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Abstract as on the distributional information about the con-
texts in which they appear. Several computational
We present an incremental Bayesian model for models have been proposed that draw on one or more
the unsupervised learning of syntactic cate- of the above-mentioned properties in order to group
gories from raw text. The model draws infor- words into discrete unlabeled categories. Most ex-
mation from the distributional cues of words jsting models only intend to show the relevance of
within an utterance, while explicitly bootstrap-  gych properties to the acquisition of adult-like syn-
ping its development on its own partially- tactic categories such as nouns and verbs; hence, they
learned knowledge of syntactic categories. do not necessarily incorporate the types of learning
Testing our model on actual child-directed mechanisms used by children (Schiitze, 1993; Red-
data, we demonstrate that it is robust to noise, ington et al., 1998; Clark, 2000; Mintz, 2003; Onnis
learns reasonable categories, manages lexicaland Christiansen, 2005). For example, in contrast to
ambiguity, and in general shows learning be- the above models, children acquire their knowledge
haviours similar to those observed in children. of syntactic categories incrementally, processing the
utterances they hear one at a time. Moreover, chil-
dren appear to be sensitive to the fact that syntactic

An important open problem in cognitive science an@ﬁtegories are partially defined in terms of _other cat-
artificial intelligence is how children successfullygories, e.g., nouns tend to follow determiners, and
learn their native language despite the lack of explician be modified by adjectives.

training. A key challenge in the early stages of lan- \we thus argue that a computational model should
guage acquisition is to learn the notion of abstragk incremental, and should use more abstract cate-
syntactic categories (€.g., nouns, verbs, or determigyry knowledge to help better identify syntactic cat-
ers), which is necessary for acquiring the syntactiories. Incremental processing also allows a model
structure of language. Indeed, children as young @Sincorporate its partially-learned knowledge of cat-
two years old show evidence of having acquired gyories, letting the moddootstrapits development.
good knowledge of some of these abstract categorigs our knowledge, the only incremental model of
(Olguin and Tomasello, 1993); by around six years @htegory acquisition that also incorporates bootstrap-
age, they have learned almost all syntactic categori§ifig is that of Cartwright and Brent (1997). Their
(Kemp et al., 2005). Computational models help {@mplate-based model, however, draws on very spe-
elucidate the kinds of learning mechanisms that majfic linguistic constraints and rules to learn cate-
be capable of achieving this feat. Such studies nggries. Moreover, their model has difficulty with the
light on the possible cognitive mechanisms at wo riability of natural language data.

in human language acquisition, and also on potentialW dd h h . by developi
means for unsupervised learning of complex linguis- © address these shortcomings Dy developing an

tic knowledge in a computational system incremental probabilistic model of syntactic category

Learning the syntactic categories of words h(,%:quisition that uses ac_iomain-general learning allgo-
been suggested to be based on the morphological Lifym. The model also incorporates a bootstrapping

phonological properties of individual words, as Weﬁnechanlsm, and learns syntactic C"?‘tego“?s by |9°k'
Ing only at the general patterns of distributional sim-
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learn adult-like categories. The model’s learning trds existing clusters, or a new one:

jectory resembles some relevant behaviours seen in

children, and we also show that the categories that ~ BestCluster(F) = argmax P(k[F) (1)
our model learns can be successfully used in a lexical k

disambiguation task. wherek = 0,1,.., K, including the new cluster
, ) k = 0. Using Bayes’ rule, and dropping(F') from
2 Overview of the Computational Model the denominator, which is constant for &jlwe find:

We adapt a probabilistic incremental model of un- P(k)P(F|k)
supervised categorization (i.e., clustering) proposed P(k|F) = —pr - P(k)P(F|k)  (2)
by Anderson (1991). The original model has been

used to simulate human categorization in a variefhe prior probability ofk, P(k), is given by:
of domains, including the acquisition of verb argu-

ment structure (Alishahi and Stevenson, 2008). Our P(k) = Nk : 1<k<K (3)
adaptation of the model incorporates an explicit boot- (I-c)+cn
strapping mechanism and a periodic merge of clus- PO) = 1—c @)

ters, both facilitating generalization over input data.
Here, we explain the input to our model (Section 2.1),
the categorization model itself (Section 2.2), how w&here ny; is the number of frames i, andn is
estimate probabilities to facilitate bootstrapping (Se#?€ total number of frames observed at the time of
tion 2.3), and our approach for merging similar clugrocessing frame. Intuitively, a well-entrenched

(I—=c¢)+cn

ters (Section 2.4). (large) cluster should be a more likely candidate for
categorization than a small one. We reserve a small
2.1 Input Frames probability for creating a new cluster (Eq. 4). As the

We aim to learn categories of words, and we do th odel processes more input overall, |tshquld become
€ss necessary to create new clusters to fit the data, so

by looking for groups of similar word usages. Thu 0) decreases with la Ino eriments. we
rather than categorizing a word alone, we categorizeng ) decreases wi fge. 1n our exper S W
setc to a large value0.95, to further increase the

word tokenwith its context from that usage. The ini->~" - . o
tial input to our model is a sequence of unannotat«lz'EeILhOOd %f léfl'.ng e;(IStI]E]g cIusten_Js. |
utterances, that is, words separated by spaces. Beflgr e probability of a framer” given a clusterk,
being categorized by the model, each word usage;i ‘k)_' depends on the probab|lltles_ of_the features
the input is processed to producdrame that con- in ¥ given k. We assume that the individual fe_a—
tains the word itself (the head word of the frame) ant resn allframe are conditionally independent given
its distributional context (the two words before and’ hence:
after it). For example, in the utterance ‘I gave Josie
a present,” when processing the head wiodie we
create the following frame for input to the categoriza-

tion system:

P(F|k) = Py (wo|k) 1T P(wilk) (5)
ie{—2,-1,41,42}

where Py is the head word probability, i.e., the like-
feature| w_y w_1 wp Wi Wio lihood of seeingu, as a head word among the frames
I gave Jose a present  in clusterk. The context word probability”(w;|k) is
the likelihood of seeingy; in the:*" context position
wherew, denotes the head word feature, andz, ot the frames in clustek. Next, we explain how we

w-1, w1, w42 are the context word features. A CONggtimate each of these probabilities from the input.
text word may be ‘null’ if there are fewer than two

preceding or following words in the utterance. 2.3 Prababilities and Bootstrapping

For the head word probability’y; (wp|k), we use a
smoothed maximum likelihood estimate (i.e., the pro-
Using Anderson’s (1991) incremental Bayesian catortion of frames in clustek with head worduwy).
egorization algorithm, we learn clusters of word us=or the context word probability”(w;|k), we can
ages (i.e., the input frames) by drawing on the overadrm two estimates. The first is a simple maximum
similarity of their features (here, the head word angkelihood estimate, which enforces a preference for
the context words). The clusters themselves are r@éating clusters of frames with the same context
predefined, but emerge from similarities in the inputvords. That is, head words in the same cluster will
More formally, for each successive frant&¢in the —(——7— _ _ iy

The prior P(k) is equivalent to the prior in a Dirichlet pro-

input, pr_ocessed in thg order of the ir.1put words, Wess mixture model (Sanborn et al., 2006), commonly used for
place F' into the most likely cluster, either from thesampling clusters of objects.

2.2 Categorization



tend to share the same adjacent words. We call timgorrectly generalizing, leading to clustering errors
word-based estimatB,, ;4. which may be difficult to overcome. Children face
Alternatively, we may consider the likelihood ofa similar problem in early learning, but there is ev-
seeing not just the context wotg, butsimilarwords idence that they may manage the problem by using
in that position. For example, if; can be used as aconservative strategies (see, e.g., Tomasello, 2000).
noun or a verb, then we want the likelihood of seeinghildren may form specific hypotheses about each
othernouns or verbs in positiohof frames in cluster word type, only later generalizing their knowledge to
k. Here, we use the partial knowledge of the learnesiimilar words. Drawing on this observation, we form
clusters. That is, we look over all existing clustersarly small clusters specific to the head word type,
k', estimate the probability that; is the head word then later aid generalization by merging these smaller
of frames ink’, then estimate the probability of usingclusters. By doing this, we ensure that the model only
the head words from those other clusters in positiogroups words of different types when there is suffi-
in clusterk. We refer to this category-based estimatgient evidence for their contextual similarity.
as Py Thus, when a cluster has been newly created, we
require that all frames put into the cluster share the
Pear(wilk) =Y Pu(wilK')Pi(K'|k) ~ (6) same head word tygfeWhen clusters are small, this
K prevents the model from making potentially incorrect
. . .- generalizations to different words. Periodically, we
where]%(k’]k:l)p the_ _propa_b|||ty of finding USageSeyaluate a set of reasonably-sized clusters, and merge
from clusterk” in position given clusterk. To sup- airs of clusters that have highly similar contexts (see

port this we record the categorization decisions t Qiow for details). If the model decides to merge two

model has made. When we categorize the framesc%]sters with different head word types—e.g., one

an utterance, we get a sequence of clusters for t@fﬂster with all instances aflog and another with
utterance, which gives additional information to SURsat it has in effect made a decision to generalize
plement t,he frame. We use th!s |r_1format|or_1 to ?Stfhtuitively, the model has learned that the contexts
mate Py (k'|k) for future (_:atggorlzatlons, again usingy, the newly merged cluster apply to more than one
a smoothed maximum likelihood formula. word type. We now say thatnyword type could be

In contrast to theP,,,q estimate, the estimate N3 member of this cluster, if its context is sufficiently

Eq. (6) _prefers clusters Of_ frames that use the sa fhilar to that of the cluster. Thus, when categoriz-
categoriesas context. While some of the results Oha a new word token (represented as a frame

these preferences will be the same, the latter approacfl model can choose from among the clusters with

lets the_ model make second-order mference_s ab%%atching head word, and any of these ‘generalized’
categories. There may be no context words in co [Usters that contain mixed head words

mon between the current frame and a potential clus-
ter, but if the context words in the cluster have be%l
found to be distributionally similar to those in theth
frame, it may be a good cluster for that frame.

We equally weight the word-based and th
category-based estimates Bfw;|k) to get the like-
lihood of a context word; that is:

Periodically, we look through a subset of the clus-
rs to find similar pairs to merge. In order to limit
e number of potential merges to consider, we only
examine pairs of clusters in which at least one cluster
as changed since the last check. Thus, after pro-
cessing evernyl00 frames of input, we consider the
clusters used to hold those recéfd frames as can-
1 1 didates to be merged with another cluster. We only
P(wilk) ~ §Pw07‘d(wi‘k) T §Pcat(wi‘k) (7) " consider clusters of reasonable size (here, at lgast
frames) as candidates for merging. For each candi-
This way, the model sees an input utterance Simuwg’ate pair of clustersk; and ko, we first evaluate a
neously as a sequence of words and as a sequencgefristic merge score that determines if the pair is
categories. It is thé”,, component, by using devel-gppropriate to be merged, according to some local
oping category knowledge, that yields the bootstragriteria, i.e., the size and the contents of the candi-
ping abilities of our model. date clusters. For each suggested merge (a pair whose
merge score exceeds a pre-determined threshold), we
then look at the set of all clusters, th®bal evidence,
Our model relies heavily on the similarity of worcko decide whether to accept the merge.
contexts in order to find category structure. In nat- Tpe merge score combines two factors: the en-

ural language, these context features are highly vaflenchment of the two clusters, and the similarity of
able, so itis difficult to draw consistent structure from

- . H . .
the input in the early stages of an incremental model. 21, yever, a word type may exist in several clusters (e.g., for

When little information is available, there is a risk oflistinct noun and verb usages), thus handling lexical anityig

2.4 Generalization



their context features. The entrenchment measur8 (years;months) and 3;0. There are 34 one-hour
identifies clusters that contain enough frames to sh@assions per child over the course of a year. The age
a significant trend. We take a sigmoid function overange of the children roughly corresponds with the
the number of frames in the clusters, giving a sofiges at which children show the first evidence of syn-
threshold approaching for small clusters and for tactic categories.
large clusters. The similarity measure identifies pairs We extract the mothers’ speech from each of the
of clusters with similar distributions of word and cattranscripts, then concatenate the input of all 12 chil-
egory contexts. Given two clusters, we measure theen (all of Anne’s sessions, followed by all of Aran’s
symmetric Kullback-Leibler divergence for each corsessions, and so on). We remove all punctuation. We
responding pair of context feature probabilities (inspell out contractions, so that each token in the input
cluding the category contexi3 (k’|k), 8 pairs in to- corresponds to only one part-of-speech (PoS) label
tal), then place the sum of those measures on anotfrwun, verb, etc.). We also remove single-word ut-
sigmoid function. The merge score is the sum of therances and utterances with a single repeated word
entrenchment and similarity measures. type, since they contain no distributional informa-
Since it is only a local measure, the merge scoretisn. We randomly split the data into development
not sufficient on its own for determining if a mergeand evaluation sets, each containing approximately
is appropriate. For each suggested merge, we tl883,000 tokens. We use the development set to fine-
examine the likelihood of a sample of input frametune the model parameters and develop the experi-
(here, the lasi00 frames) under two states: the sahents, then use the evaluation set as a final test of
of clusters before the merge, and the set of clustershie model. We further split the development set into
the merge is accepted. We only accept a merge ifaibout 672,000 tokens (about 8,000 types) for training
results in an increase in the likelihood of the sampbnd 11,000 tokens (1,300 types) for validation. We
data. The likelihood of a sample set of framés, split the evaluation set comparably, into training and

over a set of clusters, is calculated as in: test subsets. All reported results are for the evaluation
set. A conservative estimate suggests that children

P©S) = [I D PFIk)Pk) (8) are exposed to at least 1.5 million words of child-
FeSkeK directed speech annually (Redington et al., 1998), so

this corpus represents only a small portion of a child’s

available input.

To test our proposed model, we train it on a sample of

language representative of what children would he&, Experiment 1: Adult Categories

and _evaluate |_ts c_ategorlzayon a_b|I|t|es. We h_a\éf_:l M ethods

multiple goals in this evaluation. First, we determine

the model’s ability to discover adult-level syntacti¥Ve use three separate versions of the categorization

categories from the input. Since this is intended to feodel, in which we change the components used to

a cognitively plausible learning model, we also constimate the context word probability? (w;|k) (as

pare the model’s qualitative learning behaviours wit#sed in Eq. (5), Section 2.2). In theord-based

those of children. In the first experiment (Section 4jodel, we estimate the context probabilities using

we compare the model’s categorization with a gonly the words in the context window, by directly

standard of adult-level syntactic categories and exaH$ing the maximum-likelihood”,,., estimate. The

ine the effect of the bootstrapping component. Tmpotstrapmodel uses only the existing clusters to es-

second experiment (Section 5) examines the moddi®ate the probability, directly using the&..; esti-

development of three specific parts of speech. D@&ate from Eq. (6). Theombinationmodel uses an

velopmental evidence suggests that children acqu@ually-weighted combination of the two probabili-

different syntactic categories at different ages, so W€s, as presented in Eq. (7).

compare the model’s learning rates of nouns, verbs We run the model on the training set, categoriz-

and adjectives. Lastly, we examine our model's abilRg each of the resulting frames in order. After every

ity to handle lexically ambiguous words (Section 6)10,000 words of input, we evaluate the model’s cate-

English word forms commonly belong to more thaforization performance on the test set. We categorize

one syntactic category, so we show how our modegch of the frames of the test set as usual, treating the

uses context to disambiguate a word’s category. text as regular input. So that the test set remains un-
In all experiments, we train and test the model u§een, the model does not record these categorizations.

ing the Manchester corpus (Theakston et al., 2001 i

from the CHILDES database (MacWhinney, 2000f-2 Evaluation

The corpus contains transcripts of mothers’ conveFhe PoS tags in the Manchester corpus are too fine-

sations with 12 British children between the ages gfained for our evaluation, so for our gold standard

3 Evaluation Methodology



we map them to the following 11 tags: noun, ve 4,

T

auxiliary, adjective, adverb, determiner, conjunctic || — Comoination
negation, preposition, infinitivio, and ‘other.” When o151~ — — Bootstrap

we evaluate the model’s categorization performar
we have two different sets of clusters of the words _
the test set: one set resulting from the gold stand =™ °*| [y T ]
and another as a result of the model’s categorizat ‘
We compare these two clusterings, using the adju 0957
Rand index (Hubert and Arabie, 1985), which mu
sures the overall agreement between two cluster 0 ‘ : : : : :

. . 0 1 2 3 4 5 6
of a set of data points. The measure is ‘corrected Training set size (words) 10°
chance, so that a random grouping has an expected

score of zero. This measure tends to be very copgure 1: Adjusted Rand Index of each of three mod-

servative, giving values much lower than an intuitivels’ clusterings of the test set, as compared with the
percentage score. However, it offers a useful relatiyeys tags of the test data.

comparison of overall cluster similarity.

43 Results 5 Experiment 2: Learning Trends

Fi 1 qi the adiusted Rand £ th thA common trend observed in children is that differ-
\gure 1 gives Ine adjusted Rand scores ot the thigg syntactic categories are learned at different rates.
model variantsword-based bootstrap and combi-

nation Higher values indicate a better fit with tha " o en aPpearto have learned the category of nouns

o . % 23 months of age, verbs shortly thereafter, and
gold-standard categorization scheme. The adjus%ﬁectives relatively late (Kemp et al., 2005). Our

Rand score is corrected for chance, thus providin 8al in this experiment is to look for these specific

built-in baseline measure. Since the expected sc €nds in the behaviour of our model. We thus simu-
for a random clustering is ZEr0, all three model Vallite an experiment where a child uses a novel word’s
ants operatg at .above-baselme performance. linguistic context to infer its syntactic category (e.g.,
As seen in Figure 1, the word-based model gaingmasello et al., 1997). For our experiment, we ran-
an early advantage in the comparison, but its pgfomly generate input frames with novel head words
formance approaches a plateau at around 200,Qf{hg contexts associated with nouns, verbs, and ad-
words of input. This suggests that while simplgctives, then examine the model's categorization in
word distributions provide a reliable source of inforpach case. We expect that our model should approxi-
mation early in the model's development, the infoimate the developmental trends of children, who tend

mation is not sufficient to sustain long-term learng |earn the category of ‘noun’ before ‘verb, and both
ing. The bootstrap model learns much more slowlys these before ‘adjective.

which is unsurprising, given that it depends on hav-
ing some reasonable category knowledge in orders@ Methods

develop its clusters—leading to a chicken-and-e i i
g&e generate new input frames using the most com-

problem. However, once started, its performance i X ) e
proves well beyond the word-based model’s platearlﬁ‘.on syntactic patterns in the training data. For each

These results suggest that on its own, each com;%-the noun, verb, and adjective categories (from the
gold standard), we collect the five most frequent PoS

nent of the model may be effectively throwing awa ) )
useful information. By combining the two modelsS€dUences in which these are used, bounded by the

the combination model appears to gain compleme'r‘|§L_Jal four-wor_d context window. For example, the
djective set includes the sequence 'V Dedj N

tary benefits from each component, outperformi
y P P [I', where the sentence ends after the N. For each

both. The word-based component helps to creat X X
base of reliable clusters, which the bootstrap comp‘i.’)—the three categories, we generate each of 500 input

nent uses to continue development. frames by sampling one of the five PoS sequences,

ighted by f , th li ds of th
After all of the training text, the combinationWelg ec by 'requency, then sampiing words of the

. right PoS from the lexicon, also weighted by fre-
model uses 411 clusters to categorize the test tok u%ncy We replace the head word with a novel word
(compared to over 2,000 at the first test point). Whi . '

rcing the model to use only the context for cluster-
ﬁﬁs. Since the context words are chosen at random,
Thost of the word sequences generated will be novel.
This makes the task more difficult, rather than sim-
¥See www.cs.toronto.edu/ chris/syncat for examples. ply sampling utterances from the corpus, where rep-

tokens are placed in the 25 most populated cluster



T

etitions are common. While a few of the sequen (5 ,
may exist in the training data, we expect the mo || — Louns
to mostly use the underlying category information 0.2F| - — _ adjectives
cluster the frames.

We intend to show that the model uses contex
find the right category for a novel word. To evalu:
the model's behaviour, we let it categorize each
the randomly generated frames. We score each fr  o.os}
as follows: if the frame gets put into a new clust
it earns score zero. Otherwise, its score is the | %
portion of frames in the chosen cluster matching Training set size (words) «10°
correct part of speech (we use a PoS-tagged version
of the training corpus; for example, a noun frame pltigure 2: Comparative learning trends of noun, verb,
into a cluster with 60% nouns would get 0.6). We reand adjective patterns.
port the mean score for each of the noun, verb, and
adjective sets. Intuitively, the matching score ind('%)(

0.15¢

0.1f

Matching score

cates how well the model recognizes that the giv rec0\|1ery2églcs)so Vc\)/t;ser\t/ﬁd in dchllldren; Sas’ el.g.,
contexts are similar to input it has seen before. If the aSelo, )- en the model merges two clus-

model clusters the novel word frame with others of"™S’ the contents of the resulting cluster can initially
the right type, then it has formed a category for t e quite heterogeneous. Furthermore, the new cluster
contextual infé)rmation in that frame IS much larger, so it becomes a magnet for new cate-

We use the full combination model (Eq. (7)) tcgorizations. This results in overgeneralization errors,

evaluate the learning rates of individual parts (ﬁ'Ving th_e pe_riodic qlrops seen in Figure 2. While our
speech. We run the model on the training subset 3 mulation in Section 2.4 aims to prevent such er-

the evaluation corpus. After every 10,000 words prs, they are likely to occur on occasion. Eventually,

input, we use the model to categorize the 1,500 ca ie model recovers from these errors, and it is worth

text frames with novel words (500 frames each f&oting that the fluctuations diminish over time. As the

noun, verb, and adjective). As in experiment 1 tH@Odel gradually improves with more input, the dom-
modél does’ not record these categorizations " “Inant clusters become heavily entrenched, and incon-

sistent merges are less likely to occur.
5.2 Results

Figure 2 shows the mean matching scores for ea%h
of the tested parts of speech. Recall that since thbe category structure of our model allows a single
frames each use a novel head word, a higher mateverd type to be a member of multiple categories. For
ing score indicates that the model has learned to cexample kisscould belong to a category of predom-
rectly recognize the contexts in the frames. This do#gntly noun usagesCan | have a kiss? and also
not necessarily mean that the model has learned dim-a category of verb usagekigs me). As a result,
gle, complete categories of ‘noun,’ ‘verb,” and ‘adthe model easily represents lexical ambiguity. In this
jective,” but it does show that when the head worexperiment, inspired by disambiguation work in psy-
gives no information, the model can generalize basebolinguistics (see, e.g., MacDonald, 1993), we ex-
on the contextual patterns alone. The model learamine the model's ability to correctly disambiguate
to categorize novel nouns better than verbs until latategory memberships.
in training, which matches the trends seen in children.
Adjectives progress slowly, and show nearly no learR:l Methods
ing ability by the end of the trial. Again, this appear§iven a word that the model has previously seen as
to reflect natural behaviour in children, although thearious different parts of speech, we examine how
effect we see here may simply be a result of the overell the model can use that ambiguous word’s con-
all frequency of the PoS types. Over the entire corptext to determine its category in the current usage.
(development and evaluation), 35.4% of the word t&-or example, by presenting the wokiks in sepa-
kens are nouns and 24.3% are verbs, but only 2.9%e noun and verb contexts, we expect that the model
are tagged as adjectives. The model, and similariyshould categoriz&issas a noun, then as a verb, re-
child, may need much more data to learn adjectivepectively. We also wish to examine the effect of the
than is available at this stage. target word’s lexical bias, that is, the predominance of
The scores in Figure 2 tend to fluctuate, parti@ word type to be used as one category over another.
ularly for the noun contexts. This fluctuation corAs with adults, ifkissis mainly used as a noun, we
responds to periods of overgeneralization, followeskpect the model to more accurately categorize the

Experiment 3: Disambiguation
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Figure 3: Syntactic category disambiguation. Shown areptbeortions of nouns and verbs in the chosen
clusters for ambiguous words used in either noun (N) or Vlcontexts.

word in a noun context than in a verb context. novel word conditions, we see that the clusters cho-
We focus on noun/verb ambiguities. We artificiallygen for the noun context frames (labeled N) contain
generate input frames for noun and verb contexts @ere nouns than verbs, and the clusters chosen for
in experiment 2, with the following exceptions. Tdhe verb context frames (V) contain more verbs than
make the most use of the context information, we atouns. This suggests that although the model’s past
low no null words in the input frames. We also ensurexperience with the head word is not sufficiently in-
that the contexts are distinctive enough to guide ditprmative, the model can use the word’s context to
ambiguation. For each PoS sequence surroundingisambiguate its category. In the ‘unambiguous’ and
noun (e.g., ‘V Dethead Prep Det’), we ensure thatthe ‘biased’ conditions, the head words’ lexical biases
over 80% of the instances of that pattern in the cowe too strong for the model to overcome.
pus are for nouns, and likewise for verbs. However, the results show a realistic effect of the
We test the model’'s disambiguation in six coriexical bias. Note the contrasts from the ‘noun only’
ditions, with varying degrees of lexical bias. uncondition, to the ‘noun biased’ condition, to ‘equibi-
ambiguous (‘noun/verb only’) conditions test wordgsed’ (and likewise for the verb biases). As the lex-
seen in the corpus only as nouns or verbs (10 worig8l bias weakens, the counter-bias contexts (e.g., a
each). ‘Biased’ conditions test words with a clegfoun bias with a verb context) show a stronger ef-
bias (15 with average 93% noun bias; 15 with avetect on the chosen clusters. This is a realistic effect
age 84% verb bias). An ‘equibiased’ condition usesaf disambiguation seen in adults (MacDonald, 1993).

words of approximately equal bias, and a novel wofsltrongly biased words are more difficult to categorize
condition provides an unbiased case. in conflict with their bias than weakly biased words.

For the six sets of test words, we measure the ef-
fect of placing each of these words in both noun arfd Related Work

verb contexts. That is, each word in each conditi - , I

i everal existing computational models use distribu-
was used as the head word in each of the 500 noun ) . ; ,
) . . tional cues to find syntactic categories. Schitze
and 500 verb disambiguating frames. For exampl

) &993) employs co-occurrence statistics for common
we create 500 frames wheb@okis used as a noun, ; . . .
L words, while Redington et al. (1998) build word dis-
and 500 frames where it is used as a verb. We th

) o fibutional profiles using corpus bigram counts. Clark
use the fully-trained ‘combination’ model (Eq. (7)) to2000) also builds distributional profiles, introducing

categorize each frame. Unlike in the previous eXp?__élm iterative clustering method to better handle am-
ment, we do not let the model create new clusters. For. . .

o o biguity and rare words. Mintz (2003) shows that

each frame, we choose the best-fitting existing clus- .

even very simple three-word templates can effec-

ter, then examine that cluster's contents. As in eﬁ- ly define syntactic categories. Each of these mod-

tive, syntactic categories are learnable. However, the
specific learning mechanisms they use, such as the
hierarchical clustering methods of Redington et al.
Figure 3 presents the measured PoS proportions (®998), are not intended to be cognitively plausible.
each of the six conditions. For both the equibias andIn contrast, Cartwright and Brent (1997) propose

6.2 Reaults



an incremental model of syntactic category acquisnantic features, thereby allowing the model to draw
tion that uses a series of linguistic preferences to filmth correlations between semantic and syntactic cate-
common patterns across sentence-length templaggsies in learning.

Their model presents an important incremental al-

gorithm which is very effective for discovering cat/ACknowledgments

egories in artificial languages. However, the modekg/e thank Afra Alishahi for valuable discussions,
rellgnce on templates limits its appllcablllty to traNzng the anonymous reviewers for their comments.
scripts of actual spoken language data, which contajfle gratefully acknowledge the financial support of

high variability and noise. NSERC of Canada and the University of Toronto.
Recent models that apply Bayesian approaches

to PoS tagging are not incremental and assumeR&ferences
fixed number of tags (Goldwater and Griffiths, 20074lishahi, A. and S. Stevenson 2008. A computational
Toutanova and Johnson, 2008). In syntactic cate-model for early argument structure acquisitioGog-

gory acquisition, the true number of categories is un- :Iitive chergeigé?- e adan 0
H H naerson, J. K. . e a aptlve nature of human cate-
known, and must be inferred from the input. gorization.Psychological Reviey®8(3):409-429.
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