, bounded policy iteration, incremental pruning, witness algorithm, etc. but it will
slow them down since they won’t be able to prune as many value vectors as possible.
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Figure 2: Experimental results forcycle and3legs network configurations of 16, 19,
22 and 25 machines. The bottom right graph shows the running time of BPI on compressed
versions of acycle network of 25 machines.

3legs cycle
16 19 22 25 16 19 22 25

VDCBPI 120.9 137.0 151.0 164.8 103.9 121.3 134.3 151.4
heuristic 100.6 118.3 138.3 152.3 102.5 117.9 130.2 152.3
doNothing 98.4 112.9 133.5 147.1 91.6 105.4 122.0 140.1

Table 3: Comparison of the best policies achieved by VDCBPI to thedoNothing and
heuristic policies.



The above tips work well when VDC is integrated with BPI. We believe they are sufficient
to ensure proper integration of VDC with other POMDP algorithms, though we haven’t
verified this empirically.

6 Experiments

We report on experiments with VDCBPI on some synthetic network management problems
similar to those introduced in [5]. A system administrator (SA) maintains a network of
machines. Each machine has a 0.1 probability of failing at any stage; but this increases to
0.333 when a neighboring machine is down. The SA receives a reward of 1 per working
machine and 2 per working server. At each stage, she can either reboot a machine, ping a
machine or do nothing. She only observes the status of a machine (with 0.95 accuracy) if
she reboots or pings it. Costs are 2.5 (rebooting), 0.1 (pinging), and 0 (doing nothing). An
n-machine network induces to a POMDP with2n states,2n+1 actions and 2 observations.

We experimented with networks of 16, 19, 22 and 25 machines organized in two configura-
tions:cycle (a ring) and3legs (a tree of 3 branches joined at the root). Figure 2 shows
the average expected reward earned by policies computed by BPI after the POMDP has
been compressed by VDC. Results are averaged over 500 runs of 60 steps, starting with a
belief state where all machines are working.2 As expected, decision quality increases as we
increase the number of nodes used in BPI and basis functions used in VDC. Also interesting
are some of the jumps in the reward surface of some graphs, suggesting phase transitions
w.r.t. the dimensionality of the compression. The bottom right graph in Fig. 2 shows the
time taken by BPI on acycle network of 25 machines (other problems exhibit similar
behavior). VDC takes from 4902s. to 12408s. (depending on size and configuration) to
compress POMDPs to 250 dimensions.3

In Table 3 we compare the value of the best policy with less than 120 nodes found by
VDCBPI to two other simple policies. ThedoNothing policy lets the network evolve
without any rebooting or pinging. Theheuristic policy estimates at each stage the
probability of failure4 of each machine and reboots the machine most likely to be down
if its failure probability is greater than thresholdp1 or pings it if greater than threshold
p2. Settings ofp1 = 0.8 andp2 = 0.15 were used.5 This heuristic policy performs very
well and therefore offers a strong competitor to VDCBPI. But it is possible to do better
than the heuristic policy by optimizing the choice of the machine that the SA may reboot
or ping. Since a machine is more likely to fail when neighboring machines are down, it
is sometimes better to choose (for reboot) a machine surrounded by working machines.
However, since the SA doesn’t exactly know which machines are up or down due to partial
observability, such a tradeoff is difficult to evaluate and sometimes not worthwhile. With a
sufficient number of nodes and basis functions, VDCBPI outperforms the heuristic policy
on the3legs networks and matches it on thecycle networks. This is quite remarkable
given the fact that belief states were compressed to 250 dimensions or less compared to the
original dimensionality ranging from 65,536 to 33,554,432.

7 Conclusion

We have described a new POMDP algorithm that mitigates both high belief space di-
mensionality and policy/VF complexity. By integrating value-directed compression with

2The ruggedness of the graphs is mainly due to the variance in the reward samples.
3Reported running times are the cputime measured on 3GHz linux machines.
4Due to the large state space, approximate monitoring was performed by factoring the joint.
5These values were determined through enumeration of all threshold combinations in increments

of 0.05, choosing the best for 25-machine problems.



bounded policy iteration, we can solve synthetic network management POMDPs of 33 mil-
lion states (3 orders of magnitude larger than previously solved discrete POMDPs). Note
that the scalability of VDCBPI is problem dependent, however we hope that new, scal-
able, approximate POMDP algorithms such as VDCBPI will allow POMDPs to be used to
model real-world problems, with the expectation that they can be solved effectively. We
also described several improvements to the existing VDC and BPI algorithms.

Although VDC offers the advantage that any existing solution algorithm can be used to
solve compressed POMDPs, it would be interesting to combine BPI or PBVI with a fac-
tored representation such as DTs or ADDs, allowing one to directly solve large scale
POMDPs without recourse to an initial compression. Beyond policy space complexity
and high dimensional belief spaces, further research will be necessary to deal with expo-
nentially large action and observation spaces.
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