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Abstract

This paper initiates the study of SAT instances of bounded diameter. The diameter of an
ordered CNF formula is defined as the maximum difference between the index of the first and
the last occurrence of a variable. We study the complexity of the satisfiability, the counting
and the maximization problems for formulas of bounded diameter. We investigate the relation
between the diameter of a formula, and the tree-width and the path-width of its corresponding
incidence graph, and show that under highly parallel and efficient transformations, diameter
and path-width are equal up to a constant factor.

Our main technical contribution is that the computational complexity of SAT, MAX-SAT,
#SAT grows smoothly with the diameter (as a function of the number of variables). Our main
focus is in providing space efficient and highly parallel algorithms, while the running time of
our algorithms matches previously known results. Among others, we show NL-completeness of
SAT and NC? algorithms for MAX-SAT, #SAT when diameter is O(logn). Given the tree
decomposition of a formula, we further improve on the space efficiency to decide SAT as asked
by Alekhnovich and Razborov [1].

1 Introduction

SAT, MaX-SAT and #SAT are among the most fundamental and well-studied problems in the-
oretical computer science, all intractable in the most general case: SAT is NP-complete [14],
MAX-SAT is NP-hard to approximate within some constant [5], while #SAT is hard for #P [39].
The intractability of SAT, MAX-SAT and #SAT soon led to the study of restricted versions.
Many of them are based on hidden structures of formulas and in particular on the so-called width
restrictions. In this direction, we introduce the diameter of a formula, a natural structural re-
striction which unlike width restrictions, it is defined directly on k-CNF formulas. For a CNF
formula ordered as a sequence of clauses and for every variable consider the distance between the
clause-indices where this variable appears. The maximum such distance is the diameter of the
ordered formula. In this work, we consider SAT, MAX-SAT and #SAT and parameterize them
with respect to diameter.



Parameterizing SAT instances using width parameters follows the more general study of NP-
hard graph problems. Lipton and Tarjan initiated this study [25] solving some NP-hard problems
much more efficiently than brute-force algorithms do. Along these lines, Robertson and Seymour
[31, 32] introduced tree-width, which received more attention than other width parameters. The
value of tree-width (as all width parameters) is witnessed by decomposing the vertex set of a graph.
In general it is NP-hard to compute such an optimal tree decomposition. However, the concept of
tree-width has been widely used to parameterize the complexity of many NP-hard problems, see
e.g. [7, 8,4, 10] or [9, 23] for two surveys.

The diameter of an ordered formula formalizes the following idea: if we know that the distance
between the first and last occurrence of any variable is bounded, we may be able to understand
better the complexity of such restricted SAT-instances. We extend the definition to unordered
formulas to be the smallest diameter over all clause orderings. Technically, the diameter of an
unordered formula ¢ fully coincides with the bandwidth of an underlying graph of ¢. Minimizing
the bandwidth is a well-studied problem (for a survey see [12]) not considered in this work. From
this point on we focus on the diameter of ordered formulas, unless mentioned otherwise.

Let us consider some typical values of the diameter of an ordered k-CNF formula. At one
extreme it is easy to see that the subproblem of k-SAT instances of diameter n¢, ¢ > 0, is NP-
complete. On the other hand we show that the satisfiability of CNF formulas of logn diameter is
NL-complete. That is, formulas of diameter log n encode arbitrary NL computations. Hence, it is
intuitively clear that the diameter does not break the problem into independent subproblems. A
preliminary study for a similar problem was given in [20].

A CNF formula is associated with many underlying graphs, each associated with a number of
width parameters such as tree-width, path-width, clique-width, branch-width, cluster-width (for a
comparison see [26]). There are numerous works in the area, and our exposition below is far from
being complete.

Khanna and Motwani [24] considered MAX-SAT for formulas of constant tree-width, while [3]
exploits the same structural property for SAT. Deciding SAT has been proved fixed-parameter
tractable with respect to branch-width [1] by Alekhnovich and Razborov, and to tree-width by
Gottlob et al [22] on primal graphs. Using DPLL procedures, Bacchus, Dalmao and Pitassi, [6]
considered #SAT, while the same time-bound for #SAT was achieved by Samer and Szeider [34]
extending [22]. Fixed-parameter tractability of SAT and #SAT has also been considered in e.g.
[16, 18, 27, 35, 26]; see also [38] for a survey. In our paper we study tree-width and path-width on
the incidence graph of formulas.

Even for unordered formulas the value of the diameter is provably less informative than the
width parameters in the following sense. Path-width is always upper bounded by the diameter,
although the two values can be off by almost a linear factor (Lemma 3). Despite this, we prove
that by a highly efficient algorithm (Theorem 4), a formula of path-width d(n) can be viewed as a
formula of diameter O(d(n)). Hence we counter any undesirable properties of this parameter and
we only keep its simplicity.

Bounding the distance in which a variable appears in an ordered formula generates natural
theoretical questions. Generally speaking, in engineering applications one may wish to exploit the
concept of “locality of reference” of the constraints. On the practical side, one can think of a
situation where modeling a problem instance as a SAT instance, this is associated with a natural
bound on the diameter. Whenever this bound is sufficiently small we present efficient time and space
and highly parallel algorithms for SAT, MAX-SAT and #SAT. Additional practical motivation is



given by Alekhnovich and Razborov [1]. For formulas of branch-width w(n), they decide SAT in
time nCM20@™) and in space n@M 20w () and ask whether it is possible to reduce the space to
polynomial. A consequence of our study is an algorithm that works in time n@1)20w(n)logn) 4p(q
space n?().

Here is a summary of our main contributions.

1. We introduce the diameter (Definition 3), whose value is combinatorially off almost by linear
factor from the path-width of the incidence graph of a formula (Lemma 3). We provide a
highly parallel transformation that preserves the satisfiability of a formula and moreover it
algorithmically preserves the solutions of the maximization and counting problems (Section
3.2).

2. We show that for bounded diameter formulas, SAT, MAX-SAT and #SAT, have similar
space and time complexity by designing space bounded and parallel algorithms (Section 3).
In particular, when the diameter is O(logn), we show that the decision problem is complete
for NL, the maximization and counting problems have highly efficient parallel algorithms
(NC?) (Section 3.3).

3. The above results translate to algorithms for bounded tree-width through the path-width tree-
width well known bound. When the tree-width is O(logn) we improve on this translation
(and previous research) by providing a polynomial and highly parallel algorithms (AC?!).
When the tree-width is ¢(n), we build upon this algorithm and by invoking a sequence of
deep theorems of structural complexity we give parallel algorithms of circuit depth ¢(n)logn.
In particular, this significantly reduces the space resources as asked in [1].

2 Definitions and preliminary results

2.1 Notation and terminology

All logarithms are of base 2. All propositional formulas are in CNF. A k-CNF is a CNF where
each clause has at most k literals, for a constant & € N. We denote by ¢, a total ordering of
the clauses of the (unordered) formula ¢. We assume that in an input, an unordered (ordered)
formula ¢ (¢) is represented in the standard way as a sequence (respecting the order) of clauses.
We consistently use n to denote the number of variables in a formula. N is used to denote length
of given inputs. The diameter of an ordered formula is always expressed as a function of the
number of variables, and it is denoted by d(n). All circuit families are logspace or logtime uni-
form. DEPTH(f(N)) is the class of languages decidable by a family of circuits in depth f(N).
DSPACE(f(N)), NSPACE(f(N)), DTIME(f(N)) denote the class of problems decidable in
deterministic, non-deterministic space and deterministic time f(IN) respectively. For the function
analogs of complexity classes we extend the notation by a leading F; e.g. FDSPACE(log® N). NC!
and AC? are classes of languages decidable by polynomial size circuits of depth O(logi N) where the
gates are of bounded and unbounded fan-in respectively; NC and AC denote the respective count-
able unions. We denote by NL = NSPACE(log N). Our notation is standard, see e.g. [41, 17].
LOGCFL is the class of languages logspace reducible to Context Free Languages (see also Section
2). DET is the class of languages logspace reducible to the problem of computing the determinant
of an n X n integer matrix with n-bit long integer entries. #L is wrt NL the analog of #P wrt
NP; #L is introduced in [2]. When the input is a formula of n variables we abuse notation by



writing COMPCLASS(f(n)) instead of COMPCLASS(f(V)). Since N > n our containment results
are slightly better than what our notation suggests. We use the term “highly parallel algorithms”
to refer to circuits that are both of polynomial size and of small depth e.g. logarithmic or a square
of a logarithm.

2.2 Structural parameters of graphs

Definition 1. Let G = (V, E) be an undirected graph. A tree decomposition of G is a tuple (T, X),
where T' = (W, F) is a tree, and X = {X1,..., Xy} with X; C V such that:

L. ULTz‘l Xs =V
2. For all {i,j} € E, there exist t € W, such that both i,j € X;.
3. For all 1 € V, the subset {t:i € X;} of W forms a subtree of 7.

The quantity maxsew |X¢| — 1 is called the width of (7, X). The tree-width of G, denoted by
TW(G), is the minimum width over all tree decompositions of G. The path decomposition is
defined similarly; T" has to be a path and the tree-width is then called as path-width.

Determining the optimal tree (path) decomposition is NP-hard while the problem is approx-
imable within factor O(logn) (O(log?n)) [11]. Tree-width is closed under the operation of graph
minors and we may assume up to logspace transformations that in a tree decomposition (7', X') of
a graph G, the degree of T is at most 3. For a survey on tree-width we cite [9].

The diameter of a formula is related to the bandwidth of graphs.

Definition 2. For a graph G = (V,E), let f : V — {1,2,...,|V|} be an injective map. The
bandwidth of G, B(G) is defined as miny max;jcg | f(4) — f(j)|. In the minimum bandwidth problem,
we compute arg miny B(G).

The bandwidth problem is NP-complete [28] and remains intractable even if the input graph is
a tree of maximum degree 3 [21]. The problem is polylogarithmic approximable due to Feige [19].
More on bandwidth can be found in the survey [12].

For every graph G, a relation (see e.g. [30]) between tree-width, path-width and bandwidth is

TW(G) < PW(G) < B(G).

2.3 Structural parameters of formulas

Definition 3. Let V' be the set of variables of an ordered formula ¢,. For x € V, let f(x),l(z) be
the index of the clause that = appears for the first and last time respectively. D(¢,) is max,ey (I(z)—
f(z)). We also set A(¢)) = min, D(¢,), the diameter of 1.

We associate a k-CNF formula ¢ with two graphs. The clause-graph Cy of ¢ arises by represent-
ing each clause by a vertex, and introducing edges between vertices whose corresponding clauses
share common variables. The incidence graph G4 of ¢ is a bipartite graph. Gy has a vertex for
each clause and a vertex for each variable (ignoring polarities). A variable-vertex u, is connected
to clause-vertex u. whenever the variable x appears in the clause c¢. Note that Cy is a graph minor

of G¢.



For a formula ¢ , we further define tree-width 7W(¢), path-width PW(¢) and bandwidth B(¢)
of ¢ to be
TW(9) = TW(Gy), PW(§) = PW(Gy), B(¢) = B(Cy)

2.4 Relations between 7W(¢), PW(¢), B(¢) and A(¢)

Lemma 1. For any ordered k-CNF formula ¢, the following are true: (i) B(¢) = A(¢p), (ii)
PW(¢) < logn - TW(9), (iii) PW(¢) = O(D(¢r)).

Proof. (i) Follows directly from the definitions 2 and 3.

(ii) For every graph G, PW(G) < logn - TW(G), where n is the number of vertices of G.

(iii) Consider some k-CNF ordered formula ¢, on n variables with D(¢,) = d(n) and set
r = [m/(d(n) + 1)]. We decompose Gy to a path of width (k 4 1) - d(n). Define the path
P =wy,v0,...,v,. For every i, X;, that v; is associated with, consists of the following two types of
vertices: clause-vertices v, corresponding to clauses ¢;, for i = (i—1)-(d(n)+1)+1 toi-(d(n)+1);
variable-vertices v,, for all variables z that are involved in clauses with vertices already in X;.
We claim that P is valid path decomposition of G. Indeed, properties (1),(2) of definition 1 are
trivially satisfied. As for the third one, consider any variable x and the associated vertex u, of Gg.
By construction we only have to consider variable-vertices.

It remains to preclude the possibility that there exist indices 7 < s < j, such that u, is in both
Xi, X; and u, ¢ X,. But then, in ¢, x does not appear in any of the d(¢) + 1 clauses in Xj,
and therefore the D(¢,) > (j —i—1) - (d(n) + 1). Finally, since ¢ is k-CNF formula, for every 4,
|X;| <d(n)+k-d(n). O

The previous lemma does not preclude the possibility that A(¢), PW(¢) are related up to (say)
some constant factor.

On the contrary, it is easy to devise instances where the path-width and the (unordered formula)
diameter are off by linear factor. Such an example is the formula ¢ = (zoVz1)A(zoVa2)A. .. (zoVay,)
with D(¢) = n — 1. G, admits the following path decomposition (7, X): T =< vi,v2,...,v, >,
Xi = {ue;, Ugy, Uz, }-

Recall that 3-SAT remains NP-complete even when a variable appears at most 3 times in the
formula. That is, there is a large, hard set of formulas with a sparsity condition on the number
of occurrences of variables which in particular means that these formulas have large diameter,
path-width and tree-width, unless e.g. NP is contained in quasi-polynomial time. This raises the
question whether large diameter happens only when the instances are either non-sparse or when
considering computationally hard sets. The following example shows that this is not true in the
strongest possible form. This example suggests that all three parameters of a formula, i.e. tree-
width, path-width and diameter, can be off by as much as (almost) the upper bound of their relation
(PW(¢) < (logn) - TW(¢p) and TW(¢p) < n - A(¢)), in a formula which is trivially satisfiable. In
the following Lemma 3, we use a family of formulas with every variable appearing only in 3 clauses.
For this we use theorem 1, p.204 from [36].

Theorem 2 (Smithline '95). For the complete k-ary tree T of height h, B(T) = [k(k" —1)/(k —
1)(2h)]

Lemma 3. There exists a family formulas ¢ with n variables where each variable appears at most
three times, for which A(¢) = Q(n/logn), PW(¢) = ©(logn) and TW(¢) = 1.



Proof. We will determine a 3-CNF formula ¢ with positive literals, by defining its incidence graph
G4 = (V,E). We start with the rooted complete binary tree T' of height logn’, where log n' is even
(the root has level 0). Label all nodes of T in a arbitrary breadth-first-search manner starting from
the root. At an even level, associate vertex i with a new variable z;; at an odd level, associate
vertex j with a new clause ¢; (see Figure 1 for an example). Define clause ¢; to be the conjunction
of the parental-node x| ;2 and the two children-nodes j, 2j11. Set ¢ to be the conjunction of all
clauses and observe that "= G and n to be the number of variable-vertices in Gy; i.e. n = 0(n’).

G.

..'m.'l. l"t'l' L ;I't!i i’t L .’m'. i't. L m&‘ i’t L

Jlﬁ‘hl\ ;‘nﬁ.h'l\ Mﬁ‘h& ﬂ'hﬁ.mm. Mﬁ‘kﬂ\ J'Lbﬁ.h‘m J'i“;.ihﬁ J'n‘ﬁ.hu

Figure 1: An example of G, with height 8. Vertices corresponding to clauses have been highlighted
as thick nodes. The remaining nodes correspond to variable-vertices (e.g. the root and the leaves
of Gg). In Cyp, dashed edges connect clauses that appeared in G at the same level (i.e., edges that
connect clause-vertices sharing in G4 a common ancestor). The removal of these vertices yields two

complete trees of height 3

By definition 7W(T') = 1, and by Lemma 1, PW(T) < logn/. One can easily see that this
bound is tight for complete trees. It remains to argue about the bandwidth of the clause graph Cy.
It is not difficult to see that if we remove edges from Cy that connect clauses that appeared in T" at
the same level (i.e., edges that connect clause-vertices sharing in 7' a common ancestor), then the

resulting graph consists of two disconnected complete trees, with every vertex having 4 children,

and height at least L%j Theorem 2 then implies that B(Cy) = Q(n'/logn’). O

Despite Lemma 3, we capitalize on the fact that the notions of diameter and path-width are the
same up to some constant and up to a logspace transformation. It is also essential for Corollary 11
that Theorem 4 is constructive.

Theorem 4. For any k-CNF formula ¢, there exists an ordered k-CNF formula ¢, with A(¢') <
D(¢:') = O(PW(¢)) such that ¢ € SAT iff ¢’ € SAT. Moreover, given the path decomposition of
o, ¢x' can be computed in logarithmic space with respect to the size of ¢.

Proof. Consider the path decomposition X1, ..., X; of Cy with | X;| = d(n). We identify the vertices
in the block X; by the corresponding clauses and variables. We construct ¢, as the output of the
following iterative procedure.



For every block X; do the following: (copy-step) output all the clauses of X; in some order;
(intercalate-step) for every variable z involved in X;, output the renaming of z, x < z’; finally
replace all appearances of z in X;y1,... Xy by 2. We call every clause introduced in the intercalate-
step intercalary. ¢, is the conjunction of the of the clauses ordered as the output suggests. By
construction ¢ is satisfiable iff ¢, is satisfiable.

It is clear that the previous procedure can be implemented in logarithmic space: instead of
renaming all subsequent occurrences of x, just count its previous occurrences. In a reasonable
renaming, the indices of the variables do not exceed n +n + 2k -t - d(n).

Example 1. Consider the clauses
c1=T1VxaVx3,c0 =21 VTeVx5,c3=T2VZTgVIT1,c4=2T7VTgVT1,C5 =25V T8V X9

and the formula ¢ = ¢ Aca Az Acg Acs. A valid tree decomposition of Gy is (T, X), with
T =< vy,v9,v3,v4 > and

X1 = {UCI’U’C27 uwvumvuﬂﬁs’umau%}
Xy = {ucw Ucg, uwuuﬂfzauxuuxg;auxg}
X3 = {UCQ’ UC45 le ) ua:4a u:t5 ) ux7a uxg}
X4 = {UC4’ UC57 uxlaux5aux7’uxsau:c9}

Now suppose that we are given only the path decomposition (7', X) with width 7. A possible
execution of the algorithm of Theorem 4 constructs ¢, as follows

Initially set ¢, := @

(copy-step) ¢r' := ¢’ A(T1 V22V a3) A (21 VT4V 25)

(intercalate-step) ¢’ := ¢’ A (11 < 210) A (w2 < 211) A (23 < 212) A (24 < 213) A (T5 < 714)
(copy-step) ¢r' = ¢ A (z10 V T13 V 214) A (T11 V Te V 210)

(intercalate-step) ¢ := ¢’ A (210 < @15) A (w11 < T16) A (T13 < 217) A (714 < T18) A (T6 < T19)
(copy-step) ¢r' := ¢’ A (215 V T17 V 218) A (T7 V Tg V T15)

(intercalate-step) ¢, := ¢’ A (w15 < T20) A (w17 < T21) A (218 < T22) A (27 > @93) A (T8 < T94)
(copy-step) ¢r' = ' A (Taz V Taa V Tap) A (222 V 24 V T9)

(intercalate-step) ¢r' = ¢r' A (w20 < a5) A (w22 > Tag) A (T23 <> T7) A (T24 < T2g) A (T9 < Ta9)

Each intercalate-step follows the step of copying a set of clauses in some block. Note that in a
intercalate-step, we rename all variables involved in the previous block, either as part of clauses or
as variable-vertices. Moreover, each renaming of a variable affects also subsequent appearances. For
example, variable x1, renamed to x1¢ in the first intercalate-step, is treated as x19 in Xs, because
of which it is once again renamed. Finally, we emphasize that the the previous execution deviates
from the actual execution that requires bounded space resources. Our example only serves as a
intuitive clarification of the high level of the idea.

Now, we calculate the ordered diameter of ¢/.. We distinguish between variables introduced in
the copy-step and the intercalate-step. By the renamings, it is immediate that for any variable x
of a clause introduced at the copy-step, the maximum distance between occurrences of x is at most
(2k +1) -d(n).



For variables introduced in the intercalate-step we rely on the definition of path-width. Consider
such a variable = introduced between blocks X;, X;;1. Variable x is (i) either a renaming of a
former variable, or (ii) it is brand new variable that replaces y. Case (i) is easy to handle. For
case (ii), the clause ¢ of X where y appeared, either appears in X;;; or not. If it does not appear,
then by the definition of path-width, ¢ does not appear in any subsequent block. Finally, if ¢
appears in X;;1 then it will be renamed again when we consider the next block. In every case

D(pr') < (2k +1) -d(n). O
Motivated by the previous observations, we define

Definition 4 (Computational Problems). SAT(d(n)), MAX-SAT(d(n)) and #SAT(d(n)) are the
restrictions of SAT, MAX-SAT and #SAT respectively, where the instances ¢, are ordered formu-
las and obey D(¢,) < d(n). Moreover, we will restrict our study to k-CNF formulas.

2.5 NAuxPDAs, Non-Deterministic Divide and Conquer and LOGCFL

A non-deterministic auxiliary pushdown automaton (NAuxPDA) is a generalization of a space-
bounded Turing Machine (TM) extended by an unbounded stack. Cook [13] showed that every
NAuxPDA bounded to work in space s(n) and arbitrary time can be simulated by a computer
program (deterministic TM) in time 2°¢("), Sudborough [37] showed that LOGCFL (C AC!) is
characterized by NAuxPDAs that run simultaneously in logarithmic space and polynomial time,
i.e. one can express highly parallel algorithms as NAuxPDAs. Using NAuxPDAs one can simulate
a special form of non-deterministic recursion and from there even a special form of divide and
conquer. Non-deterministic Divide and Conquer (ND-DnC) [29] is a paradigm which simplifies the
presentation of algorithms, something that recently made possible to obtain complex polynomial
and subexponential algorithms whose translations into computer programs (DTM) are extremely
complicated and unnatural. The transformation of an NAuxPDA to a TM or to parallel algorithms
(e.g. circuits or PRAMS) is possible through strongly non-trivial translation theorems, see Section 4.
The resulting TM (or parallel algorithm) can be conceptually complicated, still the transformation
is explicit. For example, ND-DnC algorithms that have simple and elegant descriptions, can find
practical applications through their transformations. As an application, we demonstrate in Section
4 a simple example.

3 Solving SAT(d(n)), Max-SAT(d(n)), #SAT(d(n))

3.1 Algorithms and the main theorem

For d(n) > logn we show that the satisfiability problem can be decided within non-deterministic
space O(d(n)), whereas for the maximization and counting problems it suffices to use determin-
istic space O(d?(n)). Moreover, all three problems can be solved in (deterministic) time 20(d("),
The time-bounded and space-bounded algorithms (for maximization and counting) are obtained
independently. Under the current knowledge in computational complexity we do not know how
FDSPACE(d?(n)) compares to FDTIME(2°(™)). We deal with the case d(n) = O(logn) in
Section 3.3.

Theorem 5. SAT(d(n)) € NSPACE(d(n)), Max-SAT(d (n)),#SA (d(n)) € FDSPACE(d?(n)).
Also, MaX-SAT(d(n)), #SAT(d(n)) € FDTIME(2°1M)) d(n) = Q(logn).



3.1.1 The satisfiability problem SAT(d(n))
Solve-SAT (Algorithm 1) decides the problem in non-deterministic space O(d(n)).

Algorithm 1 Solve-SAT
The input is an ordered k-CNF formula ¢, which D(¢,) = d(n).

e Initially, consider a window (ordered subformula) W of length d(n) containing the first d(n)
clauses of ¢,. Guess values for all variables in W and if the guess does not satisfy W then
reject.

e Iteratively do the following.

e Slide the current position of the window W one clause to the right and free the space of the
variables of the first clause of W.

e Guess (and store in the freed space) truth values for the variables of the new clause in the
updated W. If the updated W is not satisfied or if the new values are inconsistent with those
stored in the memory then reject. Otherwise, if there are more clauses in ¢, to the right of
W then iterate; else accept.

This algorithm uses space O(d(n)). We can standardize the way the truth assignment is stored.
Reserve one bit for the variable of each occurrence of a literal in W repeating the value for variables
which appear more than once; i.e. in total we have k - d(n) space.

Correctness follows immediately. Suppose that ¢, is satisfiable, let 7 be a satisfying thruth
assignment, and then observe that we can construct a computational branch where the algorithm
guesses the values of 7. For the other direction, suppose that there is a computational branch which
accepts. For such a computational branch the following invariant is true for the main loop: at the
end of the i-th iteration the subformula from the first to the (i + d(n))-th clause is satisfied by the
chosen truth values (which are consistently chosen).

3.1.2 The maximization problem Max-SAT(d(n))

We reduce MAX-SAT(d(n)) in deterministic space O(d(n)) to the computation of the longest path
problem in DAGs (Directed Acyclic Graphs). This is a significant improvement over the natural
dynamic programming time-bounded algorithm.

We define DAG-LONGEST-PATH to be the optimization problem where given a DAG G = (V| E)
and w : E — N, the goal is to output the (edge-weighted) length of a longest dipath.

Proposition 6. DAG-LONGEST-PATH € FDEPTH (log? N). Furthermore, this family of circuits
has size polynomial in N.

Here is a brief justification. Power the adjacency matrix using repeated squaring. This way
we compute all walks of length N in depth O(log? N). Actually, something slightly stronger holds.
Since matrix powering is in DET [15] we have that the decision version of DAG-LONGEST-PATH
is in DET C NC2.

Solve-MaxSAT (Algorithm 2) makes use of a space-efficient routine. This is the space simula-
tion of the above longest path algorithm. It is well-known (see e.g. [41]) that DEPTH(s(N)) C
DSPACE(s(N)), s(N) > logy N. That is, DAG-LONGEST-PATH € FDSPACE(log®n), and fur-
thermore the proof of the inclusion gives us an explicit space-efficient algorithm.



Algorithm 2 Solve-MaxSAT

The input is an ordered k-CNF formula ¢, with D(¢,) = d(n). First we show how to reduce to
DAG-LONGEST-PATH in space d(n) and then we compose in the standard way two space efficient
algorithms.

e The graph consists of blocks of vertices. Each block is associated with a a window (ordered
subformula) W of length d(n) 4+ 1, where W starts from a distinct position (clause) in the
ordered ¢,. The i-th block is associated with the window which starts from the i-th clause of
¢=. Each of the vertices of each block is associated with a distinct, satisfying truth assignment
for this window. We also introduce a fresh starting vertex s and assume it is associated with
an empty subformula.

e There is an edge from a vertex v in block ¢ to every other vertex u in block j > ¢ whenever the
partial truth assignments of the two vertices are consistent (i.e. both extend to the same truth
assignment). The weight of the edge (v, ) is the number of clauses in the window associated
with u, satisfied by the partial truth assignment of u which are not (already) satisfied by the
partial truth assignment of v. Let us call the constructed graph as Hy_ (see Figure 2 for an
example).

e Simulate the O(log? N) space-bounded algorithm for input of length N, on the constructed
edge-weighted graph by composing the space bounded computations in the standard way.

Figure 2: Example of Hy_, given ¢r = c1 Aca Ac3 A ca, where ¢y = (21 V x2), c2 = (T2 V T3), c3 =
(ZT3Vx4), ca = (TsVae). The vertices of Hy are identified as partial assignments. Note that ¢ has
diameter 1, and each one of the blocks L1, Lo, L3 is a partial assignment on two clauses: L1, Lo, L3
are partial assignments for the variables (z1,z2,z3), (z2,23,24) and (x3, x4, x5, x6) respectively.
For example, node 0100 of L3 is the partial assignment x5 = 0, x4 = 1, z5 = 0,and x¢ = 0. For
simplicity, we omitted edges from vertex s to Ls. Moreover, edges from s to any block has weight
2, edges from L; to Lo and from Lo to Ls have weight 1, and edges from L to Ls have weight 2.

Solve-MaxSAT uses deterministic space O(log2(no(1)20(d("))) +d(n)) = O(d*(n)). The time-
bounded algorithm is obtained if instead simulating the space bounded algorithm we do dynamic
programming to solve DAG-LONGEST-PATH.

Correctness is transparent. Let us denote by R(u,v) the relation that the partial truth assign-
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ment of u is consistent with the partial truth assignment of v, and w is in a smaller-indexed block
than v. Then, we observe that R is transitive and moreover R is represented by the edges in Hy_.
Use R to argue for consistency of truth assignments as needed. Any longest path contains s. We
finish by an easy induction on the index of blocks for paths starting from s.

3.1.3 The counting problem #SAT(d(n))

The algorithm for #SAT(d(n)) proceeds by a logspace reduction (Reduce-#SAT) (Algorithm 3)
to the problem of counting paths in a DAG. This graph is layered and unlabeled.

Algorithm 3 Reduce-#SAT
The input is an ordered k-CNF formula ¢, with D(¢r) = d(n).

e We construct a layered directed graph. Each layer (block) is associated with a distinct
position of a window (ordered subformula) W of length d(n); the i-th layer is associated with
the window which starts from the i-th clause of ¢,. Each of the vertices of each layer is
associated with a distinct, satisfying truth assignment for this window. We denote by L; the
subset of vertices of the i-th layer.

e There is an edge from a vertex v in layer ¢ to every other vertex u in layer ¢ + 1 whenever the
partial truth assignments of the two vertices are consistent.

e Add two fresh designated vertices s,t. Add an edge from s to every vertex in Ly. Let Ly
be the last layer. Add an edge from each vertex v € Ly to t. Let us denote by Fy_ the
constructed graph.

Proposition 7. The number of s-t dipaths in Fy_ equals the number of satisfying truth assignments

of ¢r-

Proof. We define a mapping from the set of truth assignments of ¢, to the set of s-t paths in
Fy4_.Let T be a satisfying truth assignment for ¢,. By definition 7 satisfies all windows. For each of
the corresponding partial truth assignment there exists a vertex in the corresponding layer. Since
all of them extend to the same 7 they are in particular consistent and thus by construction there
is a directed path in Fj_ from a vertex in the first to a vertex in the last layer.

First we show that this mapping is a function. Suppose that there are two paths associated one
associated with 7 and the other with 7. Starting from s let us consider the first time that the two
paths split at vertex v at the i-th layer. The associated two distinct vertices in the (i + 1)-th layer
correspond to distinct truth assignments; i.e. 71 # 7o.

Now we show that the mapping is injective. Let 71, 75 be two satisfying truth assignments. Say
that the = is a variable where 71(x) # 7o(x) and say that = appears in the i-th window. Then,
by construction there are two distinct vertices in L; one associated with 71 and the other with 7.
That is, there are necessarily two distinct paths associated with each truth assignment.

To finish the proof we define the inverse of the above mapping. We leave the details to the
reader. Technically we first show that if we consider the relation ) consisting of all pairs (variable,
truth value) obtained from the associations of the vertices of the paths, then it is a function. To
that end we define a relation R on pairs of nodes of the graph as in Section 3.1.2. Then, we show
that this is a satisfying truth assignment. We conclude by showing that this mapping is an injective
function. O
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From this point on there are two ways to count the number of s-t paths. One is to reduce to an
arithmetic circuit by mapping vertices in Fy,_to + gates and then apply the results in [40]. The
other way is to deal with the problem directly. The later is even cleaner. The number of layers
including s and ¢ is 2+ h, where h = m — d(n). We conclude the proof of the following by repeated
squaring in the semiring N with operations +, -.

Proposition 8. Let A € NIVUer)XIV(Fsr)l be the adjacency matriz of Fy_ . The number of s-t
paths in Fy _ equals the single non-zero entry of AYE . Moreover this can be computed by a polysize
circuit of depth O(log? N).

3.2 Strong, constructive extensions of the equivalence of Theorem 4

The equivalence of Theorem 4 extends to the maximization and counting problems. For #SAT
we observe that in the reduction of Theorem 4, ¢ and ¢’ have the same number of satisfying
assignments. For MAX-SAT the connection is less straightforward. We modify Theorem 4 and the
graph Hy_ in Solve-MaxSAT. We modify the proof of Theorem 4 in two ways. Let us identify all
renamings of the initially (as given in the path-width decomposition) same clause as equivalent. The
first modification in the proof of Theorem 4 is that the “copy-step” outputs only one representative
among the equivalent ones; i.e. each (up to equivalence) clause is copied only once. Furthermore,
we use “dummy” clauses (e.g. zV —z) in order to mark the beginning and the end of the copy-step
in ¢'. Finally, we modify Solve-MaxSAT in the way it constructs H, ¢+ Now, the windows are of
variable length each determined by the marks introduced by the dummy clauses. From, Hy / we
exclude the intercalary windows, but we use the intercalary clauses when constructing the graph
identifying variables by their equivalence class of renamings.

3.3 Diameter O(logn): Parallel algorithms & low complexity classes

When the diameter is O(logn) the corresponding problems are deeply buried inside P. Recall that
the same holds for formulas of path-width O(logn).

Lemma 9. SAT(logn) is NL-complete under many-to-one logspace reductions.

Proof. Containment in NL follows by Theorem 5. We are not going to give the details of the proof
since hardness follows the lines of the standard Cook-Levin reduction (e.g. [17]). We only point-out
the differences and modifications with the NP-completeness of SAT. Let us briefly recall the main
parts of the NP-completeness proof.

e We fix an arbitrary language L € NP and a non-deterministic machine M that decides L.
M has only one (read-write) tape and it is standarized to run in time n* for some constant
k € N and to halt with empty tape.

e The reduction deals with the encoding into a CNF formula the verification of a valid, ac-
cepting computation of M on a given input w € {0,1}". A satisfying truth assignment
corresponds to an accepting computation and a falsifying assignments correspond to reject-
ing or invelid computations. Recall that a computation is a sequence of succesively valid
configurations, where a configuration is determined by the memory context, the position of
the head and the state of the machine. The main technical part of the proof relies on the
fact that given two configurations, if the machine-head is at cell ¢ in one configuration then
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in the next configuration things can only differ in a small neighborhood of three memory
cells. Hence, we associate each of the n* bits of each of the n* configurations with a distinct
propositional variable and express the constraints for a valid computation. There are also
some details one has to take care of before writing the formula checking valid computations
(for a detailed and careful exposition see [17]).

For the NL-hardness we also fix an arbitrary language in NL and a logspace bounded non-
deterministic TM that decides it. Now, the machine has an extra read-only tape therefore the
configuration is determined by the input, the head on the input, the working tape, the head on the
working tape and the state of the machine. The technical modification of the NP-completeness
proof involves considering: (i) partial configurations and (ii) systematic rewritings to avoid blow-up
in the diameter of the formula. The partial configuration is determined by the working tape, the
head of the working tape and the machine’s state. Note that this partial configuration corresponds
to a configuration of the machine in the NP-completeness proof. Fox an input x consider the
computation of the NL-machine as a sequence of configurations and then project it to the sequence
of partial configurations. Intuitively our reduction works by enforcing validity of extensions of
partial computations to computations. Fix an input = and consider the computation that takes n*
steps. The two head indices, and the working tape are of size O(logn). We associate each of the
bits of the partial configuration of each partial configuration with a distinct propositional variable.
We also have a sequence of the values of the index to the read-only input tape and furthermore
we associate each bit in each configuration of this index with a propositional variable. To avoid
the formula diameter blow-up we work with partial configurations and particular values of the
index to the input tape. Let us say that we are in the procedure of writing what it means for the
computation to go from the i-th to the (i + 1)-th step. We proceed as follows: We first write the
subformula which semantically states that “if the value of the head to the input tape in the i-th
step is 1, then check the corresponding bit in the read-ony tape the machine transitions and the
states and update accordingly for the (i + 1)th step the bits of the partial configuration and the
value of the input-head index”. The number of states, and the size of the alphabet is constant and
since two partial configuration are of size O(logn) we have that this subformula is of size O(logn).
Now we rewrite (i.e. give new names using equivalences) all variables involved in this step of the
reduction and repeat the same procedure when the input-head index has value 2 and so on until
the input-head index is n. Following the technical part of the NP-completeness of SAT and with
these rewritings we construct a formula of diameter O(logn) which is satisfiable iff M (x) accepts.
Note that by padding with dummy clauses we can make the diameter logn. O

As a corollary of Theorem 5 and its proof (in particular propositions 6 and 8) we obtain as a
corollary that MAX-SAT(logn), #SAT(logn) are in the function analog of NC2. In fact we can
do slightly better as the following lemma suggests.

Lemma 10. The decision version of MAX-SAT (logn) € DET C NC? and #SAT(logn) € #L
which is contained in the function analog of DET C NC?2.

The containment of MAX-SAT(logn) follows from the algorithm (reduction) in the proof of
Theorem 5 and by the fact that the decision version of DAG-LONGEST-PATH is in DET. The con-
tainment of #SAT (logn) follows by observing that the non-deterministic branches of the window
algorithm for SAT(d(n)) correspond to distinct truth assignments.
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Let us turn our attention to the satisfiability, maximization and counting problems when the
path-width is O(logn). Using results presented in this section and in Section 3.2 we have the
following corollary for formulas of log n-bounded path-width.

Corollary 11 (Bounded path-width). Consider k-CNF instances of path-width O(logn) where
the path-width decomposition is given in the input. For these instances the satisfiability problem is
complete for NL, and the mazimization and counting problems are in the function analog of NC2.

4 Improved results for formulas of bounded tree-width

Since tree-width is at worst logn smaller than path-width, the statements of Section 3 hold for
tree-width when the value of the parameter is off by log n factor. Here, we improve on this corollary
when it comes to SAT. In particular, we obtain an AC! algorithm for logn tree-width and by
applying strongly non-trivial results from complexity theory, we provide simultaneous space and
time efficiency as asked in [1].

4.1 Dealing directly with tree-width for SAT

Given a tree decomposition of formula of tree-width ¢(n) we design an algorithm that in particular,
when ¢(n) = O(logn) shows SAT € LOGCFL. This algorithm is one of the simplest applications
of the Non-Deterministic Divide and Conquer paradigm [29]. For notational succinctness, in this
section only, n corresponds to the total number of variables and clauses in a formula.

Algorithm 4 Solve-Treewidth-SAT

The input is a CNF formula ¢ and a tree decomposition (7, X) of width ¢(n). Initially we make a
call to Recurse-Treewidth-SAT[r], where r is an arbitrary root of T'. If the call returns then accept.

Recurse-Treewidth-SAT [root node ]

e Guess a truth assignment 7 for the clauses and the variables corresponding to v. If 7 does
not satisfy the clauses associated with v then reject.

e If v is a leaf then return 7. Else, let u,w be the children of v (wlog v has two children -
Section 2.2).

e Call Recurse-Treewidth-SAT [u] which returns 7, and then call Recurse-Treewidth-SAT [w] which
returns 7.

e If 7 is not consistent with 7, and 7, then reject. Else, return 7.

Solve-Treewidth-SAT can be implemented on an NAuxPDA within #(n) NAuxPDA-working
memory and n®1) NAuxPDA-time. When the tree-width is #(n) then there are at most t(n)
clauses and variables whose truth values are checked at each level of the recursion. Moreover, the
algorithm visits each node twice.

For the completeness direction suppose that ¢ is satisfiable, and let 7 be a satisfying truth
assignment. This is the trivial direction and does not even rely on tree decomposition properties.

For the soundness direction we use the tree decomposition properties and a little preparation
is necessary.
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Proposition 12. Let ¢ be a k-CNF and (T, X) a tree decomposition of G. Construct (T, X') by
extending the association of each node u to be associated with all nodes corresponding to variables
that appear in the clauses associated with w. Then, X' witnesses a tree-width constant times bigger
than X.

Proof. 1t is obvious that each set in X’ is at most k times bigger than the corresponding one in X.
(T, X') is a tree decomposition: Axioms (1) and (2) are easily satisfied; hence we check whether
axiom (3) is satisfied too. For clause-vertices everything is as in X. For a variable-vertex y let the
subtree T, = {t € T : y € X;} and the set T) = {t € T : y € X{}. Let v € T, such that v ¢ T,
where y € C for a clause C. By property (2) of the definition there exists a node u € T, which is
associated with C'. Moreover, there exists a path P, , connecting v and u s.t. C is associated with
every vertex in P,,. By construction of X’ the vertex associated with y is also associated with
every vertex in P,,. That is, in X'i the subtree T} extends to include v. O

We continue with the soundness direction. Fix an input ¢ where the algorithm accepts. Fix
an arbitrary accepting computational branch. We define the binary relation @ to be the (variable,
truth value) pairs that the algorithm assigned to variables in this computational branch. Below we
show (i) @ is a function and (ii) it is a satisfying truth assignment.

Consider any two nodes u, v of the tree decomposition where at v we have (z,True) € @ and
at u we have (x, Flalse) € Q. By Proposition 12 there exists {i,j} € T in the u-v path, such that
z € X; and x € X; which contradicts the consistency check of the algorithm.

The proof of correctness finishes by defining and applying transitive relation R referring to
consistent extensions of partial truth assignments.

When t(n) = O(logn) algorithm Solve-Treewidth-SAT runs in logspace and polytime which
establishes the following strong theorem.

Theorem 13. SAT of tree-width O(logn) is in LOGCFL (C AC! C NC?).

4.2 Alekhnovich and Razborov’s question

Given a tree decomposition of width ¢(n), the refutation algorithm of [1] runs in time and in
space O(n®M200(m)) " By applying on Solve-Treewidth-SAT the deterministic time simulation
of [13] (Theorem 1, p.7) we obtain an algorithm that runs in time 2°t(") and space 20(t(")
t(n) = Q(logn), which matches the time-space bounds in [1] (note that when t(n) = O(logn) we
have the very strong result of Theorem 13). In fact, when ¢(n) = w(logn) we improve on [1] as
well. To that end we successively apply strongly non-trivial results from [33] and simple well-known
results from structural complexity. It is worth noting that each theorem we apply is constructive
and thus we successively transforms Solve-Treewidth-SAT. The following theorem is a corollary of
three successive transformations in [33] Theorem 3, p.375 and Theorem 5(2),5(3) p.379.

Theorem 14 (Ruzzo '81). An NAuxPDA computing in space s(n) and time z(n) can be simulated
by a family of circuits of size 2°6) and depth O(s(n)log z(n)). Furthermore, this transformation
between algorithms is given explicitly.

By Theorem 14 we have a family of circuits of size 2°(™) and depth O(t(n)logn) that decides
SAT instances of tree-width ¢(n). Apart from these parallel algorithms we have as an immediate
consequence (just relying on the depth bound) the following.
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Theorem 15. SAT instances consisting of a k-CNF formulas together with tree decompositions

of width t(n) can be decided in space O(t(n)logn) and thus simultaneously in time 20((n)logn),

Furthermore, if the decomposition is not given we decide in time 20(t(n)logn) 4nd space nOW .

5 Open questions

Our work raises many questions which are left open. We consider as more fundamental the following
four.

1. Study interrelations of SAT, MAX-SAT and #SAT for different bounds of the diameter; e.g.
can we reduce #SAT(d(n)) to SAT(d?(n))?

2. Investigate structural complexity implications by assuming SAT instances of bounded diam-
eter to be either in P or NP-complete.

3. Improve the result of Section 4.2 by reducing the exponent in the running time.

4. Finally, we are optimistic that our research will find empirical applications.
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