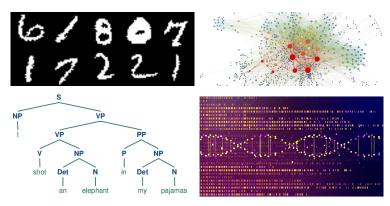
Gradient Estimation with Stochastic Softmax Tricks

Max B. Paulus*, Dami Choi*,
Daniel Tarlow, Andreas Krause, Chris J. Maddison

NeurIPS 2020: Oral Presentation

Discrete Data

There is a lot of discrete structure in data...



...that often is unobserved.

Source: MNIST, NLTK, Wikipedia, LabioTech

Why model discrete structure?

By modeling this unobserved structure, we can for example...

- incorporate problem-specific constraints (Mena et al., 2018)
- improve generalization (Graves et al., 2014)
- increase interpretability (Chen et al., 2018)

Why model discrete structure?

By modeling this unobserved structure, we can for example...

- incorporate problem-specific constraints (Mena et al., 2018)
- improve generalization (Graves et al., 2014)
- increase interpretability (Chen et al., 2018)

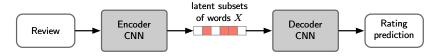
As an example, consider...

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing. Smells like Wheat and European hops, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

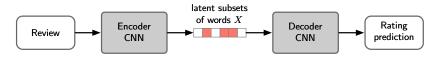
Example: Learning to explain (L2X) aspect ratings

A latent subset variable can be used...



Example: Learning to explain (L2X) aspect ratings

A latent subset variable can be used...



...for an interpretable model (Lei et al., 2016; Chen et al., 2018):

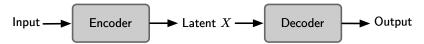
Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing.

Smells like Wheat and European hops , a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

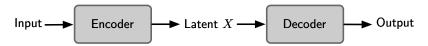
Models with structured latent variables

More generally, we can consider encoder-decoder models...

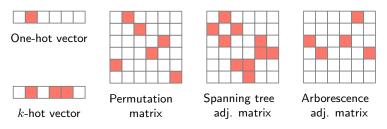


Models with structured latent variables

More generally, we can consider encoder-decoder models...



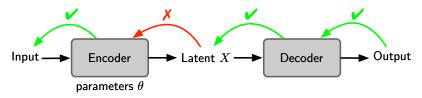
...where the latent X is another binary array, for example...



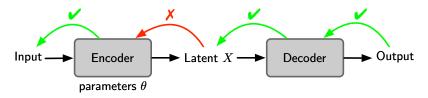
Learning the parameters $\boldsymbol{\theta}$ requires backpropagating through X...

This is difficult, because...

Learning the parameters $\boldsymbol{\theta}$ requires backpropagating through X...



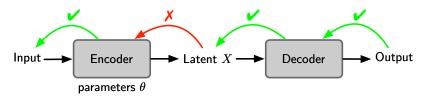
Learning the parameters $\boldsymbol{\theta}$ requires backpropagating through X...



This is difficult, because...

REINFORCE is high variance.

Learning the parameters θ requires backpropagating through X...



This is difficult, because...

- REINFORCE is high variance.
- No unbiased reparameterization gradient for discrete X.

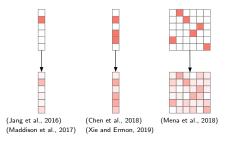
Solution: Grad. estimation with Stochastic Softmax Tricks

Relax discrete X to continuous X_t to admit biased gradient...

Solution: Grad. estimation with Stochastic Softmax Tricks

Relax discrete X to continuous X_t to admit biased gradient...

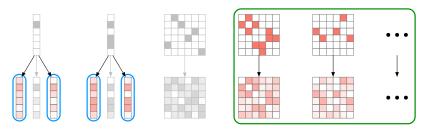
Our framework generalizes previous work on relaxations...



Solution: Grad. estimation with Stochastic Softmax Tricks

Relax discrete X to continuous X_t to admit biased gradient...

Our framework generalizes previous work on relaxations...



...and includes new relaxations and new structured variables.

Stochastic Argmax Tricks (SMTs)

SMTs reparameterize X as solution to a random linear program...

$$X = \arg\max_{x \in \mathcal{X}} U^T x.$$

...where the U induces a distribution over $\mathcal X$ (Hazan et al., 2016).

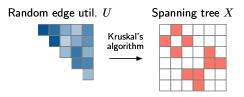
Stochastic Argmax Tricks (SMTs)

SMTs recover the Gumbel-Max trick in the one-hot case...

Stochastic Argmax Tricks (SMTs)

SMTs recover the Gumbel-Max trick in the one-hot case...

...and generalize it to other structured X...



...for which efficient linear solvers are available.

SSTs relax a given SMT...

$$X_t = \arg \max_{x \in \text{conv}(\mathcal{X})} U^T x - t \underbrace{f(x)}_{\text{strongly convex regularizer}}$$

...to relax discrete X to continuous X_t ...

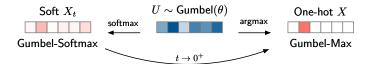
SSTs relax a given SMT...

$$X_t = \arg \max_{x \in \text{conv}(\mathcal{X})} U^T x - t \underbrace{f(x)}_{\text{strongly convex regularizer}}$$

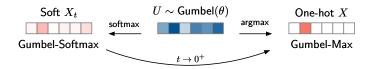
...to relax discrete X to continuous X_t ...

... which admits a reparameterization gradient.

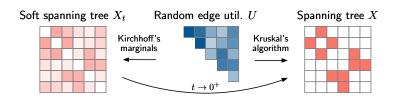
SSTs recover the Gumbel-Softmax in the one-hot case...



SSTs recover the Gumbel-Softmax in the one-hot case...



...to generalize it to other structured X...



...when efficient solvers are available given f and \mathcal{X} .

We use SSTs to train deep latent variable models over structured discrete domains...

• NRI (Kipf et al., 2018) for graph layout

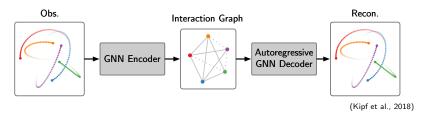
- NRI (Kipf et al., 2018) for graph layout
- Unsupervised parsing on ListOps (Nangia and Bowman, 2018)

- NRI (Kipf et al., 2018) for graph layout
- Unsupervised parsing on ListOps (Nangia and Bowman, 2018)
- L2X (Chen et al., 2018) aspect rating

- NRI (Kipf et al., 2018) for graph layout
- Unsupervised parsing on ListOps (Nangia and Bowman, 2018)
- L2X (Chen et al., 2018) aspect rating

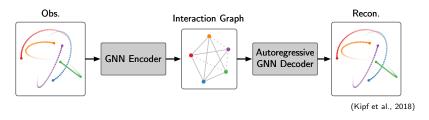
Neural Relational Inference (NRI)

NRI is a VAE with a latent graph...

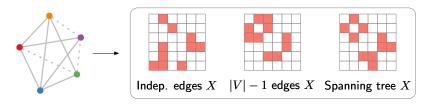


Neural Relational Inference (NRI)

NRI is a VAE with a latent graph...



...on which we can impose varying degrees of structure...



NRI: Data

Consider particle trajectories from a force-directed algorithm...

...where the latent graph is a spanning tree.

NRI: Results

More structured models improve structure recovery...

NRI: Results

More structured models improve structure recovery...

...and performance on the task...

Edge Distribution	ELBO	Edge Prec.	Edge Rec.
Indep. Edges	-1370 ± 20	48 ± 2	93 ± 1
$\left V\right -1$ edges	-2100 ± 20	41 ± 1	41 ± 1
Spanning Tree	-1080 ± 110	91 ± 3	91 ± 3

L2X: Results

More structured models select contiguous phrases...

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing. Smells like Wheat and European hops, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

L2X: Results

More structured models select contiguous phrases...

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing.

Smells like Wheat and European hops, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

...and select more relevant words to improve performance...

	k	k = 5		k = 10		k = 15	
Relaxation	MSE	Subs. Prec.	MSE	Subs. Prec.	MSE	Subs. Prec.	
L2X (Chen et al., 2018)	3.6 ± 0.1	28.3 ± 1.7	3.0 ± 0.1	25.5 ± 1.2	2.6 ± 0.1	25.5 ± 0.4	
SoftSub (Xie and Ermon, 2019)	3.6 ± 0.1	27.2 ± 0.7	3.0 ± 0.1	26.1 ± 1.1	2.6 ± 0.1	25.1 ± 1.0	
E.F. Ent. Top k	3.5 ± 0.1	28.8 ± 1.7	2.7 ± 0.1	32.8 ± 0.5	2.5 ± 0.1	29.2 ± 0.8	
Corr. Top k	2.9 ± 0.1	$\textbf{63.1} \pm \textbf{5.3}$	2.5 ± 0.1	53.1 ± 0.9	2.4 ± 0.1	$\textbf{45.5} \pm \textbf{2.7}$	

Conclusion

Gradient estimation with stochastic softmax tricks...

• ...generalizes the Gumbel-Softmax to structured spaces.

Conclusion

Gradient estimation with stochastic softmax tricks...

- ...generalizes the Gumbel-Softmax to structured spaces.
- ...admits novel relaxation for new combinatorial objects.

Conclusion

Gradient estimation with stochastic softmax tricks...

- ...generalizes the Gumbel-Softmax to structured spaces.
- ...admits novel relaxation for new combinatorial objects.
- ...gives a unified perspective on existing reparameterizations and relaxations.

References I

- J. Chen, L. Song, M. Wainwright, and M. Jordan. Learning to explain: An information-theoretic perspective on model interpretation. In *International Conference on Machine Learning*, 2018.
- A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
- T. Hazan, G. Papandreou, and D. Tarlow. Perturbations, Optimization, and Statistics. MIT Press, 2016.
- E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In *International Conference on Learning Representations*, 2016.
- T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting systems. In International Conference on Machine Learning, 2018.
- T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. arXiv preprint arXiv:1606.04155, 2016.
- C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete random variables. In *International Conference on Learning Representations*, 2017.
- G. Mena, D. Belanger, S. Linderman, and J. Snoek. Learning latent permutations with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=Byt3oJ-OW.
- N. Nangia and S. R. Bowman. Listops: A diagnostic dataset for latent tree learning. arXiv preprint arXiv:1804.06028, 2018.
- S. M. Xie and S. Ermon. Reparameterizable subset sampling via continuous relaxations. In *International Joint Conference on Artificial Intelligence*, 2019.