
Structured Generative Models of Natural Source Code

Supplementary Materials for “Structured
Generative Models of Natural Source Code”

EM Learning for Latent Traversal Variable
LTTs
Here we describe EM learning of LTTs with latent traversal vari-
ables. Consider probability of a with deterministic traversal vari-
ables hd

i and latent traversal variables hl
i (where hi represents the

union of {hl
i} and hd

i):

Â
h0:N

p(n1,h0)
N

’
i=1

p(Ci |ni,hi)p(hl
i |hl

i�1)

⇥p(hd
i |h0:i�1,n1:i, ,a1:t) (4)

Firstly, the p(hd
i | ·) terms drop off because as above we can use the

compiler to compute the AST from a then use the AST to deter-
ministically fill in the only legal values for the hd

i variables, which
makes these terms always equal to 1. It then becomes clear that
the sum can be computed using the forward-backward algorithm.
For learning, we follow the standard EM formulation and lower
bound the data log probability with a free energy of the following
form (which for brevity drops the prior and entropy terms):

N

Â
i=2

Â
hl

i ,h
l
i�1

Qi,i�1(hl
i ,h

l
i�1) logP(hl

i |hl
i�1)

+
N

Â
i=1

Â
hl

i

Qi(hl
i) logp(Ci |ni,hi) (5)

In the E step, the Q’s are updated optimally given the current pa-
rameters using the forward backward algorithm. In the M step,
given Q’s, the learning decomposes across productions. We rep-
resent the transition probabilities using a simple tabular represen-
tation and use stochastic gradient updates. For the emission terms,
it is again straightforward to use standard log-bilinear model train-
ing. The only difference from the previous case is that there are
now K training examples for each i, one for each possible value
of hl

i , which are weighted by their corresponding Qi(hl
i). A sim-

ple way of handling this so that log-bilinear training methods can
be used unmodified is to sample hl

i values from the corresponding
Qi(·) distribution, then to add unweighted examples to the train-
ing set with hl

i values being given their sampled value. This can
then be seen as a stochastic incremental M step.

More Experimental Protocol Details
For all hyperparameters that were not validated over (such as
minibatch size, scale of the random initializations, and learning
rate), we chose a subsample of the training set and manually chose
a setting that did best at optimizing the training log probabilities.
For EM learning, we divided the data into databatches, which con-
tained 10 full programs, ran forward-backward on the databatch,
then created a set of minibatches on which to do an incremental M
step using AdaGrad. All parameters were then held fixed through-
out the experiments, with the exception that we re-optimized the
parameters for the learning that required EM, and we scaled the
learning rate when the latent dimension changed. Our code used
properly vectorized Python for the gradient updates and a C++
implementation of the forward-backward algorithm but was oth-
erwise not particularly optimized. Run times (on a single core)
ranged from a few hours to a couple days.

Smoothed Model
In order to avoid assigning zero probability to the test set, we as-
sumed knowledge of the set of all possible tokens, as well as all
possible internal node types – information available in the Roslyn
API. Nonetheless, because we specify distributions over tuples of
children there are tuples in the test set with no support. Therefore
we smooth every p(Ci |hi,ni) by mixing it with a default distribu-
tion pde f (Ci |hi,ni) over children that gives broad support.

pp (Ci |hi,ni) =

p p(Ci |hi,ni)+(1�p)pde f (Ci |hi,ni) (6)

For distributions whose children are all 1-tuples of tokens, the
default model is an additively smoothed model of the empiri-
cal distribution of tokens in the train set. For other distributions
we model the number of children in the tuple as a Poisson dis-
tribution, then model the identity of the children independently
(smoothed additively).

This smoothing introduces trees other than the Roslyn AST with
positive support. This opens up the possibility that there are mul-
tiple trees consistent with a given token sequence and we can no
longer compute logp(a) in the manner discussed in Section 5.
Still we report the log-probability of the AST, which is now a
lower bound on logp(a).

Parent Kind % Log prob Count
(IdentifierToken, global) 30.1 17518

(IdentifierToken, local) 10.9 27600
Block 10.6 3556

NumericLiteralToken 4.3 8070
Argument 3.6 10004

PredefinedType 3.0 7890
IfStatement 2.9 2204

AssignExpression 2.4 2747
ExpressionStatement 2.1 4141
EqualsValueClause 2.0 3937
StringLiteralToken 1.9 680

AddExpression 1.9 1882
ForStatement 1.6 1759

Figure 9. Percent of log probability contributions coming from
top parent kinds for LTT-HiSeq-Scope (50) model on test set.

Structured Generative Models of Natural Source Code

for (int i = 0 ; i < words . Length ; ++ i) i = i . Replace ("X" , i) ;

for (int j = 0 ; j < words . X ; j ++) {

if (j [j] == - 1) continue ;

if (words [j] != words [j]) j += thisMincost (1) ;

else {

j = (j + 1) % 2 ;

words [j + 1] += words [0] ;

}

}

for (int j = words ; j < words . Pair ; ++ j)

for (int i = 0 ; i < words . Length ; ++ i) {

isUpper (i , i) ;

}

for (int i = 0 ; i < words . Length ; ++ i) {

words [i , i] = words . Replace ("*" , i * 3) ;

}

for (int j = 360 ; j < j ;) {

if (! words . ContainsKey (j)) {

if (words . at + " " + j == j) return ume (j , j) ;

} else {

j = 100 ;

}

}

for (int c = 0 ; c < c ; ++ c)

for (int i = 0 ; i < c ; i ++) {

if (! words [i]) i = i ;

}

for (int i = 0 ; i < words . Length ; i ++) {

i . Parse (i) ;

}

for (int i = words ; i < 360 ; ++ i) {

words [i] = words [i] ;

i = 4 ;

}

Figure 10. More example for loops generated by LTT-HiSeq-Scope (50). Whitespace edited to improve readability.

Structured Generative Models of Natural Source Code

using System ;

using System . Collections . Text ;

using System . Text . Text ;

using System . Text . Specialized ;

using kp . Specialized ;

using System . Specialized . Specialized ;

public class MaxFlow

{

public string maximalCost(int[] a, int b)

{

int xs = 0;

int board = 0;

int x = a;

double tot = 100;

for (int i = 0; i < xs; i++) {

x = Math.mask(x);

}

for (int j = 0; j < x; j++) {

int res = 0;

if (res > 0) ++res;

if (res == x) {

return -1;

}

}

for (int i = 0; i < a.Length; i++) {

if (a[i - 2].Substring(board, b, xs, b, i)[i] == ’B’) x = "NO";

else if (i == 3) {

if (i > 1) {

x = x.Abs();

}

else if (a[i] == ’Y’) return "NO";

}

for (int j = 0; j < board; j++) if (j > 0) board[i] = j.Parse(3);

}

long[] x = new int[a.Count];

int[] dp = board;

for (int k = 0; k < 37; k++) {

if (x.Contains < x.Length) {

dp[b] = 1000000;

tot += 1;

}

if (x[k, k] < k + 2) {

dp = tot;

}

}

return "GREEN";

}

}

Figure 11. Example CompilationUnit generated by LTT-HiSeq-Scope (50). Whitespace edited to improve readability.

Structured Generative Models of Natural Source Code

using System ;

using System . sampling . Specialized ;

public class AlternatingLane

{

public int count = 0 ;

int dc = { 0 , 0 , 0 , 0 } ;

double suma = count . Reverse (count) ;

public int go (int ID , int To , int grape , string [] next)

{

if (suma == 1000 || next . StartsWith . To (ID) [To] == next [To]) return ;

if (next [next] != - 1) {

next [To , next] = 1010 ;

Console . Add () ;

}

for (int i = 0 ; i < (1 << 10) ; i ++) {

if (i == dc) NextPerm (i) ;

else {

count ++ ;

}

}

return div (next) + 1 ;

}

string solve (string [] board) {

if (board [count] == ’1’) {

return 10 ;

}

return suma ;

}

}

Figure 12. Example CompilationUnit generated by LTT-HiSeq-Scope (50). Whitespace edited to improve readability.

Structured Generative Models of Natural Source Code

using System ;

using System . Collections . Collections ;

using System . Collections . Text ;

using System . Text . Text ;

public class TheBlackJackDivTwo

{

int dp = 2510 ;

int vx = new int [] { - 1 , 1 , 1 , 2 } ;

int [] i ;

int cs ;

double xy ;

int pack2 ;

long getlen (char tree) {

return new bool [2] ;

}

int getdist (int a , int splitCost)

{

if (((1 << (a + vx)) + splitCost . Length + vx) != 0)

i = splitCost * 20 + splitCost + (splitCost * (splitCost [a] - i [splitCost])) ;

int total = i [a] ;

for (int i = 0 ; i < pack2 ; i ++) {

if (can (0 , i , a , i , i)) {

total [a] = true ;

break ;

}

i [i] -= i [a] ;

total = Math . CompareTo () ;

saiki1 (a , vx , a , i) ;

}

return total + 1 < a && splitCost < a ;

}

}

Figure 13. Example CompilationUnit generated by LTT-HiSeq-Scope (50). Whitespace edited to improve readability.

