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Abstract. Abstract interpretation (AI) is one of the most scalable au-
tomated approaches to program verification available today. To achieve
efficiency, many steps of the analysis, e.g., joins and widening, lose pre-
cision. As a result, AI often produces false alarms, coming from the
inability to find a safe inductive invariant even when it exists in a chosen
abstract domain.

To tackle this problem, we present Vinta, an iterative algorithm that
uses Craig interpolants to refine and guide AI away from false alarms.
Vinta is based on a novel refinement strategy that capitalizes on recent
advances in SMT and interpolation-based verification to (a) find coun-
terexamples to justify alarms produced by AI, and (b) to strengthen
an invariant to exclude alarms that cannot be justified. The refinement
process continues until either a safe inductive invariant is computed, a
counterexample is found, or resources are exhausted. This strategy allows
Vinta to recover precision lost in many AI steps, and even to compute
inductive invariants that are inexpressible in the chosen abstract domain
(e.g., by adding disjunctions and new terms).

We have implemented Vinta and compared it against top verification
tools from the recent software verification competition. Our results show
that Vinta outperforms state-of-the-art verification tools.

1 Introduction

Abstract interpretation (AI) is one of the most scalable automated approaches
to program verification available today. AI iteratively computes an inductive
invariant I of a given program P in a chosen abstract domain D. P is safe, i.e.,
it cannot reach an error location e, if I is safe, i.e., it does not include e. The
price of AI’s efficiency is false alarms (i.e., inability to find a safe I even when
it exists in D), that are introduced through imprecision inherent in many steps
of the analysis (e.g., join and widening).

In this paper, we present Vinta1, an iterative algorithm that uses Craig
interpolants [8] to refine and guide AI away from false alarms. Vinta marries
the efficiency of AI with the precision of Bounded Model Checking (BMC) [6] and
the ability to generalize from concrete executions of interpolation-based software
verification [15, 1].

The main phases of the algorithm are shown in Fig. 1. Given a program P
and a safety property ϕ, Vinta starts by computing an inductive invariant I of
P using an abstract domain D (the AI phase). If I is safe (i.e., I ⇒ ϕ), then P is
safe as well. Otherwise, Vinta goes to a novel refinement phase. First, refinement
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uses BMC to check for a counterexample in the explored part of P . Second, if
BMC fails to find a counterexample, it uses an interpolation-based procedure to
strengthen I to I ′. If I ′ is not inductive (checked in the “Is Inductive?” phase),
the AI phase is repeated to weaken I ′ to include all reachable states of P . This
process continues until either a safe inductive invariant or a counterexample is
found, or resources (i.e., time or memory) are exhausted.

In our experience, Vinta is able to recover precision lost due to widening,
join, imprecise post-image, and inexpressiveness of the chosen domain D. Fur-
thermore, unless aborted, it never produces false alarms. While we present Vinta
as a refinement strategy for AI, it can equivalently be seen as an interpolation-
based verification algorithm guided by AI. Indeed, we show that both the BMC
and interpolation phases benefit greatly from the invariants discovered by AI. We
have implemented Vinta in Ufo [2, 1], our software verification framework built
on top of the LLVM compiler [14]. For evaluation, we used benchmarks from the
recent Software Verification Competition (SV-COMP) [4]. We have compared
several configurations of Vinta with our prior tool, Ufo [1], and with the top
two tools from SV-COMP, CPAchecker-ABE and CPAchecker-Memo. The
results show that Vinta outperforms these state-of-the-art approaches.

This paper makes several contributions. First, the AI phase is a novel AI-
based invariant computation algorithm. It works on a summary of a Control
Flow Graph (CFG) that contains only loop-heads. It efficiently maintains dis-
junctive loop invariants. Finally, it provides counterexamples to justify alarms.
Second, we present a new widening strategy that extends widening from a given
domain D to its finite powerset Pf (D). Third, we present a novel refinement
strategy for strengthening invariants and eliminating potential false alarms. Un-
like existing work on interpolation-based refinement (e.g., [1, 15]), our strategy
is both guided and bounded by the invariants discovered by AI. Finally, we show
empirically that the new approach outperforms other state-of-the-art techniques
on a collection of software verification benchmarks.

Related Work. Our approach is closely related to the Dagger tool of Gula-
vani et al. [10] that is also based on refining AI, and to our earlier tool Ufo [1]
that combines predicate abstraction with interpolation-based verification. The
key differences between Vinta and Dagger are: (1) Dagger can only refine
imprecision caused by widening and join. Vinta can refine imprecision up to
the concrete semantics of the program (as modeled in SMT). (2) Dagger re-
fines joins explicitly, which may result in an exponential increase in the number
of abstract states compared to the size of the program. Vinta refines joins
implicitly using interpolants and SMT. (3) Dagger requires a specialized in-
terpolation procedure, which, so far, has only been developed for the octagon
and the polyhedra domains. Vinta can use any off-the-shelf interpolating SMT
solver, immediately benefiting from any advances in the field.

Compared to Ufo, Vinta improves both the exploration algorithm (by ex-
tending it to an arbitrary abstract domain) and the refinement procedure (by
extending it to use intermediate invariants computed by AI). Both of these
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Fig. 1. High-level overview of Vinta.

x	  :=	  0;	  y	  :=	  0;
while	  (*){
	  	  if	  (*){
	  	  	  	  x++;	  
	  	  	  	  y	  :=	  y	  +	  100;
	  	  }
	  	  else	  if	  (*)
	  	  	  	  if	  (x	  >=	  4){
	  	  	  	  	  	  x++;	  
	  	  	  	  	  	  y++;
	  	  	  	  }
}
if	  (x	  >=	  4	  &&	  y	  <=	  2)
	  	  error();
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Fig. 2. (a) A safe program P (‘*’ denotes a nondeterministic choice). (b) A cutpoint
graph of P . An ARG of P after (c) the first and (d) after the second AI step.

extensions are important for Vinta’s success, as shown in the experiments in
Sec. 5.

The rest of the paper is organized as follows: Sec. 2 gives a general overview
of Vinta. Sec. 3 provides the notation and definitions required for the paper.
Sec. 4 formally presents our algorithm. Sec. 5 describes our implementation,
optimizations and experimental results. Finally, Sec. 6 concludes the paper.



2 Example

In this section, we illustrate Vinta on proving safety (i.e., unreachability of `e)
of program P from [10], shown in Fig. 2(a). P is known to be hard to analyze
without refinement, and even the refinement approaches of [9] and [17] fail to
solve it (see [10] for details). Dagger [10] (the state-of-the-art in AI-refinement)
solves it using the domain of polyhedra by computing the safe invariant x ≤ y ≤
100x. Here, we show how Vinta solves the problem using the Box domain and
refinement to compute an alternative safe invariant: x ≥ 4 ⇒ y > 100. In this
example, the refinement must recover imprecision lost due to widening and join,
and extend the base-domain with disjunction. All of this is done automatically
via an SMT-based interpolation procedure. Due to space limitations, we show
only the first few iterations of the analysis.

Step 1.1: AI. Vinta works on a cutpoint graph (CPG) of a program: a collapsed
CFG where the only nodes are cutpoints (loop-heads), entry, and error locations.
A CPG for P is shown in Fig. 2(b).

Vinta uses a typical AI-computation following the recursive iteration strat-
egy [7] and widening at every loop unrolling. Additionally, it records the finite
traces explored by AI in an Abstract Reachability Graph (ARG). An ARG is an
unrolling of the CPG. Each node u of an ARG corresponds to some node v of
a CPG, and is labeled with an over-approximation of the set of states reachable
at that point.

Fig. 2(c) shows the ARG from the first AI-computation on P . Each node vi
in the ARG refers to node `i in the CPG. The superscript in nodes va2 , vb2, vc2, and
vd2 is used to distinguish between the different unrollings of the loop at `2. The
labels of the nodes va2 , vb2, and vc2 over-approximate the states reachable before
the first, second, and third iterations of the loop, respectively. The node vc2 is
said to be covered (i.e., subsumed) by {va2 , vb2}. The labels of the set {va2 , vb2} form
an inductive invariant I1 ≡ (x ≥ 0∧ y ≥ 0). The node vd2 is called an unexplored
child, and has no label and no children. It is used later when AI-computation is
restarted. Finally, note that I1 is not safe (the error location ve is not labeled
by false), and thus refinement is needed.

Step 1.2: AI-guided Refinement. First, Vinta uses a BMC-style technique [11]
to check using an SMT-solver whether the current ARG has a feasible execution
to the error node `e. There is no such execution in our example (see Fig. 2(c))
and the algorithm moves to the next phase.

The second phase of refinement is based on a novel interpolation-based pro-
cedure that is described in detail in Sec. 4. Specifically, the procedure takes the
current ARG (Fig. 2(c)) and its labeling and produces a new safe (but not nec-
essarily inductive) labeling shown in Fig. 2(d). Here, refinement reversed the
effects of widening by restoring the upper bounds on x. Note that the new labels
are stronger than the original ones – this is guaranteed by the procedure and
the original labels are used to guide it.



Step 1.3: Is Inductive? The new ARG labeling (Fig. 2(d)) is not inductive
since the label of vc2 is not contained in the label of vb2 (checked by an SMT-
solver), and another AI phase is started.

Step 2.1: AI (again). AI is restarted “lazily” from the nodes that have unex-
plored children. Here, vc2 is the only such node. This ensures that AI is restarted
from the inner-most loop where the invariant is no longer inductive. First, the
label of vc2 is converted into an element of an abstract domain by a given ab-
straction function. In our example, the label is immediately expressible in Box,
so this step is trivial. Then, AI-computation is restarted as usual.

In the following four iterations (omitted here), refinement works with the
AI-based exploration to construct a safe inductive invariant x ≥ 4 ⇒ y > 100.
Note that since the invariant contains a disjunction, this means refinement had
to recover from imprecision of join (as well as recovering from imprecision due
to widening shown above).

This example is simple enough to be solved with other interpolation-based
techniques, but they require more iterations. Ufo [1], our prior approach with-
out AI-based exploration and refinement, needs nine iterations, and a version
of Vinta with unguided refinement from Ufo needs seven. Our experiments
suggest that this translates into a significant performance difference on bigger
programs.

3 Definitions

In this section, we present the definitions and notation used in the rest of the
paper.

Programs as Cutpoint Graphs. We represent a program by a cutpoint graph
(CPG), a collapsed form of a CFG where each node is a loop-head and each
edge is a loop-free path between two loop-heads. Formally, a program P is a
tuple (CP, δ, en, err,Var), where CP is a finite set of cutpoints, δ is a finite set
of actions, en ∈ CP is a special cutpoint denoting the entry location of P ,
err ∈ CP is the error cutpoint, and Var is the set of variables of program P .
An action (`1, T, `2) ∈ δ represents loop-free paths between `1 and `2, where
`1, `2 ∈ CP and T is the set of statements along the paths. We assume that
there does not exist an action (`1, T, `2) ∈ δ s.t. `1 = err. T can be viewed
as a transition relation over the variables Var ∪ Var′, where Var′ is the set of
primed versions of variables in Var. We write JT K for the standard semantics of
a statement T . For example, if T is if x = 0 then x := 1 else x := 2, then
JT K ≡ (x = 0⇒ x′ = 1) ∧ (x 6= 0⇒ x′ = 2).

A program P is safe iff there does not exist an execution that starts in en
and reaches err through the actions in δ.

Weak Topological Ordering. A Weak Topological Ordering (WTO) [7] of a
directed graph G = (V,E) is a well-parenthesized total-order, denoted ≺, of V
without two consecutive “(” s.t. for every edge (u, v) ∈ E:

(u ≺ v ∧ v 6∈ ω(u)) ∨ (v � u ∧ v ∈ ω(u)),



where elements between two matching parentheses are called a (wto-)component,
the first element of a component is called a head, and ω(v) is the set of heads of
all components containing v.

Let v ∈ V , and U be the innermost component that contains v in the WTO.
We write WtoNext(v) for an element u ∈ U that immediately follows v, if it
exists, and for the head of U otherwise.

Let Uv be a component with head v. First, suppose that Uv is a subcomponent
of some component U . If there exists a u ∈ U s.t. u 6∈ Uv and u is the first element
in the total-order s.t. v ≺ u, then WtoExit(v) = u. Otherwise, WtoExit(v) =
w, where w is the head of U . Second, suppose that Uv is not a subcomponent
of any other component, then WtoExit(v) = u, where u is the first element
in the total-order s.t. u 6∈ Uv and v ≺ u. Intuitively, if the WTO represented
program locations, then WtoExit(v) is the first control location visited after
exiting the loop headed by v. For example, for the program in Fig. 2(b), a
WTO of the control locations is `1(`2)`3, where `2 is the head of the component
comprising the while loop. WtoNext(`2) = `2 and WtoExit(`2) = `3. Note
that WtoNext and WtoExit are partial functions and we only use them where
they have been defined.

Abstract Reachability Graphs (ARGs). Let P = (CP, δ, en, err,Var) be a
program. An Abstract Reachability Graph (ARG) of P is a tuple (V,E, ven, ν, τ, ψ),
where (V,E, ven) is a directed acyclic graph (DAG) rooted at the entry node
ven ∈ V , ν : V → CP is a map from nodes to cutpoints of P where ν(ven) = en,
τ : E → δ is a map from edges to actions of P s.t. for every edge (u, v) ∈ E there
exists an action (ν(u), τ(u, v), ν(v)) ∈ δ, and ψ : V → B is a map from nodes V
to Boolean formulas over Var. A node v s.t. ν(v) = err is called an error node.

A node v ∈ V is covered iff there exists a node u ∈ V that dominates v and
there exists a set of nodes X ⊆ V , s.t. ψ(u)⇒ ∨

x∈X ψ(x) and ∀x ∈ X · ν(u) =
ν(x) ∧ u 6� x, where � is the ancestor relation on nodes and all x ∈ X are less
than u according to some fixed total order on nodes V . A node u dominates v
iff all paths from ven to v pass through u. By convention, every node dominates
itself.

Definition 1 (Well-labeledness of ARGs). Given an ARG A = (V,E, ven, ν, τ, ψ)
of a program P = (CP, δ, en, err,Var) and a map L from every v ∈ V to a Boolean
formula over Var, we say that L is a well-labeling of A iff (1) L(ven) ≡ true;
and (2) ∀(u, v) ∈ E · L(u) ∧ Jτ(u, v)K ⇒ L(v)′. If ψ is a well-labeling of A, we
say that A is well-labeled.

An ARG is safe iff for all v ∈ V s.t. ν(v) = err, ψ(v) ≡ false. An ARG is
complete iff for all uncovered nodes u, for all (ν(u), T, `) ∈ δ, there exists an
edge (u, v) ∈ E s.t. ν(v) = ` and τ(u, v) = T .

Theorem 1 (Program Safety [1]). If there exists a safe, complete, and well-
labelled ARG for a program P , then P is safe.

Abstract Domain. Abstract and concrete domains are often presented as
Galois-connected lattices. In this paper, we use a more operational presenta-
tion. Without loss of generality, we restrict the concrete domain to a set B



1: func VintaMain (Program P ) :
2: create nodes ven, verr
3: ψ(ven)← true ; ν(ven)← en
4: ψ(verr)← false ; ν(verr)← err
5: marked(ven)← true
6: labels← ∅
7: while true do
8: ExpandArg()
9: if ψ(verr) is UNSAT then

10: return SAFE
11: labels← Refine(A)
12: if labels = ∅ then
13: return UNSAFE

14: func GetFutureNode (` ∈ CP) :
15: if FN(`) is defined then
16: return FN(`)

17: create node v
18: ψ(v)← true ; ν(v)← `
19: FN(l)← v
20: return v

21: func ExpandNode (v ∈ V ) :
22: if v has children then
23: for all (v, w) ∈ E do
24: FN(ν(w))← w

25: else
26: for all (ν(v), T, `) ∈ δ do
27: w ← GetFutureNode(`)
28: E ← E ∪ {(v, w)} ; τ(v, w)← T

29: func ExpandArg () :
30: vis← ∅ ; FN← ∅
31: FN(err)← verr ; v ← ven
32: while true do
33: `← ν(v)
34: ExpandNode(v)
35: if marked(v) then
36: marked(v)← false
37: ψ(v)← ComputePost(v)
38: ψ(v)←WidenWith({ψ(u) | u ∈ vis(`)}, ψ(v))
39: for all (v, w) ∈ E do marked(w)← true

40: else if labels(v) is defined then
41: ψ(v)← labels(v)
42: for all {(v, w) ∈ E | labels(w) is undefined} do
43: marked(w)← true

44: vis(`)← vis(`) ∪ {v}
45: if v = verr then break

46: if Smt.IsValid(ψ(v)⇒
∨

u∈vis(`),u 6=v ψ(u)) then

47: erase FN(`)
48: repeat `←WtoExit(`) until FN(`) is defined
49: v ← FN(`) ; erase FN(`)
50: for all {(v, w) ∈ E |6 ∃u 6= v · (u,w) ∈ E} do
51: erase FN(ν(w))

52: else
53: `←WtoNext(`)
54: v ← FN(`) ; erase FN(`)

Fig. 3. Vinta algorithm.

of all Boolean expressions over program variables (as opposed to the pow-
erset of concrete program states). We define an abstract domain as a tuple
D = (D,>,⊥,t,O, α, γ), where D is the set of abstract elements with two des-
ignated elements >,⊥ ∈ D, called top and bottom, respectively; two binary
functions t,O : D ×D → D, called join and widen, respectively; and two func-
tions: an abstraction α : B → D and a concretization γ : D → B. The functions
respect the expected properties: α(true) = >, γ(⊥) = false, for x, y, z ∈ D·
if z = x t y then γ(x) ∨ γ(y) ⇒ γ(z), etc. Note that D has no meet and no
abstract order – we do not use them. Finally, we assume that for every action
T , there is a sound abstract transformer PostD s.t. if d2 = PostD(T, d1) then
γ(d1) ∧ JT K ⇒ γ(d2)′, where d1, d2 ∈ D, and for a formula X, X ′ is X with all
variables primed.

4 Vinta

In this section, we formally describe Vinta and discuss its properties.

4.1 Main Algorithm

VintaMain. Function VintaMain in Fig. 3 implements the loop in Fig. 1.
It takes a program P = (CP, δ, en, err,Var) and checks whether the error loca-



tion err is reachable.Without loss of generality, we assume that every location
in CP is reachable from en and can reach err (ignoring the semantics of ac-
tions). VintaMain maintains a globally accessible ARG A = (V,E, ven, ν, τ, ψ).
If VintaMain returns SAFE, then A is safe, complete, and well-labeled (thus
proving safety of P by Theorem 1).

VintaMain is parameterized by (1) the abstract domain D, and (2) the
refinement function Refine. First, an ARG is constructed by ExpandArg using
an abstract transformer PostD. For simplicity of presentation, we assume that
all labels are Boolean expressions that are implicitly converted to and from D
using functions α and γ, respectively. ExpandArg always returns a complete
and well-labeled ARG. So, on line 8, VintaMain only needs to check whether the
current ARG is safe. If the check fails, Refine is called to find a counterexample
and remove false alarms. We describe our implementation of Refine in Sec. 4.3,
but the correctness of the algorithm depends only on the following abstract
specification:

Definition 2 (Specification of Refine [1]). Refine returns an empty map
(labels = ∅) if there exists a feasible execution from ven to verr in A. Otherwise, it
returns a map labels from nodes to Boolean expressions s.t. (1) labels(ven) ≡ true
and labels(verr) ≡ false, and (2) ∀(u, v) ∈ E · labels(u) ∧ Jτ(u, v)K⇒ labels(v)′.

In our case, refinement uses BMC and interpolation through an SMT solver to
compute labels, therefore, if no labels are found, refinement produces a coun-
terexample as a side-effect.

Whenever Refine returns a non-empty labeling (i.e., false alarms were re-
moved), VintaMain calls ExpandArg again. ExpandArg uses labels to re-
label the existing ARG nodes and uses PostD to expand the ARG further, as
necessary.

ExpandArg. ExpandArg constructs the ARG in a recursive iteration strat-
egy [7], It assumes existence of a weak topological ordering (WTO) [7] of the
CPG and two functions, WtoNext and WtoExit as described in Sec. 3.

ExpandArg maintains two local maps: vis and FN. vis maps a cutpoint ` to
the set of visited nodes corresponding to `, and FN maps a cutpoint ` to the first
unexplored node v ∈ V s.t. ν(v) = `. The predicate marked specifies whether a
node is labeled using AI (marked is true) or it gets a label from the map labels
produced by Refine (marked is false). Marks are propagated from a node to
children (lines 38 and 41). Initially, the entry node is marked (line 4), which
causes all of its descendants to be marked as well. AI over all incoming edges
of a node v is done using ComputePost(v) that over-approximates PostD
computations over all predecessors of a node v (that are in vis).

Note that Vinta uses an ARG as an efficient representation of a disjunc-
tive invariant: for each cutpoint ` ∈ CP, the disjunction

∨
v∈vis(`) ψ(v) is an

inductive invariant. The key to efficiency is two-fold. First, a possibly expensive
abstract subsumption check is replaced by an SMT-check (line 45). Second, in-
spired by [10], an expensive powerset widening is replaced by a simple widening
scheme, WidenWith, that lifts base domain widening O to a widening between a
set and a single abstract element. We describe WidenWith in detail in Sec. 4.2.



Vinta is based on Ufo [1], but improves it in two directions: (1) it extends
Ufo to arbitrary abstract domains using widening and (2) it employs a more
efficient covering strategy (line 45). While in theory Vinta is compatible with
the refinement strategy of Ufo, in Sec. 4.3 we describe the shortcomings of
Ufo’s refinement in our setting and present a new refinement strategy.

4.2 Widening

In this section, we describe the powerset widening operator widenWith used
by Vinta.

Definition 3 (Specification of WidenWith). Let D = (D,>,⊥,t,O, α, γ)
be an abstract domain. An operator OW : Pf (D) × D → D is a widenWith
operator iff it satisfies the following two conditions:

1. (soundness) for any X ⊆ D and y ∈ D, (γ(X) ∨ γ(y))⇒ (γ(X) ∨ γ(X OW y));
2. (termination) for any X ⊆ D, and a sequence {yi}i ∈ D, the sequence
{Zi}i ⊆ D, where Z0 = X, and Zi = Zi−1 ∪ {Zi−1 OW yi} converges, i.e.,
∃i · γ(Zi+1)⇒ γ(Zi),

where γ(X) ≡ ∨x∈X γ(x), for some set of abstract elements X.

Note that unlike traditional powerset widening operators (e.g., [3]), widen-
With is defined for a pair of a set and an element (and not a pair of sets). It is
inspired by the widening operator OpT of Gulavani et al. [10], but differs from it in
three important aspects. First, we do not require that if z = widenWith(X, y),
then z is “bigger” than y, i.e., γ(y)⇒ γ(z). Intuitively, if X and y approximate
sets of reachable states, then z over-approximates the frontier of y (i.e., states
in y but not in X). Second, our termination condition is based on concrete im-
plication (and not on an abstract order). Third, we do not require that X or
the sets {Zi}i in Def. 3 contain only “maximal” elements [10]. These differences
give us more freedom in designing the operator and significantly simplify the
implementation.

We now describe two implementations of WidenWith: the first, WidenWitht,
is based on OpT from [10] and applies to any abstract domain while the second,
WidenWith∨, requires an abstract domain that supports disjunction (∨) and
set difference (\). One example of such a domain is Boxes [12]. The operators
are defined as follows:

WidenWitht(∅, y) = y WidenWith∨(∅, y) = y (1)

WidenWitht(X, y) = xO(x t y) (2)

WidenWith∨(X, y) =
(

(
∨
X)O(

∨
X ∨ y)

)
\
∨
X (3)

where x ∈ X is picked non-deterministically from X.

Theorem 2 (widenWith{∨,t} Correctness). WidenWitht and WidenWith∨
satisfy the two conditions of Def. 3.



1: func UfoRef (ARG A = (V,E, ven, ν, τ, ψ)) :
2: LE ← EncodeBmc(A); I ← DagItp((V,E, ven, verr),LE); returnDecodeBmc(I)

Fig. 4. Ufo refinement procedure.

4.3 Refinement

In this section, we formalize our refinement strategy. We start by reviewing the
strategy used by Ufo and based on a concept of a Restricted DAG Interpolant
(RDI) – an extension of a path interpolant [13, 15] to DAGs. In the rest of this
section, we write F for a set of formulas; G = (V,E, ven, vex) for a DAG with an
entry node ven ∈ V and an exit node vex ∈ V , where ven has no predecessors,
vex has no successors, and every node v ∈ V lies on a (ven, vex)-path. We also
write desc(v) and anc(v) for the sets of descendants and ancestors of a node
v ∈ V , respectively; LE : E → F and LV : V → F for maps from edges and
vertices to formulas, respectively; and FV (ϕ) for the set of free variables in a
given formula ϕ.

Definition 4 (Restricted DAG Interpolant (RDI)). Let G, LE, and LV
be as defined above. An RDI is a map I : V → F s.t.

1. ∀e = (vi, vj) ∈ E ·
(
I(vi) ∧ LV (vi) ∧ LE(e)

)
=⇒ I(vj) ∧ LV (vj),

2. I(ven) ≡ true, and
(
I(vex) ∧ LV (vex)

)
≡ false, and

3. ∀vi ∈ V · FV (I(vi)) ⊆
(⋃

u∈desc(vi) FV (I(u))
)
∩
(⋃

u∈anc(vi) FV (I(u))
)

.

Whenever ∀v · LV (v) = true, we say that an RDI is unrestricted or simply a
DAG Interpolant (DI). Intuitively, a DI I is a labeling of G such that for every
path ven, . . . , vex, the sequence I(ven), . . . , I(vex) is a path interpolant [13, 15].
In general, in a proper RDI I (i.e., when ∃v · LV (v) 6= true), I(v) is not an
interpolant by itself, but is a projection of an interpolant to LV (v). That is,
I(v) is the restriction needed to turn LV (v) into an interpolant. Thus, an RDI
can be weaker (and possibly easier to compute) than a DI.

Ufo Refinement. Ufo’s refinement procedure is shown in Fig. 4. It uses the
procedure DagItp from [1]2 to compute a DI. Given an ARGA = (V,E, ven, ν, τ, ψ)
with an error node verr, it first constructs an edge labeling LE using a BMC-
encoding such that for each ARG edge e, LE(e) is the semantics of the corre-
sponding action τ(e) (i.e., Jτ(e)K), with variables renamed and added as nec-
essary, and such that for any path v1, . . . , vk, the formula

∧
i∈[1,k) LE(vi, vi+1)

encodes all executions from v1 to vk. Many BMC-encodings can be used for this
step, and we use the approach of [11]. For example, for the three edges (v1, v

a
2 ),

2 [1] used a different terminology. DagItp refers to the procedure in Thm. 3 of [1].
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Fig. 5. (a) A program and (b) its ARG.

(va2 , ve), (va2 , v
b
2) of the ARG in Fig. 2(c), the LE map is

LE(v1, v
a
2 ) ≡ x0 = 0 ∧ y0 = 0 (4)

LE(va2 , ve) ≡ xφ ≥ 4 ∧ yφ ≤ 2 ∧ xφ = x0 ∧ yφ = y0 (5)

LE(va2 , v
b
2) ≡ (x1 = x0 + 1 ∧ y1 = y0 + 1) ∨ (6)

(x0 ≥ 4 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1) ∨
(x1 = x0 ∧ y1 = y0)

where, in addition to renaming, two extra variables xφ and yφ were added for
the SSA encoding since node ve has multiple edges incident on it. LE(v1, v

a
2 ) ∧

LE(va2 , ve) encodes all executions on the path v1, v
a
2 , ve, and LE(v1, v

a
2 )∧LE(va2 , v

b
2)

encodes all executions on the path v1, v
a
2 , v

b
2. Second, the refined labels are com-

puted as a DI I = DagItp((V,E, ven, verr),LE). Note that after reversing the
renaming done by BMC-encoding (i.e., removing the subscripts), the DI I is a
safe (by condition 2 of Def. 4) well-labeling (by condition 1 of Def. 4) of the
ARG A. Furthermore, I(v) is expressed completely in terms of variables defined
before and used after v ∈ V . The result of refinement on our running example
is shown in Fig. 2(d).

Using Ufo Refinement with Vinta. While Vinta can use Ufo’s refinement
since it satisfies the specification of Refine in Def. 2, we found that it does not
scale in practice. We believe there are two key reasons for this.

The first reason is that the DI-based refinement uses just the ARG while
completely ignoring its node labeling (i.e., the set of reachable states discovered
by AI). Thus, while the DI-based refinement recovers from imprecision to remove
false alarms, it may introduce imprecision for further exploration steps. For
example, consider the program in Fig. 5(a) and its ARG in Fig. 5(b) produced
by AI using the Box domain. The ARG has a false alarm (in reality, ve is
unreachable). A possible DI-based refinement changes the labels of vb2, vc2, and
ve to x ≤ 10 ∧ x 6= 9, x 6= 9, and false, respectively. While this is sufficient to
eliminate the false alarm, the new labels do not form an inductive invariant – thus
further unrolling of the ARG is required. Note that the refinement “improved”
the label of vc2 to x 6= 9, but “lost” an important fact x ≤ 10. Instead, we propose
to restrict refinement to produce new labels that are stronger than the existing
ones. In this example, such a restricted refinement would change the labels of
vb2, vc2, and ve to x ≤ 10 ∧ x 6= 9, x ≤ 10 ∧ x 6= 9, and false, thus completing the
verification.



1: func VintaRef (ARG A = (V,E, ven, ν, τ, ψ)) :
2: LE ← EncodeBmc(A) ; LV ← Encode(ψ)
3: I ← VintaRdi((V,E, ven, verr),LE ,LV )
4: if I = ∅ then return I
5: for all v ∈ V do I(v)← I(v) ∧ LV (v)

6: return DecodeBmc(I)

Require: LV is a well-labeling of G
7: func VintaRdi (G, LE , LV ) :
8: for all e = (u, v) ∈ E do
9: LE(e)← LV (u) ∧ LE(e)

10: I ← DagItp(G,LE)
11: return I

Fig. 6. VintaRef refinement procedure.

The second reason is that ARGs produced by AI are large, and generating
interpolants directly from them takes too long. Here, again, part of the problem
is that refinement does not use the existing labeling to simplify the constraints.
Instead of computing a DI of the ARG, we propose to compute an RDI re-
stricted by the current labeling. Since an RDI is simpler (i.e., weaker, has fewer
connectives, etc.) than a corresponding DI, the hope is that it is also easier to
compute.

Vinta Refinement. Vinta’s refinement procedure VintaRef is shown in
Fig. 6. It takes a labeled ARG A and returns a new safe well-labeling labels
of A. First, it encodes the edges of A using BMC-encoding as described above
(line 2). Second, the current labeling ψ of A is encoded to match the renaming
introduced by the BMC-encoding. For example, for va2 in our running example,
ψ(va2 ) ≡ x = 0 ∧ y = 0, and the encoding LV (va2 ) ≡ x0 = 0 ∧ y0 = 0. Third,
it uses VintaRdi (shown in Fig. 6) to compute an RDI of A restricted by LV .
Fourth, it turns the RDI into a DI by conjoining it with LV (line 5). Finally, it
decodes the labels by undoing the BMC-encoding (line 6).

The function VintaRdi computes an RDI by reducing it to computing a
DI using the DagItp procedure from [1] described earlier. Note that it requires
that LV is a well-labeling, i.e., for all (u, v) ∈ E, LV (u) ∧ LE(u, v) ⇒ LV (v).
The idea is to “communicate” to the SMT-solver the restriction of node u by
conjoining LV (u) to every edge from u. This information might be helpful to the
SMT-solver for simplifying its proofs and the resulting interpolants.

Theorem 3 (Correctness of VintaRef). VintaRef satisfies the specifica-
tion of Refine in Def. 2.

There is a simple generalization of VintaRef: ψ on line 2 can be replaced by
any over-approximation U of reachable states. The current invariant represented
by the ARG is a good candidate and so are invariants computed by other tech-
niques. The only restriction is that VintaRdi requires U to be a well-labeling.
Removing this restriction from VintaRdi remains an open problem.

5 Implementation and Evaluation

5.1 Implementation

We have implemented Vinta in the Ufo framework [2] for verifying C programs,
which is built on top of the LLVM compiler infrastructure [14]. Our modular
implementation of Vinta allows abstract domains to be easily plugged in and



experimented with. Currently, the abstract domains used by Vinta are Box and
Boxes, defined in [12]. For SMT-solving and interpolation, Vinta uses Z3 [16]
and MathSat53, respectively. In the rest of this section, we highlight the tech-
nical challenges addressed by our implementation. Specifically, we discuss our
implementation of abstraction functions from Boolean expressions to Box and
Boxes elements, and describe key SMT-solving techniques that are instrumen-
tal to Vinta’s efficiency. Our implementation and complete experimental results
are available at http://www.cs.toronto.edu/~aws/vinta.

Abstraction Functions. We are using a simple abstraction function to convert
between Boolean expressions and Boxes and Box abstract domains. Given a
formula ϕ, we first convert it to NNF. Then, we replace all literals involving more
than one variable (e.g., x + y = 0) with true, thus over-approximating ϕ and
removing all terms not expressible in Box. Finally, for Box, we additionally
use join to approximate disjunction. This naive approach is very imprecise in
general, but works well on our benchmarks.

Incremental Solving for Covering. Recall that ExpandArg in Fig. 3 uses
an SMT call at every cover check (line 45 in Fig. 3). This is highly inefficient. In
practice, we exploit Z3’s incremental interface (using push and pop commands)
as follows. For each cutpoint `, we maintain a separate SMT context ctx`. Every
time a node v s.t. ν(v) = ` is not covered (i.e., the check on line 45 in Fig. 3 fails),
¬ψ(v) is added to ctx`. To check whether a node u with ν(u) = ` is covered,
we check whether ψ(u) is satisfiable in ctx`. If the result is UNSAT, then u is
covered; otherwise, it is not covered and ¬ψ(u) is added to ctx`. Effectively, this
is the same as checking whether ψ(u) ∧∧v∈vis(ν(u)),v 6=u ¬ψ(v) is UNSAT, which
is equivalent to line 45 of ExpandArg.

Using Post Computations for Simplification. In our implementation, we
keep track of those ARG edges for which PostD computations returned ⊥. For
each such edge e, we can replace LE(e) in VintaRdi with false, thus reducing
the size of the formula.

Improving Interpolation with UNSAT Cores. One technical challenge we
faced is that MathSat5’s performance degrades significantly when interpola-
tion support is turned on, particularly on large formulas. To reduce the size of
the formula given to MathSat5, we use the assumptions feature in the highly
efficient but lacking interpolation support Z3. Let a formula ϕ1 ∧ . . .∧ϕn and a
set X = {bi}ni=1 of Boolean assumptions variables be given. When Z3 is passed
a formula Φ = (b1 ⇒ ϕ1) ∧ . . . ∧ (bn ⇒ ϕn), it returns a subset of X, called
UNSAT core, that has to be true to make Φ UNSAT. In our case, we add an
assumption for each literal appearing in formulas in LE , and use Z3 to find un-
necessary literals, i.e., those not in the UNSAT core. Since Z3 does not produce
a minimal core, we repeat the minimization process three times. Finally, we set
unnecessary literals to true and use MathSat5 to interpolate over the simplified
formula.

3 http://mathsat.fbk.eu



Algorithm #Solved #Safe #Unsafe Total Time (s)

vBox 71 20 51 580 (539/41)

uBox 68 19 49 1,240 (1,162/78)

vBoxes 67 25 42 1,782 (596/1,186)

uBoxes 60 18 42 2,731 (808/1,923)

CpaAbe 65 29 36 1,167 (707/460)

CpaMemo 64 24 40 1,794 (454/1,341)

uInterp 70 20 50 1,535 (1,457/78)

uCp 69 19 50 1,687 (1,509/178)

uBp 64 15 49 1,062 (57/1,006)

Table 1. Summary of results on 93 C programs. Numbers in bold indicate the best
result.
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Fig. 7. Number of solved instances vs. timeout: (a) safe benchmarks; (b) unsafe bench-
marks.

5.2 Evaluation

For evaluation, we used ntdrivers-simplified, ssh-simplified, and systemc

benchmarks from the 2012 Software Verification Competition (SV-COMP 2012) [4].
In total, we had 93 C programs (41 safe and 52 buggy).

We implemented several instantiations of Vinta: vBox, vBoxes, uBox,
and uBoxes, using the Box and Boxes domains, and VintaRef and UfoRef
refinements, respectively. For Box and Boxes, we used the widening operators
WidenWitht and WidenWith∨ from Sec. 4.2, respectively. In all cases, we ap-
plied widening on every third unrolling of each loop. We compared Vinta against
the top two tools from SV-COMP 2012: CpaChecker-Abe (CpaAbe) and
CpaChecker-Memo (CpaMemo), which are two variations of the predicate-
abstraction-based software model checker CpaChecker [5]. For both tools, we
used the same version and configuration as in the competition. We also com-
pared against several instantiations of our Ufo framework: uInterp, uCp, and
uBp, using interpolation-based verification by itself and in combination with
Cartesian and Boolean predicate abstractions, respectively.

The overall results are summarized in Table 1. All experiments were con-
ducted on a 3.40GHz Intel Core i7 processor with 8GB of RAM running Ubuntu
Linux v11.10. We imposed a time limit of 500 seconds and a memory limit of 4GB
per program. For each tool, we show the number of safe and unsafe instances
solved and the total time taken. For example, vBox solved 20 safe and 51 unsafe
examples in 580 seconds, spending 539s on safe ones and 41s on unsafe ones (time
spent in unsolved instances is not counted). vBox is an overall winner, and is
able to solve the most unsafe instances in the least amount of time. CpaAbe is



Program vBoxes uBoxes vBox uBox CpaAbe CpaMemo

s3 clnt 1 0.30 0.30 8.61 13.67 7.34 11.63

s3 clnt 2 0.3 0.30 8.79 13.45 6.72 8.53

s3 clnt 3 0.30 0.29 9.01 6.80 9.72 7.10

s3 clnt 4 0.30 0.30 9.55 8.52 6.33 12.43

s3 srvr 1a 0.15 – 1.08 – 2.86 4.344

s3 srvr 1b 0.02 0.02 – – 1.49 1.64

s3 srvr 1 0.00 0.00 0.00 0.00 21.21 8.63

s3 srvr 2 0.64 115.48 – 115.13 63.44 113.07

s3 srvr 3 0.75 123.57 69.70 123.61 17.23 22.55

s3 srvr 4 0.59 168.44 85.81 168.08 7.50 14.57

s3 srvr 6 473.15 319.00 74.87 359.39 181.82 –

s3 srvr 7 13.82 – – 274.12 24.84 112.53

s3 srvr 8 0.69 78.53 245.52 76.12 18.48 8.82

token ring.01 0.94 – 4.05 – 4.13 8.04

token ring.02 2.53 – 18.29 – 6.69 49.11

token ring.03 6.06 – – – 29.55 –

token ring.04 18.22 – – – 146.43 –

token ring.05 76.29 – – – – –

token ring.06 – – – – – –

token ring.07 – – – – – –

token ring.08 – – – – – –

Table 2. Time of running Vinta, CpaAbe, and CpaMemo on 21 safe benchmarks.
‘–’ indicates a timeout.

the winner on the safe instances, with vBoxes coming in second. In the rest of
this section, we examine these results in more detail.

Instances Solved vs. Timeout. Fig. 7 shows the number of instances solved
in a given timeout for (a) safe and (b) unsafe benchmarks, respectively. To
avoid clutter, we omit uInterp, uBp, and uCp from the graphs and restrict the
timeout to 120s, since only a few instances took more time. For the safe cases,
vBoxes is a clear winner for the timeout of ≤ 10s. Indeed, on most safe bench-
marks, vBoxes takes a lot less time to complete than CpaAbe, CpaMemo,
and all other instantiations of Ufo and Vinta. For the unsafe cases, vBox
is a clear winner for all timeouts. Interestingly, the extra precision of Boxes
makes vBoxes perform poorly on unsafe instances: it either solves an unsafe
instance in one iteration (i.e., no refinement), or runs out of time in the first AI-
or refinement-phase.

Detailed Comparison. We now examine a portion of the benchmark suite in
more detail, specifically, safe ssh-simplified benchmarks and safe token ring

benchmarks (from systemc). Table 2 shows the time taken by the different in-
stantiations of Vinta, CpaAbe, and CpaMemo. On these benchmarks, we ob-
serve that vBoxes outperforms all other approaches.

Compared with CpaAbe and CpaMemo, vBoxes is able to solve almost
all instances in much less time. For example, on token ring.05, both CpaAbe
and CpaMemo fail to return a result, but vBoxes proves safety in 76 seconds.
Similarly, vBoxes is superior on most ssh-simplified examples.

To understand the importance of the refinement strategy, consider the
ssh-simplified benchmarks. The invariant for most ssh-simplified instances
is computable using Boxes with an appropriate widening strategy (“widen on
every fourth unrolling”). The results in the table show how Vinta’s refinement
strategy is able to recover precision when an inadequate refinement strategy is



used (i.e., “widen on every third unrolling”). Using Ufo’s refinement, uBoxes
takes substantially more time and more iterations or fails to return a result
within the allotted time limit. For example, on s3 srvr 2, vBoxes requires a
single refinement, whereas uBoxes requires 38. Positive effects of Vinta’s AI-
guided refinement are also visible in vBox vs. uBox.

In summary, our results demonstrate the power of Vinta’s refinement strat-
egy and show how basic instantiations of Vinta can compete and outper-
form highly-optimized verification tools like CpaChecker. To further improve
Vinta’s performance, it would be interesting to experiment with other abstract
domains as well as with different automatic strategies for choosing an appropriate
domain. For example, we saw that Boxes, in comparison with Box, generates
very large ARGs for unsafe examples. One strategy would be to keep track of
ARG size and time spent in refinement and revert to a less precise abstract
domain like Box when they become too large.

6 Conclusion

In this paper, we presented Vinta, an iterative algorithm that uses Craig inter-
polants to refine invariants produced by abstract interpretation and eliminate
false alarms. Vinta’s verification technique marries the efficiency of abstract
interpretation with the precision of bounded model checking and the ability to
“guess” invariants of interpolation-based verification.

Our evaluation of Vinta against state-of-the-art verification tools demon-
strates the power of our approach and calls for further experimentation with our
refinement strategy on different abstract domains.
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