
Secure Distributed Backup:

Erasure Codes and Anonymous Message Delivery

by

Christopher Val Studholme

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2007 by Christopher Val Studholme

Abstract

Secure Distributed Backup:

Erasure Codes and Anonymous Message Delivery

Christopher Val Studholme

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2007

We address the problem of backing up one’s important data files in an efficient, secure

and robust manner by suggesting that copies of such files be sent to untrusted remote

peers over the Internet. To provide incentive for such peers to store copies of your files,

you would be required to devote some of your surplus disk space to storing copies of their

files. In this manner, your data would be distributed widely about the planet and would

thus be immune to loss due to all but the most global of disasters. We address a few of

the major challenges that must be overcome to make such a network a reality.

First, we note that since remote peers are inherently unreliable, your data files must

have some form a redundancy introduced to ensure complete recovery when needed;

however, since wholesale replication of the files is neither space nor bandwidth efficient,

we suggest the use of an erasure correcting code. We evaluate the use of a few existing

codes for this task (Chapters 2 and 3) and propose a new class of codes, called windowed

erasure codes, which aim to minimize time complexity while maintaining the greatest

probability of successful recovery (Chapter 4).

To help ensure the security of one’s data and to avoid the problem of an adversary

engaging in a selective denial of service attack against a single participant, we propose the

use of an anonymous message delivery technique for distributing file data (Chapter 6).

The protocol we propose aims to be efficient in its use of network bandwidth while

remaining secure in the face of clients who choose to collude against the others. Also, as a

ii

necessary primitive, we develop a multiparty protocol for generating secret permutations

(Chapter 5).

Finally, a practical backup application will require a method of encoding a hierarchy

of files and the changes to those files over time into a sequence of fixed length blocks to

be used with the above protocols. For this, we propose an algorithm based on a rolling

checksum which is capable of identifying and removing redundant blocks of data located

anywhere within a directory hierarchy (Chapter 7).

iii

Acknowledgements

There are so many people to thank for their help and support during the research and

writing of this thesis that I will be brief and only list the most notable. To the others,

know that I do deeply appreciate your contribution.

I wish to thank my committee members: Charlie Rackoff, Peter Marbach, and

Kumar Murty for all of their comments and direction. Also, Daniel Panario, my ex-

ternal examiner, for his careful reading of the thesis and detailed comments.

Finally, to Ian Blake, my supervisor and co-author on all of the papers to come out

of my research, I could not have asked for a better mentor and greatly appreciate all you

have done to aid in the completion of this thesis.

iv

Contents

1 Introduction 1

1.1 Deduplication . 3

1.2 Rateless Erasure Correcting Codes . 5

1.3 Anonymous Message Delivery and Retrieval 6

1.4 Outline . 9

2 Random Codes 10

2.1 Trivial Random Code . 10

2.2 Rank properties of binary matrices . 11

2.2.1 Probability of Full Rank . 12

2.2.2 Overhead . 14

2.3 Dependence on Distribution . 16

2.3.1 Wedge Distribution . 16

2.3.2 Uniform Distribution . 17

2.3.3 Horseshoe Distribution . 18

2.3.4 Other Distributions . 19

3 LT Codes 20

3.1 Soliton distribution . 20

3.1.1 Linear Time Codes . 22

3.2 Implementation and Overhead . 23

3.2.1 The Ideal Soliton Mystery . 24

3.3 Improving the LT Decoder . 27

3.3.1 Implementation . 30

3.3.2 Complexity . 31

3.3.3 Beyond Degree Two . 34

v

4 Windowed Erasure Codes 36

4.1 Windowed Matrices . 37

4.2 Rank properties of windowed matrices 37

4.3 Erasure code construction . 42

4.3.1 Encoding . 43

4.3.2 Decoding . 43

4.3.3 Avoiding Wrapping . 45

5 Secret Permutations 49

5.1 ElGamal Cryptosystem . 50

5.1.1 Security of ElGamal . 52

5.2 Secret Permutation Sharing . 56

5.2.1 Complexity . 57

5.3 Security . 58

5.3.1 Invalid permutation detection . 59

5.3.2 Privacy . 60

5.3.3 Fairness . 70

5.4 Application to Games . 72

6 Anonymous Message Delivery 73

6.1 Mixnets . 74

6.2 Dining Cryptographers . 76

6.2.1 Our Requirements . 77

6.3 Private Information Retrieval (PIR) . 79

6.3.1 Information Theoretic Privacy . 79

6.3.2 Computational Privacy and Oblivious Transfer 80

6.3.3 Private Information Storage . 82

6.4 Collusion Resistant DC-net . 82

6.5 An Efficient DC-Net . 85

6.5.1 Composite Modulus Discrete Logarithm 86

6.5.2 Basic Protocol . 87

6.5.3 Correctness . 89

6.5.4 Security . 90

6.6 Towards Efficiency and Collusion Resistance 90

vi

7 Data Backup 93

7.1 The rsync algorithm . 94

7.1.1 Rolling Checksum . 94

7.2 Using rsync for backup . 96

7.3 Choice of Block Size . 98

7.4 Implementation . 99

7.5 Empirical Results . 101

8 Open Problems 107

8.1 Erasure Codes . 107

8.2 Anonymous Message Delivery . 108

8.3 Block Based Backup . 108

8.4 Additional Challenges . 109

Bibliography 111

vii

Chapter 1

Introduction

As computer technology continues to advance, more and more of our daily experiences

are being digitized and stored within a computer. At first it was just text documents,

personal and professional correspondence for example, that was being stored, but as

computers become more powerful and storage plentiful, we are starting to store all of our

photos, music, videos and other large datasets in the computer. Also, as always-on high

bandwidth Internet connections become commonplace, we are beginning to manage our

finances and other retail errands in a paperless way using the computer.

While this trend is considered to be a net benefit to our society, there is at least one

serious maintenance issue that is often overlooked: ensuring that all of this digitized data

is properly backed up. For most companies, the loss of their records or creative output

can potentially mean the end of the company, and for this reason, companies typically

employ or outsource someone to maintain backup copies of all this critical data. For the

average individual, the loss of email or digital photos may have an emotional impact,

but the event would hardly be life threatening. However, in addition to the short term

effect of such a loss, there can also be a long term impact. The loss of family photos,

for instance, will have an affect on future generations of that family, and the loss of

data documenting events of historical significance or recording an important part of our

culture can have a detrimental impact on society as a whole.

Despite all this, many individuals are unwilling to put in the time and expense needed

to safeguard their personal data. How does one backup today’s multi-hundred gigabyte

hard drives? They could purchase a tape drive at relatively great expense, often more

than the cost of a second hard drive. Instead, many are just buying a second hard drive,

but many of the failure modes effecting a single hard drive will also take out drives near

1

Chapter 1. Introduction 2

by. Most computers come with a DVD-ROM burner and one could backup their data

to optical media, but the time commitment here is considerable, especially when one

considers that a typical hard drive holds hundreds of gigabytes while each commodity

optical disc holds less than ten. The other problem with backing up one’s data to tape

or optical disc is where to store the backup copy? Storing it in a box right next to the

computer it came from may be no better than making the backup to a second hard drive.

We mentioned earlier the increased availability of high bandwidth Internet connec-

tions. Given this, Martinian, author of DIBS (Distributed Internet Backup System) [28],

motivates the idea of backing up one’s data to the Internet:

Since disk drives are cheap, backup should be cheap too. Of course it does

not help to mirror your data by adding more disks to your own computer

because a fire, flood, power surge, etc. could still wipe out your local data

centre. Instead, you should give your files to peers (and in return store their

files) so that if a catastrophe strikes your area, you can recover data from

surviving peers.

The idea is straightforward; however, several challenging technical problems need to be

overcome to ensure such a data backup is both reliable and secure.

We envision a network that functions as follows. Each user’s directory hierarchy full

of files is efficiently encoded as a series of blocks. This encoding must, to the greatest

extent possible, remove duplicate files, duplicate blocks within files, and efficiently encode

the changes in the directory hierarchy over time. Since the data being backed up is to

be stored on untrusted remote machines, the data must be encrypted using a password

or key that is also backed up but not backed up in this same network. Since such a key

is small and static its backup is not expected to pose a serious problem.

The remote peers that are to be storing this data may come and go as they please so

we will require data blocks to be stored in a redundant manner to compensate for the

unreliability of these peers. The blocks of data will be distributed to as many remote

peers as is practical with some mechanism provided to later find and retrieve these data

blocks. Retrieval will probably entail performing some search on encrypted data [41] to

find an index that can then be used to retrieve the complete set of blocks.

To ensure the security of the backup, we have already mentioned the need to encrypt

the data blocks. We would also require some mechanism to prevent data blocks from

being linked to their source. This is to protect against selective denial of service and can

Chapter 1. Introduction 3

be accomplished either by redistribution of blocks or by the use of anonymous message

delivery techniques. Finally, to ensure peers are maintaining the data blocks they have

been entrusted to store, regular random retrieval of small numbers of blocks should be

employed to test them.

Researchers studying peer-to-peer networks have developed systems similar to the one

we have described. Most notably, Anderson describes the eternity service [2], a network

that uses redundancy and scattering techniques to preserve data essential to our culture

and history. Another related network is the PAST persistent peer-to-peer storage utility

[11]. The goal of this network is to create a robust distributed file system that allows

users to store and access their data from any location. The network that we describe

differs in that it is specific to the backup of users’ important private data.

In this dissertation we are unable to provide solutions to all of the necessary building

blocks needed for a secure distributed backup network, but we do tackle three of the

problems: efficiently encoding a collection of directories and files that change over time

as fixed size blocks, encoding those blocks with an erasure code to ensure that the data

is still recoverable in the event that some of the data sent to peers cannot be retrieved,

and the use of anonymous message delivery and retrieval techniques to protect against

data loss due to the actions of malicious adversaries.

1.1 Deduplication

To break a set of files into blocks, one might simply use the UNIX tape archive utility

tar. This tool first serializes all of the files found in a directory hierarchy, starting at a

specified root directory, along with all the metadata associated with these files (owner

and permission information) and then splits this stream of data into fixed size blocks

suitable for storage on magnetic tape.

Newer versions of tar have the ability to route the data through the compression tools

gzip or bzip2 as a means of reducing local redundancies (those found within blocks up to

about 1 megabyte in size); however, these compression tools fail to find the duplication

of entire files (larger than 1 megabyte) or significant portions of files. This is where

deduplication comes in. Also referred to as commonality factoring [18], this technique

identifies instances where entire files, or large portions of files, have been duplicated and

stored in distinct locations within a directory hierarchy.

Chapter 1. Introduction 4

Content-addressable storage file systems implement this idea at the whole file level.

Instead of referring to files by name, they are referred to by some digest of their content

(typically a cryptographic hash). Since identical files will have identical digests, they

are detected and only stored once. In this type of filesystem, directories are simply a

mapping from file name to digest (and perhaps additional metadata).

To detect if a portion of a file can be found in some other file, one needs deduplication

at the block level. The näıve approach is to simply split each file into fixed sized blocks

(say 512 bytes) and store each block in a content-addressable storage system. The file

then becomes a list of the digests of its blocks. The problem with this näıve approach is

that duplicate blocks are only found if they are aligned on block boundaries.

The deduplication technique we develop makes use of a variant of Tridgell’s rsync

algorithm [44, 45] to recognize previously seen blocks regardless of their alignment within

the file currently being processed. Such detection is critical as typical file formats are

rarely block oriented and files often change subtly by the addition or removal of a few

bytes, perhaps near the beginning of the file, changing the alignment of all blocks that

follow.

Deduplication may not be considered important when one thinks of backing up a

single person’s home directory once; however, if one is responsible for backing up the files

of multiple people at regular intervals over a long period of time, deduplication is critical

to reduce the storage space needed. Multiple people who are related in some way (e.g.

members of the same family or department) are likely to have files in common. Consider

what happens when multiple people collaborate on the creation of a document, or when

one person finds an interesting file on the Internet and decides it must be emailed to

everyone else. Also, if one is backing up the entire hard drive of multiple computers,

the software installations on those computers will have many duplicate or similar files

between them.

While the typical person’s home directory does change over time, only a small number

of their files will change from one day to the next, and even among the files that do

change, the typical change likely only affects a small portion of the file. With a good

deduplication scheme in place, people’s entire home directories can be backed up every

day while the amount of new storage space required each day is minimal.

Since the deduplication technique we describe splits a file hierarchy into fixed size

blocks, these blocks can then be encoded using an erasure code and distributed over the

Chapter 1. Introduction 5

Internet using the anonymous message delivery, techniques that will be described in the

following sections.

1.2 Rateless Erasure Correcting Codes

If data files are to be distributed to numerous nodes around the world over the Internet,

then when it comes time to recover this data we do not want the temporary unavailability

or permanent failure of some nodes to prevent successful recovery of the data. The

most effective way to protect against such failure is to encode the fixed size data blocks

produced by the deduplication algorithm with an erasure code.

An erasure correcting code is a transformation that can be performed on a message

of k blocks to produce a message of more than k blocks with the property that, from any

k of the latter blocks (or k plus a few extra blocks), the original k block message can

be recovered. We will refer to the original k message blocks as the input blocks and the

resulting encoded message as the output blocks or coded symbols. Typically, input blocks

and output blocks are the same size.

If exactly k of the output blocks are required to recover the message, we say the code

is optimal. On the other hand, if a small number of extra blocks, beyond k, are required,

the code is said to be near optimal. We will refer to the expected number of extra blocks

required as the overhead of the code.

The rate of an erasure code is the ratio of the number of input blocks to the number

of output blocks. For some erasure codes (e.g. tornado codes), the rate is specified

as a parameter of the encoder; however, with a rateless erasure code, also known as a

fountain code, the encoder can produce an extremely large (practically infinite) number

of output blocks. It is this latter class of erasure codes that we will be discussing in this

dissertation.

The output blocks of a simple random code can be constructed by merely choosing

input blocks at random (i.e. by flipping a fair coin) and summing (using sum modulo 2

— bitwise exclusive or) their contents. The resulting blocks of data along with metadata

describing which input blocks were summed are assembled to form a binary matrix within

the decoder and reduced using Gaussian elimination. Such a code is rateless and near

optimal with an overhead of approximately 2 extra coded symbols (independent of k).

The downside of such a code is the high decoder complexity of O (k2) data block sums.

Chapter 1. Introduction 6

Luby greatly reduces decoder complexity with his LT codes [24], but this comes at

the expense of overhead. Such a trade-off is justified, however, when one has a decoder

implemented in an embedded device with limited computation and memory resources

that can wait around for the additional output blocks necessary to recover the data.

A good example of this is the transmission of updated map data through satellites to

vehicles with on board mapping systems. Each vehicle will switch to the updated maps

as soon as they have had enough exposure to the satellite data being streamed down to

them.

While LT codes reduce decoder complexity to O (k log k), Online codes [30] and Rap-

tor codes [38] reduces complexity to linear time. Both of these codes employ an outer

code to first expand the message by adding a few auxiliary blocks, creating an augmented

message. Then, using a variant of LT codes as their inner code, they encode the aug-

mented message. The decoder need not recover the entire augmented message as the

outer code can make use of auxiliary blocks to recover any missing input blocks. The

reduction in decoder complexity that results comes at the further expense of overhead.

Table 1.1 summarizes the important properties of these erasure codes, including our

contribution, a new erasure code named Windowed codes. Described in Chapter 4, this

new class of codes provides an improvement in decoder complexity over random codes

without sacrificing the low overhead such codes achieve. While low decoder complexity

is important to ensure the recovery of backed up data is possible with commonly avail-

able desktop and server class computer systems, we believe that maintaining the lowest

possible overhead is also critical to ensure the data can be recovered even in the case

where an absolute minimum number of output blocks are available.

1.3 Anonymous Message Delivery and Retrieval

When distributing blocks of data to peers it is important to ensure that the blocks are

widely and uniformly distributed according to multiple regional classifications simulta-

neously. That is, the blocks should be sent to a variety of different geographic regions,

countries, companies, good guys, bad guys, and through many different network carriers.

We mention good guys and bad guys to illustrate that one might not be able to avoid

sending blocks to their adversary (regardless of which one that is). Because of this, one

must attempt to distribute the blocks uniformly to ensure that few blocks are distributed

to an adversary and that the damage that can be done by that adversary is limited.

Chapter 1. Introduction 7

Erasure Code Encoder Complexity Decoder Complexity Overhead

Random O (log k) O (k2) O (1)

Windowed O (log k) O
(
k
√

k
)

O (1)

LT O (log k) O (k log k) O
(√

k
)

Online/Raptor O (1) O (k) O (k)

Table 1.1: Complexity and overhead for various classes of erasure codes on k input blocks.

Encoder complexity is per coded symbol while decoder complexity is overall. Overhead

is the expected number of additional coded symbols required to successfully recover the

input blocks.

Using anonymous message delivery techniques to distribute blocks of data helps pre-

vent other parties from linking those blocks to each other and to their source. If an

adversary can determine such links, the adversary may attempt to redirect or collect all

blocks produced by an individual, thus nullifying any attempts at uniform distribution

and reducing the probability of successful recovery.

Additionally, if the links between blocks and their source are to remain hidden even

after blocks are fetched by the source (to recover from some sort of loss) or by some

other party (perhaps as part of a content distribution network), some form of private

information retrieval (PIR) must be used. In Chapter 6 we describe some of the existing

PIR schemes.

For anonymous message delivery, we consider two existing techniques, mixnets and

DC-nets, both introduced by Chaum in the 1980s. A mixnet [7] is a network of mix nodes,

each of which engages in the activity of receiving messages, transforming (i.e. decrypting)

and mixing the messages, and then sending the messages to the next node on the way

to their destination. Obtaining anonymity from a mixnet requires that the user trust at

least one mix node to not reveal the mapping from input to output. Because of this, a

message is typically routed through many mix nodes, and the only way to really ensure

it passes through at least one trusted node is for the user to operate a node themself.

Passing messages through a mixnet has a high cost in terms of bandwidth with the total

bandwidth being the size of the message multiplied by the length of its path through

the mixnet. If every one of n users wants to send a message and every one of them also

wants to be a node along the path, the total cost is n2 times the size of a message.

Chapter 1. Introduction 8

The alternative for anonymous message delivery is a dining cryptographers network

(DC-net) [8]. The motivation for this type of protocol is a group of cryptographers out

at dinner. They are informed that an anonymous benefactor has paid for the dinner, and

the group wishes to determine if this benefactor was one of them or an adversary. In this

situation, the message can either be thought of as being a single bit, everyone submits

a message and the sum modulo 2 is revealed, or the message is 1 and either exactly one

of them has sent this message or none of them has. The latter interpretation is more

insightful when one considers extending the protocol to multi-bit messages.

If exactly one party sends a message in a particular round, the message is received by

all, but if more than one party attempts to disseminate a message, a collision occurs and

the messages are garbled. To support multiple messages to be sent by multiple parties,

the parties must first order themselves, but if this ordering is known to all parties, then

any one of them can reveal the ordering of the transmitted messages. To deal with this

problem, we develop, in Chapter 5, a multiparty protocol to generate a secret permutation

of n parties. The result of the protocol is a permutation that is distributed among the

parties is such a way that each party knows their position, but no others. In addition to

being a useful component of a DC-net protocol, we also describe how secret permutation

generation can be of use in online gaming.

With this problem solved, we address, in Chapter 6, the issue of communication

complexity of a DC-net protocol. Existing protocols are no better than using a mixnet

with a bandwidth requirement of n times the size of the message per message. If all n

parties have a message to send, the total cost is n2 times the size of a single message.

Our protocol is aimed at reducing this requirement to the optimal cost of n times the

size of a message (i.e. the total size of the messages). Our protocol has two phases, a

setup phase and a message sending phases. If one considers only the communications

complexity of the message sending phase, we achieve our goal; however, this comes at

the expense of high setup cost (at least n times the total size of the messages to be

transmitted). We propose that the remaining problem of high setup cost can be solved

with a practical trapdoor discrete logarithm primitive. With such a primitive, setup cost

becomes independent of the number of messages to be transmitted and our goal can be

achieved.

Chapter 1. Introduction 9

1.4 Outline

This dissertation covers three major topics.

The next three chapters describe the various erasure codes introduced above. In

Chapter 2 we show how to construct a random code, summarize the theory describing

the rank properties of random matrices, and present our experimental results verifying

this theory. Chapter 3 describes LT codes and our efforts to reduce overhead with an

enhanced decoder. We conclude the discussion of erasure codes in Chapter 4 with a

description of our windowed erasure codes and the theory governing them.

Chapters 5 and 6 deal with anonymous message delivery. The former describes our

multiparty protocol for secret permutation generation and presents proofs of security for

various security properties, while the latter demonstrates how to construct an efficient

DC-net using a variant of the Pallier public key cryptosystem and what is required to

make this protocol optimal.

The final topic covered, in Chapter 7, is the encoding of a set of files and directories

that change over time into fixed size blocks by performing deduplication at the block

level.

Chapter 8 further discusses how we believe these disparate topics fit together and

what future work will be needed to make a secure distributed backup system a reality.

Chapter 2

Random Codes and the Rank

Properties of Binary Matrices

2.1 Trivial Random Code

The construction of a rateless random erasure code is quite simple. Given a message

consisting of k input blocks, we construct each output block by simply choosing a random

subset of the input blocks and adding them together. As is typical, we will assume the

blocks are each a fixed length string of bits and addition is the bitwise exclusive or (xor)

operation. To choose a random subset, one flips a fair coin for each input block and

then considers each block for which heads, say, is flipped to be included in the subset.

The output block consists of the sum of the blocks in the subset along with whatever

information is required to indicate the elements of the subset. Note that for large k, the

probability that an empty subset is chosen is so small that we do not concern ourselves

with this possibility.

To decode, at least k output blocks must first be collected. Each output block is

considered to be a column of a matrix whose elements are chosen from GF (2) and whose

k rows are each associated with an input block. A ’1’ in a particular row of a column

indicates that the corresponding input block is included in the sum for that output block.

While this k row matrix is binary, we will consider the matrix to have an additional row

(row k + 1) that contains the data associated with each output block. Recovering the

input blocks simply requires performing Gaussian elimination (via elementary column

operations) to reduce the binary part of the matrix to the identity matrix. If successful,

the k + 1 row will hold the original input blocks. If, while reducing the k × k matrix,

10

Chapter 2. Random Codes 11

an all zero column is produced, that column must be discarded and replaced with some

additional output block. If one is not available, decoding fails. The expected number

of additional output blocks required is the overhead of the code, and, as we will soon

calculate, is less than 2 for this trivial random code.

Clearly, the computational complexity of the encoder is O (k) per output block gen-

erated. Indeed, the expected number of data block additions required is k/2. For the

decoder, Gaussian elimination requires O (k2) elementary column operations in the gen-

eral case, and each of these elementary operations involves adding two columns of length

k. Furthermore, each elementary operation will require the addition of two data blocks.

We will not concern ourselves with the cost associated with each elementary operation

and simply quote decoder complexity in terms of the number of elementary operations

required.

While the overhead of this type of random code is very low, both the encoder complex-

ity and the decoder complexity are unacceptably high for most applications. Therefore,

in the remainder of this chapter we will consider ways in which the encoder can be al-

tered to reduce encoder complexity. This discussion will review known rank properties of

random matrices and describe our experiments with alternate encoding strategies. In the

following two chapters we show how decoder complexity may be reduced: first at the ex-

pense of overhead using LT codes and then without sacrificing overhead using windowed

codes.

2.2 Rank properties of binary matrices

A random binary matrix is a matrix whose elements are chosen from GF (2) via some

random process. The matrices described in this chapter will typically have k rows and

either k or n columns. If the matrix is k×n, where n ≥ k, we will often refer to m = n−k

as the number of extra columns.

One method of randomly generating such a matrix involves choosing each matrix

element independently with some probability p being the probability of selecting a 1. The

probability p will have one of the following forms: a constant such as 0.5, p = (c log k)/k

for some constant c, or p = d/k for some constant d.

The other method of interest involves generating each column of the matrix inde-

pendently via a degree distribution. This distribution is on the possible column weights

ranging from 1 to k (inclusive) and is sampled once for each column. Note that we in-

Chapter 2. Random Codes 12

tentionally exclude weight 0 columns. With a degree (column weight) chosen, a column

having exactly that weight is then selected uniformly from the set of all such columns.

Throughout this dissertation, we will use the terms degree and column weight inter-

changeably.

2.2.1 Probability of Full Rank

The property of most interest to us is the rank of a matrix as a function of the mean

column weight and the number of extra columns. In particular, we wish to determine

how the mean column weight effects the probability of full rank in a k × k or k × n

matrix. In addition to this, we are also interested in a related property, overhead. This

is the expected number of extra columns required to achieve full rank (as a function of

the mean column weight).

In this section we will only concern ourselves with matrices generated via the first

method described above. Each matrix element is chosen independently with the proba-

bility of choosing a 1 being p.

If p = 0.5, the probability that a k × n matrix (n ≤ k) has rank n is

n∏
i=1

(
1− 1

2k−i+1

)
. (2.1)

The intuition behind this expression is as follows. The probability that a single column

with k rows is non-zero is 1− 1/2k. Assuming we have one non-zero column, the proba-

bility that a second column is neither all-zero nor a copy of the first column is 1−1/2k−1.

With n− 1 columns having rank n− 1, the probability that the nth column is not depen-

dent on the previous columns is 1− 1/2k−n+1. Notice that if n = k, this last probability

is 1/2. The expression above is simply the product of all these probabilities. For n ≥ k,

the asymptotic probability of full rank, as k →∞, is (from Kolchin [19])

Qm =
∞∏

i=m+1

(1− 1

2i
) , (2.2)

where m = n−k ≥ 0. In practice, when k ≥ 10, the two results agree to within 1%. Note

that Q0 = 0.288788 . . . is the (asymptotic) probability of full rank for a k × k random

binary matrix. Figure 2.1 shows a comparison between simulation and theory for k = 100

and k = 500. Note that for the various choices of p used, no difference can be seen. This

tells us that the probability of full rank is independent of the mean column weight for p

above some threshold. We will soon see that this threshold is roughly p = (2 log k)/k.

Chapter 2. Random Codes 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 102 104 106 108 110

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

theory
p = 0.5
p = 0.4
p = 0.3
p = 0.2
p = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 502 504 506 508 510

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

theory
p = 0.5
p = 0.4
p = 0.3
p = 0.2
p = 0.1

Figure 2.1: Probability of full rank for constant p as the number of extra columns

increases. The theory line is given by (2.2). Each data point is the result of simulation

using 50, 000 matrices (for k = 100) and 5, 000 matrices (for k = 500).

As p decreases (below (2 log k)/k), all-zero columns and rows are increasingly likely

and the presence of such a column or row is not accounted for in the above expressions.

To see how all-zero rows might form, consider that when tossing k identical balls into an

equal number of bins, one expects to have to throw k log k balls to ensure each bin has

at least one ball with high probability. While our problem with matrices is not identical,

we estimate that to ensure each row of our k × k matrix has at least one 1, we expect

to have to “toss” k log k 1’s at the matrix. This corresponds to p = (log k)/k, indicating

that this probability is, in some way, critical.

If we assume Qm is the probability of full rank given k + m non-trivial columns with

no all-zero rows and 1− (1− p)k is the probability that a random column is non-trivial,

then
m∑

j=0

(
k + m

j

)
(1− p)kj(1− (1− p)k)k+m−jQm−j (2.3)

is the probability that a k× (k + m) matrix with no all-zero rows has full rank. Further,

since (1− (1− p)k+m)k is the probability that there are no all-zero rows, we get

(1− (1− p)k+m)k

m∑
j=0

(
k + m

j

)
(1− p)kj(1− (1− p)k)k+m−jQm−j (2.4)

as the probability of full rank in a k × (k + m) matrix. Note here that we have assumed

there is no correlation between instances of all-zero columns and all-zero rows. This

assumption is reasonable provided k is large. Also note that (2.4) applies even when p

Chapter 2. Random Codes 14

is large; however, (2.2) is easier to evaluate. Figure 2.2 compares simulation results to

theory.

Equation (2.4) also holds for very low values of p; however, as p approaches 1/k, and

for lower values of p, a simple approximation to the above expression is possible. When

p = 1/k the expected number of 1’s per column is 1. If we have a matrix with exactly one

1 per column and no all-zero rows, that matrix is a permutation matrix and is guaranteed

to have full rank. Also, if we have at most one 1 per column, then “no all-zero rows”

implies “at least k non-trivial columns”, and thus, full rank. Therefore, we can estimate

the probability of full rank as simply

(1− (1− p)k+m)k , (2.5)

the probability of no all-zero rows. Figure 2.3 demonstrates the effectiveness of this

approximation for p = d/k and d ≤ 2.

2.2.2 Overhead

For p ≥ (2 log k)/k, Qm is a good approximation for the probability of full rank. From

this, we can compute the expected number of extra columns needed to achieve full rank,

the overhead, as

m̄ =
∞∑
i=0

(1−Qi) = 1.60669515 (2.6)

By substituting (2.4) in place of Qm in the above equation, the overhead as a function

of p and k can be calculated, say m̄p,k. The resulting equation, however, is quite difficult

to simplify, but despite this, we make a few observations:

• for fixed k, m̄p,k →∞ monotonically as p→ 0,

• for p = (c log k)/k and c < 1, m̄p,k →∞ as k →∞, and

• for p = (c log k)/k, c ≥ 2 and k > 10, m̄p,k < 2.

The fact that overhead remains less than 2, and independent of k, for mean col-

umn weights as low as 2 log k, suggests that the encoder complexity can be reduced to

O (log k) without sacrificing overhead. Simply select each input block with probability

p = (2 log k)/k. Unfortunately, despite the low weight matrix generated, decoder com-

plexity with Gaussian elimination will still be O (k2). In the following two chapters we

address methods to reduce this complexity. For the remainder of this chapter, we explore

an alternate method for generating columns.

Chapter 2. Random Codes 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.5
c = 1.3
c = 1.0
c = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.5
c = 1.3
c = 1.0
c = 0.8

Figure 2.2: Probability of full rank for p = (c log k)/k as the number of extra columns

increases. Each data point is the result of simulation using 50, 000 matrices (for k = 100)

and 5, 000 matrices (for k = 500). Each solid line is computed using (2.4). For comparison,

the dotted line was calculated using (2.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

d = 2.0
d = 1.5
d = 1.0
d = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

d = 2.0
d = 1.5
d = 1.0
d = 0.5

Figure 2.3: Probability of full rank for p = d/k as the number of extra columns increases.

Each data point is the result of simulation using 10, 000 matrices (for k = 100) and 5, 000

matrices (for k = 500). Each solid line is computed using (2.5).

Chapter 2. Random Codes 16

2.3 Dependence on Distribution

With our understanding of matrices generated from a probability p, we now turn to

matrices generated from a degree distribution. As mentioned above, these matrices are

generated by randomly and independently choosing columns. First a degree is chosen

from the desired degree distribution, and then a column with that number of 1’s is chosen

uniformly from the set of all columns with that degree.

Again, we are interested in the probability of full rank as a function of the mean

column weight. Here we test the hypothesis that, with minor exceptions, the particular

degree distribution used does not matter. Only the mean column weight has a significant

influence on the probability of full rank.

Note that mean column weight and mean degree are interchangeable and we will label

this quantity σ. Also note that σ = pk, or p = σ/k, relates following experiments to

those of previous sections.

2.3.1 Wedge Distribution

If σ is an integer, one might consider using a degree distribution that results in all columns

having the same weight σ. This will work fine if σ is odd; however, if all columns have

even weight, it can be proven that the matrix cannot have full rank (regardless of how

many columns it has).

To handle non-integer choices of σ, one might consider using only two degrees, d and

d + 1, where d = bσc. This approach is similarly flawed in the case where σ is very close

to an even integer.

To avoid these problems with all even degree, we define the wedge distribution as

follows. Three degrees are used, d− 1, d, and d + 1. The center degree d is chosen to be

σ rounded to the nearest integer. If σ is an integer plus 0.5, either choice for d will work.

Probabilities are assigned to these degrees subject to the constraints: the mean degree

must be σ and the resulting columns are 50% even weight and 50% odd weight. There

is a unique distribution satisfying these constraints.

In general, all three degrees will have non-zero probabilities; however, when σ is an

integer plus 0.5, only two of the degrees are used. The probability assigned to degree d

is always 0.5. Obviously, the probabilities assigned to d− 1 and d + 1 sum to 0.5.

See Figure 2.4 for simulation results using the wedge distribution.

Chapter 2. Random Codes 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

Figure 2.4: Wedge distribution. Probability of full rank for p = (c log k)/k as the

number of extra columns increases. Each solid line is computed using (2.4).

2.3.2 Uniform Distribution

For a uniform distribution we want every degree to have the same probability of being

chosen. Assuming σ ≤ k/2, we assign the degrees 1 to roughly 2σ a common probability

that is roughly 1/(2σ). To ensure the mean degree is exactly σ, we will need to assign

the last degree some other non-zero probability.

To formalize this, we find the largest integer e such that there exists probability pe

with 0 ≤ pe ≤ 1 and

σ = epe +
1− pe

e− 1

e−1∑
i=1

i =
e (1 + pe)

2
. (2.7)

Figure 2.5 shows simulation results for the uniform distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

Figure 2.5: Uniform distribution. Probability of full rank for p = (c log k)/k as the

number of extra columns increases. Each solid line is computed using (2.4).

Chapter 2. Random Codes 18

2.3.3 Horseshoe Distribution

For a horseshoe distribution our goal is make half of the columns have a low degree

(degree 2 or 3) and the other half a high degree (roughly 2σ); however, to ensure the

mean is exactly σ and that we don’t have problems with all of the columns having even

degree, we will need to choose two degrees for the high degree columns.

There are two variants of the horseshoe distribution. The degree 2 variant has 50%

degree 2 (p2 = 0.5) and the other 50% split between two high odd degrees (d and d + 2).

We choose d and the probabilities such that

σ = 2p2 + dpd + (d + 2)pd+2

= 2 + d/2− 2pd .
(2.8)

We notice in Figure 2.6 that for c = 2 there is a noticeable deviation from theory for

m up to about 5 or 6. The reason for this is as follows. There are
(

k
2

) ≈ k2/2 possible

degree 2 columns, and, by the birthday paradox, within a random selection of columns

whose number is approximately the square root of this value, two identical columns are

likely to be found. What this means is that the probability that k/2 randomly selected

degree 2 columns are not independent is actually quite high. For k = 500, this probability

is 0.622316, and this accounts for the one or two extra columns needed to achieve full

rank.

For the degree 3 horseshoe variant, we don’t have to worry about the possibility of

all even degree columns so we choose two high adjacent degrees (d and d + 1). Here, d

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

Figure 2.6: Horseshoe (degree 2) distribution. Probability of full rank for p =

(c log k)/k as the number of extra columns increases. Each solid line is computed using

(2.4).

Chapter 2. Random Codes 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 2.0
c = 1.2
c = 1.0

Figure 2.7: Horseshoe (degree 3) distribution. Probability of full rank for p =

(c log k)/k as the number of extra columns increases. Each solid line is computed using

(2.4).

and the probabilities are chosen such that

σ = 3p3 + dpd + (d + 1)pd+1

= 2 + d/2− pd .
(2.9)

We also notice, in Figure 2.7, that this variant does not have the deviation from theory

seen with the degree 2 variant.

2.3.4 Other Distributions

We have also tested a few other distributions, including a semi-uniform distribution that

is a mixture of the horseshoe distribution (for the degree 2 or degree 3 columns) and

the uniform distribution (for all of the other columns), and found that these experiments

also give results that are consistent with the theory. We conclude from these experiments

that the rank properties of these matrices have very little dependence on the specific

distribution used.

In the next chapter, however, we will encounter a distribution that yields rank prop-

erties that vary significantly from theory. Then, in Chapter 4, we develop a distribution

based on windowed columns whose rank properties only match theory as long as the

critical parameter exceeds a specific lower bound.

Chapter 3

LT Codes

LT codes are a class of rateless erasure correcting codes developed by Luby [24] with the

goal of reducing decoder complexity. In this chapter we explore the possibility of using LT

codes as the erasure code for our distributed backup application. While LT codes has the

same encoder complexity (O (log k) per output symbol) as the random codes discussed

in the previous chapter, LT codes have a decoder complexity, for complete decoding,

that is much lower at O (k log k) (compared to O (k2) for a random code). We will also

briefly describe subsequent work by Shokrollahi [38] and Maymounkov [30] which further

reduces these complexities to O (1) and O (k), respectively.

The price to be paid for such low decoder complexity is higher overhead. With LT

codes, overhead is O
(√

k
)
, and with Raptor/Online codes, overhead is O (k). For a

distributed backup application this high overhead may be unacceptable to those who

need to recover their data, even if it is at a high cost. After describing the construction

of these codes, we present our analysis of the rank properties of the matrices that are

generated by the LT encoder and describe an enhanced version of the decoder which,

while being more complicated, reduces expected overhead without increasing decoder

complexity.

3.1 Soliton distribution

In [26], Luby et. al. describe the construction of rateless erasure codes in terms of a

bipartite graph where the left vertices are identified with the k input blocks and the

right vertices are thought of as parity checks on the input blocks (coded symbols). These

are generated as follows: for a given degree distribution ρ on the integers 1, 2, · · · , k, the

20

Chapter 3. LT Codes 21

distribution is sampled to give an integer d, 1 ≤ d ≤ k. The corresponding coded symbol

is formed by choosing d input symbols uniformly at random and summing them (via

bitwise exclusive or). To decode, if a sufficient number of coded symbols are obtained, the

process starts by choosing a coded symbol of degree 1 (i.e. a coded symbol corresponding

to a right vertex of degree 1). The value of the coded symbol is transferred to the

corresponding input block, whose value is then transferred to all coded symbols containing

it, and all the corresponding edges are removed from the graph. If a new right vertex is

now of degree 1, the process continues.

Decoding continues until either it completes with all input blocks recovered or there

are no right vertices of degree 1 at some stage, in which case decoding fails. To minimize

the probability of the latter, the distribution ρ is chosen carefully. Luby suggests [24]

that, in theory, the best distribution to use is the soliton distribution given by

ρ(i) =

{
1/k i = 1

1/i(i− 1) 2 ≤ i ≤ k
. (3.1)

As required,
∑

ρ(i) = 1. The theoretical reasoning for this distribution is sound and

one can easily see how the first few steps of the decoder will proceed. Since ρ(1) = 1/k,

the decoder expects to see one degree 1 coded symbol within the first k coded symbols

collected. This coded symbol provides the data for one input block. Also, since ρ(2) =

1/2, it is expected that this one input block will be included in one of the expected k/2

degree 2 coded symbols collected. This means we expect one degree 2 coded symbol to

be reduced to degree 1. Note that each degree 1 coded symbol will also cause reductions

in the degree of the higher degree coded symbols, thus producing more degree 2 code

symbols. This ideal soliton distribution is designed such that at each stage of the decoding

process, the expected number of degree 1 coded symbols available is exactly one.

In practice, if the expected number of degree 1 coded symbols is one, the probability

that this number is less than one at some particular stage is quite high (on the order

of 0.5), and when this happen decoding fails. To remedy the situation, Luby describes

a robust soliton distribution designed to ensure that the expected number of degree 1

symbols at each stage (the ripple) is greater than one. The robust soliton distribution is

µ(i) = (ρ(i) + τ(i))/β where

τ(i) =





R/ik 1 ≤ i < bk/Rc
R log(R/δ)/k i = bk/Rc

0 i > bk/Rc
, (3.2)

Chapter 3. LT Codes 22

R = c log(k/δ)
√

k and β =
∑

(ρ(i) + τ(i)). The constant δ is the allowable failure

probability of the decoder when given K = k + O
(
log2(k/δ)

√
k
)

coded symbols and

c > 0 is a suitable constant. These two constants determine the expected number of

extra symbols needed (the overhead) and the variance in the number of symbols. For

details of this mapping, see [24] and [27]. All of our experiments were done using δ = 0.5

and c = 0.03; parameters suggested in [27] as striking a good balance between overhead

and variance.

The complexity of the encoder and decoder are easy to compute. The mean degree

of the robust soliton distribution is D = log(k/δ), and since the number of additions the

encoder is required to perform is 1 less than the degree, encoder complexity is D − 1

additions per coded symbol. For the decoder, each data block addition reduces the

degree of some coded symbol by 1. With k symbols, the sum of the degrees is kD,

and therefore, the complexity is k(D − 1). In practice, decoder complexity may be

slightly higher because more than k coded symbols are required to decode and some

block additions may be needlessly performed.

3.1.1 Linear Time Codes

Shokrollahi and Maymounkov, independently, with their Raptor [38] and Online [30]

codes, respectively, reduce both encoder and decoder complexity by eliminating the log k

factor in each. These two codes are very similar and both utilize a distribution that is

similar to the ideal soliton distribution as a part of their construction, so we will describe

briefly how they achieve this remarkable result.

These codes can be considered to be split into two (nested) erasure codes: an outer

code and an inner code. The outer code is a fixed-rate erasure code applied to the input k

block message to produce a small number of auxiliary blocks which, along with the k input

blocks, are fed as input to the inner code. The construction of these auxiliary blocks is

performed as a pre-computation before any coded symbols are output and requires time

O (k). The inner code is rateless and very similar to the LT codes described above with

the only major difference being that the degree distribution has a mean that is constant.

For Online codes, the following distribution is suggested for the inner code. Given

parameters δ and ε, first compute F = (log δ + log(ε/2))/ log(1− δ) and then define

ρ(i) =

{
1− 1+1/F

1+ε
i = 1

1−ρ(1)
(1−1/F) i(i−1)

2 ≤ i ≤ F
. (3.3)

Chapter 3. LT Codes 23

With this distribution, the decoder (of the inner code) will be able to recover a fraction

1 − δ of the k input blocks in time proportional to log(1/ε)k. The outer code ensures

that the remaining input blocks can be recovered with a linear time computation on the

auxiliary blocks that have also been recovered by the inner code.

The summarize this result, we reproduce here, using our terminology, Theorem 2 from

[30]:

Theorem 3.1.1 (Maymounkov): For any message of size k input symbols, and any

parameter ε > 0, there is a rateless locally encodable code (right distribution) that can

recover the input symbols from any (1 + ε)k coded symbols with high probability in time

proportional to k log(1/ε).

3.2 Implementation and Overhead

We have implemented LT codes in C++ and tested them for both performance and over-

head. Figure 3.1 shows net overhead (the mean number of extra columns as a ratio of

k) as a function of k for both an encoder using the ideal soliton distribution (left) and

one using the robust soliton distribution with δ = 0.5 and c = 0.03 (right). We have also

included in these figures the overhead that results if one uses Gaussian elimination (GE)

as the decoder and the overhead that results from a purely random code as described in

the previous chapter. Recall the latter being an overhead of approximately 1.606 extra

coded symbols.

Comparing the overhead that results from the standard LT decoder versus Gaussian

elimination as the decoder is interesting for the following reasons. First, Gaussian elim-

ination will always recover the file if sufficient information (in an information theoretic

sense) is present, while the LT decoder may fail early. The curves in Figure 3.1 show

how much lower the overhead could be if the LT decoder could run to completion in all

cases where the information needed to recover the file is present.

Also, the shapes of the Gaussian elimination curves are of interest. In the left graph,

we see that the GE curve almost parallels the LT decoder curve. In the next section we

will see that this is because, contrary to the conjecture stated in the previous chapter,

using the ideal soliton distribution to generate a binary matrix results in a matrix that

behaves quite different from a random matrix with the same mean weight. Hence the

need for the robust soliton distribution.

Chapter 3. LT Codes 24

100%

10%

1%

0.1%
 10 100 1000 10000

O
ve

rh
ea

d

Number of Rows (k)

Ideal Soliton

standard
gaussian

100%

10%

1%

0.1%
 10 100 1000 10000

O
ve

rh
ea

d

Number of Rows (k)

Robust Soliton

standard
gaussian

Figure 3.1: Overhead as a function of the number of input blocks. The left graph

gives results achieved using the ideal soliton distribution as the encoder, while the right

graph is for the robust soliton encoder. In both graphs, results achieved by the standard

decoder and a decoder using Gaussian elimination are given. Note that the curves for

Gaussian elimination end at k = 2, 000 because beyond this value the combination of

high complexity and the matrix no longer fitting in our processor’s cache makes the time

required to generate each data point quite excessive. The bottom broken line in each

graph is 1.606/k, the lowest overhead we expect from a random code.

In the right graph we see that the GE curve parallels the line representing an overhead

of 1.606. We estimate that this GE curve is asymptotic to approximately 7/k, giving an

overhead of 7 extra coded symbols. This leaves a considerable gap between the overhead

achieved with the standard LT decoder and GE, and later in this chapter we describe

our attempt at improving upon the standard decoder. Interestingly, as we will see, while

our improved decoder does not close the gap for the case of the robust soliton encoder,

it does close the gap for the ideal soliton case.

3.2.1 The Ideal Soliton Mystery

In the previous chapter we generated binary matrices using a variety of distributions and

found that all of the resulting matrices have rank properties that are almost identical

to random matrices with an equivalent weight. The ideal soliton distribution; however,

does not follow this pattern. Figure 3.2 compares the probability of full rank for matrices

Chapter 3. LT Codes 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 105 110 115 120 125 130

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.3
c = 1.1264

c = 1.0
soliton

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 505 510 515 520 525 530

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.3
c = 1.093

c = 1.0
soliton

Figure 3.2: Probability of full rank in matrices generated using the ideal soliton distribu-

tion and random matrices with p = c log(k)/k as the number of extra columns increases.

The solid lines are computed using (2.4). Note that the mean degree of the soliton distri-

bution is approximately 1.1264 log k when k = 100 and 1.093 log k when k = 500.

generated using the ideal soliton distribution versus random matrices with an equivalent

weight (probability p).

As can be seen, the probability of full rank is significantly lower for the matrices

generated using the ideal soliton distribution. We assume that, if these graphs were

extended to the right, one would see that the soliton curve (boxes) is asymptotic to the

corresponding random curve (diamonds). Also, since the overhead is equal to the area

above the curve (up to the line y = 1), we can see that the overhead of a code based on

the ideal soliton distribution will be much higher than that of the corresponding random

code.

In an attempt to understand why a matrix generated using the ideal soliton distribu-

tion differs from a random matrix, we have performed two different experiments.

In the first, we show a progression from random matrix to ideal soliton by first starting

with the degree 2 horseshoe distribution described in Chapter 2. The results can been

seen in Figure 3.3. In this graph, the semi2 data set is essentially the same as the

horseshoe distribution shown in Figure 2.6. Each semi-j distribution is defined as

semi-j(i) =





1/k i = 1

1/i(i− 1) 2 ≤ i ≤ j

σ0 i = d

σ1 i = d + 1

0 otherwise

, (3.4)

Chapter 3. LT Codes 26

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 510 520 530 540 550

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.093
semi2
semi4

semi10
semi20
semi30
soliton

Figure 3.3: Progression from random matrix to one generated using the ideal soliton

distribution. The solid line was calculated using (2.4) (with p = c log(k)/k). The soliton

distribution has a mean degree of 1.093 log k when k = 500. Each data set is a semi-soliton

distribution. It is soliton-like for degrees up to and including the number specified, and

then has two consecutive large degrees to ensure the correct mean. Note that the semi2

distribution is almost identical to the horseshoe distribution (degree 2 variant).

where d > j, σ0 and σ1 are chosen such that the distribution sums to 1 and has the

correct mean (1.093 log k in Figure 3.3).

The other experiment we performed was to test the hypothesis that having a large

number of columns with a weight below the mean is the reason for the deviation. For

this experiment we define a biased horseshoe distribution. For this distribution, instead

of having 50% low degree and 50% high, we have a fraction w of low degree columns

and 1 − w high degree columns. Figure 3.4 shows the results of this experiment. Note

that when k = 500 the ideal soliton distribution results in 83.5% of the columns having

a degree less than the mean. When comparing the soliton distribution to the degree 2

variant of the horseshoe distribution we see that with approximately 70% to 80% low

weight columns the results match quantitatively with the soliton data, but with a curve

of significantly different shape (poor qualitative match). With the degree 3 variant, we

need about 94% low degree to get this same sort of quantitative match.

Unfortunately, neither of these experiments provide much insight into the mystery of

the ideal soliton distribution. The first experiment appears to show that no individual

degree value is responsible for the observed performance. The distribution semi30 agrees

with the ideal soliton distribution over a large fraction of the overall weight and yet we

still observe a noticeable difference in its performance. The second experiment shows

Chapter 3. LT Codes 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 520 540 560 580 600

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.093
w = 0.6
w = 0.7
w = 0.8
soliton

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 520 540 560 580 600

P
ro

ba
bi

lit
y

of
 F

ul
l R

an
k

Number of Columns (k+m)

c = 1.093
w = 0.92
w = 0.93
w = 0.94
w = 0.95

soliton

Figure 3.4: Probability of full rank in matrices generated using the ideal soliton distri-

bution versus the biased horseshoe distribution. In both graphs k = 500. In the graph

on the left, the degree 2 variant of the horseshoe distribution was used with w being the

probability of a degree 2 column. The graph of the right uses the degree 3 variant. In both

graphs, the solid line is computed using (2.4). Note that the mean degree of the soliton

distribution is approximately 1.093 log k when k = 500.

that while having a large fraction of the overall weight placed on low degree columns

can adversely effect the probability of full rank, the qualitative differences between this

scenario and the results for the ideal soliton distribution indicate that this is not the

reason for the latter’s performance.

3.3 Improving the LT Decoder

The standard LT decoder, while very simple and fast, is limited by its reliance on degree

1 coded symbols (right vertices in the bipartite graph mentioned earlier). If at any point

during decoding, a degree 1 coded symbol is not available, decoding fails. Furthermore,

a degree 1 coded symbol is required to begin the decoding process, and with the ideal

soliton distribution’s weight on degree 1 being only 1/k, only one such coded symbol is

expected after k have been received. For this latter reason, the robust soliton distribution

puts considerable extra weight on the generation of degree 1 symbols.

Our motivation for developing an enhanced LT decoder is the observation that both

the ideal soliton and robust soliton distributions put half of their weight on the generation

of degree 2 coded symbols. Any special use that can be made of these degree 2 coded

symbols is likely to be quite effective given the large number of such symbols.

Chapter 3. LT Codes 28

To see how we might make use of these symbols, consider a graph similar to the one

depicted in Figure 3.5. In this graph, the vertices correspond to the input blocks (the

left vertices in the bipartite graph) and the edges correspond to degree 2 output symbols

(a pair of edges in the bipartite graph connected to a single degree 2 right vertex). We

will call this graph the degree two graph.

Figure 3.5: An example of a degree two graph. Each vertex corresponds to an input

block and each edge corresponds to a degree 2 output symbol.

Two important observations are made. First, a cycle within this graph indicates that

a redundant output symbol has been received. To see this, note that the data associated

with any edge not currently found in the graph but for which some path exists between

its end points can be generated by the decoder by simply summing the data blocks

associated with each edge of this path. Because of this, the decoder need not bother

adding any edge that will induce a cycle (such output symbols should be immediately

discarded as redundant), and therefore, the graph will remain acyclic.

The second observation has to do with large degree coded symbols. Symbols with

degree 3 or greater can be considered to be hyperedges within this graph. While we saw

that a new degree 2 coded symbol with both vertices being part of the same connected

component is redundant, a new degree 3 or greater coded symbol with two vertices that

are both members of the same connected component can be reduced. For each pair of

connected vertices found within a large degree coded symbol, the reduction consists of

two steps: (i) the data associated with the coded symbol is adjusted by adding all of the

data blocks associated with edges along the path between the two vertices and (ii) the

two vertices (two edges in the bipartite graph) are removed, thus reducing the degree of

the coded symbol by 2. It is this second observation that makes this degree two graph

so useful.

Chapter 3. LT Codes 29

This degree two graph has a few interesting properties. The graph can be considered

to be a random graph where the probability of adding any particular edge is uniform, and

random graphs are known to undergo a phase transition at a certain threshold edge count.

The phase transition is the event where, for certain monotone-increasing properties, the

random graph is very unlikely to have the property when the number of edges is slightly

less than the threshold, and yet, very likely to have the property when the number of

edges slightly exceeds the threshold. For our degree two graph an examination of the

size and distribution of the connected components is of interest.

With zero edges, the graph consists of k distinct connected components, i.e. each

vertex is its own component. With each non-redundant degree 2 coded symbol received

and corresponding edge added to the graph, the number of distinct components is reduced

by one as two previously distinct components are connected. Note that the maximum

number of edges (not inducing a cycle) is k−1. A phase transition for this type of graph is

known to occur at k/2 edges. With fewer than this threshold, the connected components

are all roughly the same size and obviously small given that the mean component size is

less than 2 vertices. Beyond the threshold, however, a single large connected component

will certainly form. The ramifications of this large connected component are two fold:

(i) new edges are far more likely to form a cycle (if α is the fraction of vertices found in

the large component then α2 is the asymptotic, as k →∞, probability that a new edge

forms a cycle within this component) and (ii) coded symbols with degree 3 or larger are

far more likely to be reduced as a result of having two or more vertices in this connected

component.

In light of these graph properties, we find it interesting that the ideal soliton dis-

tribution assigns a weight of 1/2 to the degree 2 symbols. Any higher probability will

dramatically increase the overhead of the resulting code, while a lower probability would

certainly reduce the effectiveness of the standard LT decoder and prevent our degree two

graph from aiding the new decoder we are about to describe.

One more interesting result of our analysis is the effect of our decoder on even versus

odd degree coded symbols. Since reduction of a large degree coded symbol by use of

the degree two graph always results in a degree reduction of 2 or some multiple of 2,

even degree coded symbols remain even degree. Likewise for odd degree symbols. While

our new decoder no longer requires degree 1 coded symbols to get started nor a degree 1

coded symbol at every step of the decoding process, at least one odd degree coded symbol

is required at some point. We mentioned above that only k − 1 edges can be added to

Chapter 3. LT Codes 30

the graph without inducing a cycle and since even degree coded symbols can only be

reduced to even degree, no more than k − 1 even degree coded symbols will be useful

(non-redundant). In fact, it can be proven that a matrix whose columns (or rows) are all

of even weight must be singular. This proves that not only can our decoder not decode

when all of the coded symbols are of even degree, but no decoder (not even Gaussian

elimination) could succeed at this task.

3.3.1 Implementation

We have implemented this new decoder as a highly recursive algorithm in C++; the core

of which consists of three primary methods:

• Process degree one: given a degree 1 symbol for which the corresponding input

block is not already known, copy the now known data and, using the degree two

graph, compute the data associated with all input blocks that are part of the same

connected component. All large degree (degree ≥ 3) coded symbols that have a

vertex in this connected component are reduced and new degree 2 coded symbols

may result.

• Process degree two: given a degree 2 symbol whose two vertices are not members

of the same connected component, connect the two previously disjoint components

by adding a new edge. If the data for one of the vertices is known, the coded symbol

can be reduced to degree 1 and processed as such instead. All large degree coded

symbols that have at least one vertex in this new component must be scanned to

determine if any of them can be reduced as described next.

• Reduce large degree: New large degree coded symbols are scanned to determine

if any of the vertices are already known, or if two or more vertices can be found in

a single connected component. After any such reductions, the symbol may now be

of degree 1 or 2 and, if so, can be processed as such.

The recursive nature of the algorithm is obvious and recursion can become quite deep

during the later stages of decoding.

Figure 3.6 shows the improvements in overhead achieved by our new decoder. The

curves for the standard decoder and Gaussian elimination (GE) are the same as those

from Figure 3.1. As we mentioned earlier, this new decoder almost completely closes

Chapter 3. LT Codes 31

100%

10%

1%

0.1%
 10 100 1000 10000

O
ve

rh
ea

d

Number of Rows (k)

Ideal Soliton

standard
enhanced
gaussian

100%

10%

1%

0.1%
 10 100 1000 10000

N
et

 O
ve

rh
ea

d

Number of Rows (k)

Robust Soliton

standard
enhanced

lt3
gaussian

Figure 3.6: Overhead as a function of the number of input blocks. The left graph gives

results achieved using the ideal soliton distribution as the encoder, while the right graph is

for the robust soliton encoder. In both graphs, results achieved by the standard decoder,

the enhanced decoder, and a decoder using Gaussian elimination are given. The bottom

broken line in each graph is 1.606/k, the lowest overhead we can expect from a random

code.

the gap between the standard decoder and GE when decoding from the ideal soliton

distribution; however, when decoding from the robust soliton distribution, there is a big

improvement for lower values of k but unfortunately no improvement asymptotically.

Also seen in the right graph is a curve labelled “lt3”; the decoder for which will be

described below in Section 3.3.3.

3.3.2 Complexity

The complexity of the standard LT decoder is very easy to understand. At each step,

a degree one coded symbol (known input block) is added to some higher degree coded

symbol to reduce the degree of the latter by one. At the completion of decoding, all

coded symbols will be of degree one. Therefore, to compute the decoder’s complexity,

one simply sums the degree of all coded symbols and then subtracts one per coded symbol.

If the mean degree is c log k, then the work done by the decoder is (c log k − 1)k block

additions.

The only complication to what has just been said is the additional data block sums

involving coded symbols that will eventually be found to be redundant. Since the num-

Chapter 3. LT Codes 32

ber of such blocks is O
(√

k
)
, this additional work is O

(√
k log k

)
data block additions,

which is asymptotically negligible. Furthermore, the decoder may “cheat” by first de-

termining which blocks are redundant and disposing of them before beginning the data

block additions. We say cheat because making this determination requires O
(√

k log k
)

work, and therefore, this strategy is only useful if the data blocks are quite large.

We now argue that the new decoder we have been describing has essentially the same

complexity as the standard LT decoder. The new decoder has three types of operations,

corresponding to the three methods described earlier.

• As with the standard decoder, when a degree 1 coded symbol is used to reduce

other coded symbols, each data block addition results in a degree reduction of 1.

• Adding a new edge to the degree two graph can either require no data block addi-

tions or several, depending of which strategy discussed below is used.

• When a degree 3 or larger coded symbol is reduced by summing the path between

two connected vertices, the number of additions required is equal to the length of

the path and the degree is reduced by 2.

The two strategies mentioned are:

• Lazy strategy: no reductions are done to the degree two graph when new edges

are added, and thus, no data block additions are required at this stage. The

ramifications of this strategy are that when a degree 3 or larger coded symbol must

be reduced by summing the path between two connected vertices, this path may

be quite long (note Figure 3.7 left hand side) and the number of block additions

required is equal to the length of the path. To prevent repeating these summations

in the future, some method of caching previous results should be employed.

Figure 3.7: Two views of a connected component in the degree two graph. With the lazy

new edge strategy, arbitrary trees like the one on the left may form, while the non-lazy

strategy ensures that all trees have diameter 2 as in the right hand graph.

Chapter 3. LT Codes 33

• Non-lazy strategy: each time a new edge is added to the degree two graph,

the new connected component formed is reduced to the minimum diameter graph

shown on the right hand side of Figure 3.7. This is possible because the decoder

can compute any edge for which a path between the end points already exists. If

both existing components are already in this form, the number of block additions

required to transform the new connected component to this form is equal to the

size of the smaller of the two original components (give or take 1 depending on

the exact position of the new edge’s vertices). The advantage of this approach is

that all large degree coded symbol reductions require at most 2 block additions

(resulting in a degree reduction of 2).

Our implementation of this new decoder utilizes the non-lazy strategy and Figure 3.8

shows the work required compared to the work done by the standard decoder. For small

values of k, the fact that this new decoder is slightly faster is most likely due to the

reduced overhead and not having to waste time processing some of the redundant coded

symbols. From the graphs it is obvious that the new decoder is slower by only a very

small constant amount. This slowdown may be eliminated by switching to some form of

the lazy strategy, but we have not tested this.

 0

 5

 10

 15

 10 100 1000 10000

D
at

a
B

lo
ck

 S
um

s

Number of Rows (k)

Ideal Soliton

standard
enhanced

 0

 5

 10

 15

 10 100 1000 10000

D
at

a
B

lo
ck

 S
um

s

Number of Rows (k)

Robust Soliton

standard
enhanced

Figure 3.8: Number of data block sums (per block) required to decode as a function of

the number of input blocks. The left graph gives results achieved using the ideal soliton

distribution as the encoder, while the right graph is for the robust soliton encoder.

Chapter 3. LT Codes 34

3.3.3 Beyond Degree Two

One might wonder, “if making special use of degree 2 coded symbols results in lower

overhead, perhaps making special use of degree 3, 4 or higher coded symbols will result

in a further reduction?” To answer this question for degree 3 coded symbols we have

developed a decoder that makes special use of such symbols. Our decoder looks for

opportunities to combine a degree 3 symbol with a degree d ≥ 3 symbol to produce a

new degree d − 1 symbol. To see how this works, consider the sum of a degree 3 with

degree 5:

B + E + F

A + B + C + D + F

A + C + D + E

The result is a new coded symbol of degree 4.

To find such opportunities for reduction we must compare each high degree coded

symbol against all other such symbols to determine if any pair has at least two input

blocks in common. For a newly received degree 3 coded symbol the process is as follows:

(i) starting with one of the vertices of the degree 3, flag all coded symbols of degree 3 or

greater that are connected to this vertex, (ii) then do the same for the other two vertices

but before flagging check to see if the coded symbol is already flagged. If a coded symbol

is seen connected to two (or more) vertices then an opportunity for reduction has been

found. When processing a coded symbol with a degree greater than 3 the algorithm is

the same except that only symbols with a degree of exactly 3 are flagged. The algorithm

gets complicated, however, when one considers that rescanning is required anytime a

large degree coded symbol is reduced to a degree of 3 or less.

The results of this even further enhanced decoder are found in the right hand graph

of Figure 3.6 as the “lt3” curve. There is obviously no point in running this test for the

ideal soliton distribution. Despite our test code reporting that large numbers of coded

symbols were reduced in this way, the results show that the improvement in overhead is

minor and probably not worth the effort. Certainly, any attempt to make special use of

even larger degree coded symbols is not likely to result in further improvement.

We do consider, however, one possible avenue for further improvement. If one were to

restrict the vertices included in a degree 3 or larger coded symbol to some small window

of input blocks, the probability that two such coded symbols have two vertices in common

can be increased. For example, suppose the input blocks are ordered, arranged in a circle,

Chapter 3. LT Codes 35

and windows of size
√

k are chosen. Without this type of restriction, the probability that

two randomly chosen degree 3 coded symbols have 2 vertices in common is roughly k−2,

but with this restriction the probability increases to k−3/2. In the next chapter we explore

another way in which such a window can be utilized to construct a low overhead erasure

code.

Chapter 4

Windowed Erasure Codes

We now describe a new class of erasure correcting codes, called windowed codes,

which have an overhead that is independent of the number of input blocks, down to

as few as 2 extra coded symbols, and have a decoder complexity that is O(k3/2) for k

input blocks. This overhead is identical to that achieved by a general random code (as

described in Chapter 2) and considerably better than that achieved by LT codes or any

of its successors. On the other hand, decoder complexity is much better than that of a

general random code but not as low as can be achieved by LT codes.

The only other work related to the problem of interest here is contained in the patent

[25]. The problem of interest there is the encoding of very large files. To prevent the

entire file being required to be in main memory at once, a sliding window approach

is taken and thus has a similar view to this work. However, we are not aware of any

performance or analytical results being available relating to that patent.

Windowed codes are easy to construct requiring only the uniform distribution during

encoding and Gaussian elimination to decode. Note that while Gaussian elimination

requires O(k2) column operations to invert a random matrix, when used to invert the

windowed matrices introduced below this time is reduced to O(k3/2).

These windowed codes will be of use in any application where achieving the lowest

possible overhead is essential, even if it comes at the expense of requiring moderate

processing power to decode. Note that for values of k up to 100, 000 decoding can be

completed in a matter of minutes on a typical desktop machine, and that decoding codes

Select text and figures in this chapter c©2006 IEEE. Reprinted, with permission, from [42].

36

Chapter 4. Windowed Erasure Codes 37

of length k = 1, 000, 000 is feasible with higher end hardware or if one is willing to wait

longer for the result.

4.1 Windowed Matrices

A binary windowed matrix is constructed from a set of windowed columns where each

windowed column can be thought of as a random column with all of the 1’s restricted to

a small number of consecutive rows (the window). Recall from Chapter 2 that a random

matrix with p as little as p = (2 log k)/k will have similar rank properties to a random

matrix with p = 1/2. With the former, the expected number of 1’s per column is 2 log k

which suggests it may be possible to confine the 1’s to a window with as few as 4 log k

rows; however, we have found that as a result of the random distribution of the windows

within the columns, a larger window is required to maintain rank properties similar to

that of a random matrix.

Figure 4.1 demonstrates the effectiveness of this restriction to a fixed size window

for various window sizes of the order O
(√

k
)
. The open squares and triangles show

the results for window sizes of 2
√

k, 1.5
√

k and
√

k. Clearly, w = 2
√

k is necessary for

good results. In the k = 2, 500 and k = 10, 000 graphs, the solid triangles show that for

w = 2
√

k, a densely packed window with a mean column weight of
√

k is unnecessary.

The low weight data series (filled triangles) were generated using a mean column weight

of 2 log k (p = (log k)/
√

k).

In Chapter 2 we saw that, for a random matrix, the probability of full rank is Qm,

where m is the number of extra columns beyond k, and that, on average, only 1.606695 . . .

extra columns are required to achieve full rank (rank k). Since our windowed matrices

(with window length at least 2
√

k) have a probability of full rank that is very similar

to Qm, these matrices will also have a high probability of full rank with only about 2

extra columns. This very low overhead is a significant advantage of the erasure code

construction we give later in this chapter.

4.2 Rank properties of windowed matrices

In this section we first prove an upper bound on the probability of full rank for windowed

matrices. This proof establishes a minimum window length of
√

k to achieve a reasonably

Chapter 4. Windowed Erasure Codes 38

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 102 104 106 108 110

Number of Columns (k+m)

theory
random

w=20
w=15
w=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 900 902 904 906 908 910

Number of Columns (k+m)

theory
w=60
w=45
w=30

 0

 0.2

 0.4

 0.6

 0.8

 1

 2500 2502 2504 2506 2508 2510

Number of Columns (k+m)

theory
w=100

low weight
w=75
w=50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 10002 10004 10006 10008 10010

Number of Columns (k+m)

theory
w=200

low weight
w=150
w=100

Figure 4.1: Probability of rank k for a k × (k + m) matrix and values of k ranging

from k = 100 to k = 10, 000. In all graphs, the broken line is Qm, the open circles show

results from random (p = 1/2) matrices, and the other symbols show results for windowed

matrices (with the specified window size). For clarity, open circles are only shown in the

k = 100 graph. In the k = 2, 500 and k = 10, 000 graphs, the low weight closed triangles

are the results for a window size of w = 2
√

k but with the mean column weight fixed at

2 log k. All data points are the results of testing at least 5, 000 matrices.

Chapter 4. Windowed Erasure Codes 39

high probability of full rank. Later we show how one might go about calculating the exact

probability of full rank as a function of window length.

0
...

0

1

w





?
...

?

0
...

0





k

Figure 4.2: Col-

umn structure for

windowed column.

Before stating our main theorem, we wish to be precise about

how a windowed column is generated. First, a starting row is chosen

randomly and uniformly from among the k rows. We will always place

a 1 in this starting row and we refer to this 1 as the initial 1. Then, we

will place 1’s and 0’s in the w rows immediately following the initial 1.

In each of these rows, 1 is chosen with probability p. For the purposes

of the theory given in this section, we assume p = 0.5. All other rows

will simply contain 0. Note that if the initial 1 appears too close to

the bottom of the column, the window will wrap back to the top.

Theorem 4.2.1 For sufficiently large k, the probability that a k × k

random windowed binary matrix with window length w = δ
√

k/2 has

rank k is at most 2Φ(δ)Q0, where Φ(z) is the normal distribution

function and Q0 = 0.288788 . . . as given by (2.2).

Proof: Suppose we generate k random windowed columns with k rows and window

length w = δ
√

k/2. Without loss of generality, we assume k is even. For each column,

if the initial 1 falls in the first k/2 rows, we label the column a top column. Similarly, if

the initial 1 falls in the last k/2 rows, we label the column a bottom column.

Let t be a random variable representing the number of top columns generated, and let

b represent the number of bottom columns. Both t and b are sampled from the binomial

distribution with the probability of generating each type of column being 1/2. This tells

us that the expected number of top columns is k/2 and the standard deviation is
√

k/2.

This mean and standard deviation are the same for the bottom columns.

Now, consider what would happen if the number of top columns were greater than

k/2 + w. If we look at only the top columns, the maximum number of rows containing

at least one 1 is k/2 + w. Since the number of columns exceeds this, they cannot be

independent, and since we require independence, we must have t ≤ k/2 + w. A similar

argument holds for the bottom columns, giving b ≤ k/2 + w, but since t + b = k, we can

instead express these two constraints as

k/2− w ≤ t ≤ k/2 + w .

Chapter 4. Windowed Erasure Codes 40

Recall that w = δ
√

k/2 and that the standard deviation on the distribution of t is√
k/2. The above constraint is satisfied as long as t is within δ standard deviations of the

mean. If k is sufficiently large, the binomial distribution may be approximated using the

normal distribution and 2Φ(δ) is the probability that t is within δ standard deviations

of the mean.

Finally, for a non-windowed random binary k × k matrix, the probability that the

matrix has rank k is Q0 ≈ 0.288788. Our windowed matrix is not going to have a

probability of full rank that is greater than this. We assume that, as long as the windowed

matrix has no columns that are dependent for the reasons described above, then its

probability of full rank is Q0. Therefore, the probability of full rank is at most 2Φ(δ)Q0.

For δ = 2, 2Φ(δ) is roughly 0.95. The above theorem tells us that the probability of full

rank for a matrix with window length w = δ
√

k/2 =
√

k will be at most 0.95Q0; however,

Figure 4.1 shows that the probability is significantly less than this bound. Despite this,

we also see from these experiments that with only a factor of 2 increase in the window

length, the bound can be achieved.

We do not currently have proof that w = 2
√

k is sufficient to achieve a high probability

of full rank, but in the remainder of this section we will describe how the exact probability

of full rank may be computed using a reduction to a balls in bins type argument.

Consider the distribution of k identical balls placed randomly into k bins. Suppose

the bins are numbered from 0 to k − 1 and let bi, 0 ≤ i < k, be random variables whose

values are the number of balls found in each bin.

We compute a partial sum of the balls found in t consecutive bins, starting at bin s

as

xs; t =
i<t∑
i=0

bs+i mod k .

Note that the bins are arranged in a circle so that bin 0 follows bin k − 1. Also, for all

s, xs; k = k.

This partial sum is related to a windowed matrix in the sense that there are xs; t

columns with an initial 1 found somewhere in the t rows starting at row s. Since we will

be interested in how this partial sum compares to the number of rows involved, we define

the following reduced partial sum

x̂s; t =
i<t∑
i=0

bs+i mod k − t .

Chapter 4. Windowed Erasure Codes 41

Obviously, for all s, x̂s; 0 = x̂s; k = 0.

The required window size is the maximum that x̂s; t deviates from 0. It can be shown

that

max
s,t

x̂s; t = max
s,t
|x̂s; t| = max

s,t
−x̂s; t ,

so we define

w = max
s,t

x̂s; t = max
s,t

(
i<t∑
i=0

bs+i mod k − t

)
.

An equivalent, but much easier calculation is

w = max
t

x̂0; t −min
t

x̂0; t .

The graphs in Figure 4.3 show a sample distribution of the random variable w. In

each graph, the results were compiled from 1, 000, 000 tosses of either 100, 900, 2, 500 or

10, 000 balls, respectively, into an equal number of bins.

In Figure 4.4, random k × k matrices with the window length as specified on the x

axis were tested for full rank. The probability of full rank is displayed along with the

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

Window Length (w)

k=100
 0

 0.02

 0.04

 0.06

 0 10 20 30 40 50 60 70 80 90
 0

 0.2

 0.4

 0.6

 0.8

 1

Window Length (w)

k=900

 0

 0.01

 0.02

 0.03

 0.04

 0 25 50 75 100 125 150
 0

 0.2

 0.4

 0.6

 0.8

 1

Window Length (w)

k=2500
 0

 0.01

 0.02

 0 25 50 75 100 125 150 175 200 225 250 275 300
 0

 0.2

 0.4

 0.6

 0.8

 1

Window Length (w)

k=10000

Figure 4.3: Distribution for w for k = 100, k = 900, k = 2, 500 and k = 10, 000. In all

graphs the solid line is the cumulative distribution. The medians of the distributions are

11, 35, 60 and 121, respectively.

Chapter 4. Windowed Erasure Codes 42

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

Window Length (w)

k=100
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 15 30 45 60 75 90

Window Length (w)

k=900

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 25 50 75 100 125 150

Window Length (w)

k=2500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300

Window Length (w)

k=10000

Figure 4.4: Probability of full rank for square matrix (symbols) compared to the cu-

mulative probability distribution from Figure 4.3 scaled by Q0 (lines). The solid line is

the cumulative distribution from Figure 4.3 while the broken line is the distribution offset

by 5.

corresponding cumulative distribution from Figure 4.3 scaled by 0.288788. We notice

that the distribution does not exactly match the data; however, in all four cases the

line appears to be offset from the data by about 5 (closest integer). This suggests that,

asymptotically, the cumulative distribution line matches experiment.

4.3 Erasure code construction

These windowed matrices can be used as the basis for an efficiently encodable and de-

codable erasure code. The code we describe here has an encoder complexity of about

2 log k block sums per output block and a decoder complexity of 1.3k3/2 block sums.

This complexity is achieved while keeping the overhead constant at approximately 2

extra blocks.

Chapter 4. Windowed Erasure Codes 43

4.3.1 Encoding

The encoder has k data symbols (input blocks) that need to be transmitted to the

decoder. To create an output block, the encoder first generates a windowed column as

described in the previous section; however, we suggest that the encoder generate fixed

weight columns with σ = d2 log keodd. This notation is used to refer to the lowest odd

integer greater than or equal to 2 log k. Note that k columns each having even weight

cannot have rank k, and therefore, σ must be odd or the decoder will always fail.

Along with generating a windowed column, the encoder sums (using bitwise exclusive

or) the σ input blocks corresponding to the 1’s in the column. The column (or some

efficient encoding of it) along with the sum are then transmitted to the decoder.

Although setting w = 2
√

k will work reasonably well, we suggest one instead set

w = 2(
√

k − 1)(σ − 1)/(σ − 2). This slightly larger value ensures that the expected

number of rows between the first and last 1 (inclusive) in each column is 2
√

k.

4.3.2 Decoding

The decoding algorithm is simply Gaussian Elimination; however, to ensure our discus-

sion of decoder complexity is precise, we describe a specific decoding algorithm. Decoding

has two phases:

1. Column collection. During column collection, matrix columns, along with their

associated data blocks, are inserted into a hash table and reduced as necessary to

ensure they are independent.

2. Back filling. At the conclusion of column collection, we have a lower triangular

matrix with 1’s along the diagonal. This matrix is non-singular. With a series of

data block sums, the matrix is made diagonal and decoding is complete.

The hash table constructed during the first phase is to have exactly k bins and each

column received hashes to the bin whose index is the index of the first row containing a

1. For the purposes of this algorithm, columns are not considered to wrap from bottom

to top, and as a result, the first 1 in a column may not coincide with the initial 1. When

this table is full, the k columns comprise a lower triangular matrix with 1’s along the

diagonal.

Hash collisions will occasionally happen during column collection. To resolve such a

collision, simply add the two columns (and their associated data blocks) together to get

Chapter 4. Windowed Erasure Codes 44

a column that hashes to a different bin. A subtle but important detail of this algorithm

is the choice of columns to keep after collision resolution. Obviously, the sum is to be

kept. The other column to keep is the shorter of the two colliding columns. Here, the

length of a column is the number of rows between the first 1 and the last 1 (inclusive).

If the two columns are of equal length, either one may be kept. Two identical columns

indicate a dependency; one is simply discarded and an extra column must be collected.

When the hash table is full, back filling can begin. Back filling is done starting at the

last row and working up through the matrix. First, the data block associated with the

1 on the diagonal is added to all of the data blocks associated with 1’s in the last row.

Then, the second to last row is processed in a similar manner. At the completion of back

filling, the data blocks will be the original input blocks.

Theorem 4.3.1 Worst case decoder complexity is ¯̀k data block additions, where ¯̀ is

the mean column length. Column length, `, as mentioned earlier, is the number of rows

between the first 1 and the last 1, inclusive.

Proof: During the column collection phase, one data block addition is required each

time there is a hash table collision. If two columns, one of length x and the other of

length y, x ≤ y, collide, their sum will be a column whose length is no greater than y−1.

Since ¯̀k is the sum of the lengths of the columns and each collision reduces this total

length by at least 1, there can be at most ¯̀k collisions.

During the back filling phase, the number of data block additions needed is exactly

the weight of the matrix (after column collection) less k. Also, the weight of the matrix is

no greater than the total length, and the total length after column collection no greater

than the total length before column collection less the number of collisions. Therefore,

the sum of the weight of the matrix after column collection and the number of collisions

resolved during column collection is at most ¯̀k.

The average case complexity is ¯̀k/2. This follows from the fact that when columns

of length x and y, x ≤ y, are added, the expected length of the resulting column is y− 2.

Furthermore, the expected weight of the matrix after column collection is half the total

length.

To see how the complexity may be calculated from w, first notice that for columns

that do not wrap, ` ≤ w + 1; however, for columns that do wrap, ` may be as large as k.

Since the probability of generating a column that wraps is w/k, the mean column length

Chapter 4. Windowed Erasure Codes 45

 0

 1

 2

 3

 100 1000 10000
 0

 50

 100

 150

ov
er

he
ad

su
m

s
pe

r
bl

oc
k

Number of Input Symbols (k)

Figure 4.5: Overhead and decoder performance for a windowed erasure code. The

circles show the mean number of extra columns needed (left axis) while the squares show

the mean number of column operations needed per input symbol (right axis). Each data

point is the mean from 10,000 runs. The broken line is 1.3
√

k.

can be calculated as ¯̀ = (w/k)k + (1 − w/k)(w + 1) ≈ 2w. When using w ≈ 2
√

k as

suggested, expected decoder complexity is wk ≈ 2k3/2.

Figure 4.5 shows that for k between 100 and 10,000 we achieve a decoder complexity

of 1.3k3/2 while maintaining an overhead of about 2 extra blocks. For an idea of real

world performance we performed two tests involving a 32 MiByte file on an AMD Athlon

XP 1800+. Decoding 8192 blocks (4 kiB each) requires about 10 seconds of CPU time,

while decoding 65536 blocks (512 bytes each) takes 2 minutes.

4.3.3 Avoiding Wrapping

Columns that wrap from bottom to top are seen by the decoder as having length k and, as

a result, require significantly more processing by the decoder. In fact, the approximately

w columns that wrap require as much processing by the decoder as the k − w columns

that do not wrap, so we have developed a strategy to avoid wrapping in an attempt to

reduce decoder complexity by a factor of 2. The strategy involves both a non-uniform

distribution on the starting row selection and a variable window length. The calcula-

tions required are all based on the binomial theorem and are similar to the calculations

performed in the proof of Theorem 4.2.1.

We start by considering the first row of the matrix formed by the decoder. To achieve

full rank, we need at least one 1 in this row, and thus, we need at least one column whose

Chapter 4. Windowed Erasure Codes 46

window includes the first row. Let q1 be the probability of generating such a column.

After k columns have been received by the decoder, the binomial distribution tells us to

expect q1k columns starting in the first row; however, the probability that at least this

many are received is only about 50%.

We must, however, guarantee at least one such column with arbitrarily high proba-

bility. This can be achieved by ensuring that the mean is some arbitrary number, say δ,

standard deviations beyond 1. The standard deviation here is σ1 =
√

kq1(1− q1), so we

want

q1k ≥ 1 + δ
√

kq1(1− q1) . (4.1)

This equation will be solved in a moment.

Now consider the first two rows of the matrix. To get full rank, we will need at least

two columns whose windows include these two rows. Of course, only one of these two

columns need include the first row; the other may include only the second row. Let q2

be the probability of generating such a column. Again, to ensure a high probability of

generating the two columns needed, we require that

q2k ≥ 2 + δ
√

kq2(1− q2) . (4.2)

If q1 is the probability of generating a column whose window starts in row 1 and q2

is the probability of generating a column whose window starts in either row 1 or row 2,

then q2 − q1 is the probability of generating a column whose window starts in row 2.

To generalize, we consider the first i rows. We need at least i columns whose window’s

start in the first i rows. Let qi be the probability of generating such a column. This

probability must be constrained by

qik ≥ i + δ
√

kqi(1− qi) . (4.3)

Assuming equality here we can solve for qi to get

qi =
2i + δ2 ± δ

√
δ2 + 4i− 4i2

k

2(k + δ2)
. (4.4)

The correct choice of sign here is the + sign. Note that if δ = 0, this equation reduces

to qi = i/k as one might expect. Also, qk = 1 as required for a cumulative probability

distribution.

To compute the needed window length, we again consider the first row. If w1 is the

window length for columns whose initial 1 is in the first row, then we must ensure that

Chapter 4. Windowed Erasure Codes 47

the number of such first row columns received by the decoder does not exceed 1 + w1.

To do this with high probability, we must ensure that the mean is at least δ standard

deviations away, giving us the constraint

q1k ≤ 1 + w1 − δ
√

kq1(1− q1) . (4.5)

This reasoning is easily generalized to

qik ≤ i + wi − δ
√

kqi(1− qi) , (4.6)

which can be solved to give

wi = 2δ
√

kqi(1− qi) . (4.7)

To make use of (4.4) and (4.7) in the construction of a code, we must first consider a

symmetry about the center row of the matrix. Just as we required at least one column

with a 1 in the first row, we must have at least one column with a 1 in the last row.

Furthermore, the probability of generating a column with a 1 in the first row should be

equal to the probability of generating a column with a 1 in the last row. To make use of

this symmetry, we construct a code which generates two types of columns: top columns

and bottom columns. Figure 4.6 illustrates these two column types.

0
...

0

1

wi





?
...

?

0
...
...

0

0
...
...

0

wi





?
...

?

1

0
...

0





k

Figure 4.6: Column struc-

ture for top and bottom

columns (no wrapping).

For i such that qi ≤ 0.5, the probability of gener-

ating a top column that starts in row i and has win-

dow length wi will be qi − qi−1. Similarly, the probabil-

ity of generating a bottom column with its bottom 1 in

row k − i + 1 and window length wi is also qi − qi−1.

Note that we make no use of the qi for which qi > 0.5. This

works perfectly if there exists some i for which qi = 0.5. If

this is not the case, as it most likely will not be, we can force

the first qi for which qi > 0.5 to be exactly qi = 0.5.

We saw with Theorem 4.2.1 that while δ = 2 seemed like

it should yield good results, in practice δ = 4 was required

(giving w = 2
√

k). Assuming the same value will be required

in this non-wrapping case, we can compute the window length

for qi = 0.5 (the center for the column) using (4.7) to be

wi = 4
√

k. Unfortunately, this factor of 2 increase in window

length will counter the factor of 2 saving in decoder complexity

we were hoping for.

Chapter 4. Windowed Erasure Codes 48

Figure 4.7 shows the overhead and decoder complexity results for δ = 4. As suspected,

the work to be done by the decoder is virtually identical to that shown in Figure 4.5, but

overhead is much worse. While our theory appears sound, obviously something more is

going on and perhaps, with further experiments, the problem could be solved. However,

even if the problem with overhead is solved, avoiding wrapping still provides no benefit

over the simpler construction and therefore, in our opinion, is not worth the effort.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 1000 10000
 0

 50

 100

 150

ov
er

he
ad

su
m

s
pe

r
bl

oc
k

Number of Input Symbols (k)

Figure 4.7: Overhead and decoder performance for a non-wrapping windowed erasure

code. The circles show the mean number of extra columns needed (left axis) while the

squares show the mean number of column operations needed per input symbol (right axis).

The overhead value for k = 10, 000 is off the graph at about 65. Each data point is the

mean from 10,000 runs. The broken line is 1.3
√

k.

Chapter 5

Multiparty Computation to

Generate Secret Permutations

In this chapter we introduce a primitive for generating a secret permutation which will

become useful in the next chapter where we introduce a secure and efficient anonymous

message delivery protocol. This multiparty computation allows n clients to choose a

random permutation, of themselves or some other set, and share that permutation among

themselves in such a way that each client knows only part of the permutation. This can

be considered a weak form of secret sharing. If a group of clients collude, they will learn

each others’ shares of the permutation and they can narrow down the possibilities for

the remaining shares, but as long as at least two clients are honest, the coalition will be

unable to learn the entire permutation.

In addition to being useful in the next chapter for anonymous message delivery, such a

secret permutation can also be used for the ordering of players or in making other random

choices in online games. Sweeney and Shamos consider this problem in the non-secret

setting [43]. While not many games require a secret random ordering of the players,

we imagine that with an efficient protocol for generating such orderings, perhaps such a

game might be designed in the future. One common component of many games, however,

the shuffling of cards, can be easily done with this protocol.

Other possible approaches to generating this sort of permutation include having each

party choose some large number at random and then comparing those numbers using a

multiparty greater than protocol. Care would need to be taken to ensure a party cannot

unfairly influence their share of the permutation by making a non-uniform choice. To be

successful, O (n log n) instances of the greater than protocol would need to be performed,

49

Chapter 5. Secret Permutations 50

and in the end the permutation would not be entirely secret. A better approach might

be to make use of a kth-ranked element computation [1]. While each party would learn

what the kth-ranked element is, no one except the holder of that element would know who

has it. Unfortunately, with each kth-ranked element computation requiring log n rounds

and O (n log n) communication per round, the total complexity would be O
(
n2 log2 n

)
.

We will show that our protocol has a communication and computation complexity of

O (n log n) per client.

In the next section we review the ElGamal cryptosystem and universal re-encryption.

Then, in Section 5.2, we present our secret permutation sharing protocol and in Sec-

tion 5.3 we prove several security properties. Finally, in Section 5.4, we discuss the

application of our protocol to games.

5.1 ElGamal Cryptosystem

At the core of our secret permutation sharing scheme is a mixnet utilizing the ElGamal

probabilistic public key encryption scheme [13]. Let G be some cyclic group 〈g〉 generated

by g ∈ G and let q = |G|. We use the operator ∈R to denote a uniform random selection.

The three essential algorithms provided by the ElGamal cryptosystem are:

• Key generation: Output (PK, SK) = (y = gx, x) for random x ∈R Zq.

• Encryption: Input comprises a message m ∈ G, a public key y and a random

encryption factor r ∈R Zq. The output is a ciphertext C = (α, β) = (myr, gr).

• Decryption: Input is a ciphertext C = (α, β) under public key y and the corre-

sponding secret key x. The output is plaintext m = α/βx.

In addition to these basic operations, a re-encryption algorithm is also commonly

used. Re-encryption takes as input a ciphertext C and the public key the ciphertext was

encrypted under y, and then outputs an alternate ciphertext C ′ that is an encryption of

the same plaintext message under the same public key.

Golle, et. al., extend the ElGamal cryptosystem to provide an algorithm for do-

ing universal re-encryption [16]. Their new algorithms require a two-fold increase in

ciphertext size but allow re-encryption without knowledge of the public key. To en-

crypt they choose a random encryption factor r = (r0, r1) ∈R Z2
q and then form the

ciphertext (4-tuple) C = [(myr0 , gr0); (yr1 , gr1)]. To re-encrypt the ciphertext C =

Chapter 5. Secret Permutations 51

[(α0, β0); (α1, β1)], choose a random re-encryption factor r′ = (r′0, r
′
1) ∈R Z2

q and compute

C ′ = [(α0α
r′0
1 , β0β

r′0
1); (α

r′1
1 , β

r′1
1)]. Decryption is the same as it is for standard ElGamal

(using only the first 2-tuple), but it allows one to also verify that the ciphertext was

encrypted using the correct public key. Such verification is done by decrypting the latter

2-tuple and checking for the identify element.

As will be seen in the next section, our protocol makes use of universal re-encryption;

however, as will also be seen, we are only interested in recognizing ciphertexts encrypted

under a certain key and not in sending messages. Therefore, all of our ciphertexts are

encryptions of the identity element message. Since the latter half of a Golle ciphertext

4-tuple is actually an encryption of the identity element, we can define a universal re-

encryption algorithm for use on standard ElGamal encryptions of the identity element,

thus avoiding the two-fold increase in ciphertext size. We propose the following algorithm:

• Universal identity re-encryption: Input is a ciphertext C = (α, β) and a

random re-encryption factor r′ ∈R Zq. The output is an alternate ciphertext

C ′ = (αr′ , βr′).

If this re-encryption operation is performed on a ciphertext that is not an encryption of

the message m = 1, the re-encryption will corrupt the message — preventing successful

decryption.

For secret key x, we define the set of all possible encryptions of the identity element

under the public key gx as E(x) = { (α, β) | α = βx }. The ciphertext (1, 1) is an element

of every such set, but without this element, the sets are disjoint. Furthermore, for every

C with β 6= 1, there exists at most one x for which C ∈ E(x).

The final operations we need are a means of altering the key under which a ciphertext

is encrypted. The following two algorithms accomplish this:

• Key addition: Input is a ciphertext C = (α, β) and an offset δ. The output is

a ciphertext message C ′ = (αβδ, β), which is an encryption of the same plaintext

message but now under public key y′ = ygδ, where y is the public key C is encrypted

under.

• Key product: Input is a ciphertext C = (α, β) and a coefficient c. The output is

a ciphertext message C ′ = (αc, β). If C is an encryption of m under the public key

y, then C ′ is an encryption of mc under the public key y′ = yc.

Chapter 5. Secret Permutations 52

Note that while key addition can be used on any ciphertext, key product will alter the

message if the ciphertext is not an encryption of the identity element. These operations

can be performed without knowledge of the key a ciphertext is encrypted under, but they

will not provide any information about said key. Also, if a message C is encrypted under

gx, then key addition with an offset of −x will decrypt the message, yielding (m, β).

Key product will only be used to negate the key of a ciphertext. If a ciphertext

C ∈ E(x), then performing key product with c = −1 mod q will yield a ciphertext

C− ∈ E(−x). This operation can be used to turn any black box performing key addition

with (secret) offset δ into a black box which performs key addition with offset −δ. Simply

negate the key of the ciphertext before input into the black box and again after output.

Note that the key addition operation can be thought of as a partial encryption or de-

cryption operation and is closely related to the threshold decryption techniques described

by Desmedt and Frankel [10].

5.1.1 Security of ElGamal

ElGamal is known to have semantic security if the group G is one for which the Decisional

Diffie-Hellman (DDH) assumption holds. Semantic security is a property that limits an

adversary’s ability to derive information about a plaintext message from its corresponding

ciphertext. Typically, instead of testing a cryptosystem for semantic security, one tests

for ciphertext indistinguishability, a property that has been shown to be equivalent to

semantic security [15]. This latter property asserts an adversary’s inability to determine

which of two plaintext messages, chosen by him, has been given back to him in the form

of a ciphertext message.

The DDH assumption asserts that no computationally bounded adversary can distin-

guish between the distributions (gx, gy, gxy) and (gx, gy, gz), where x, y, z ∈R Zq. Alter-

natively, given (gx, gy, gz), the adversary cannot determine if z = xy. By computationally

bounded we mean an adversary who runs in time polynomial in κ, a security parameter.

For this DDH assumption, and ElGamal, we choose the group G such that q = O (2κ).

Semantic security limits an adversary’s ability to derive information about a message

from its corresponding ciphertext; however, since the ciphertexts we are interested in

are all encryptions of the identity element, semantic security has little meaning in our

setting. Instead, we provide a definition of key indistinguishability (KI). Informally, this

Chapter 5. Secret Permutations 53

is the inability of an adversary to distinguish between ciphertexts encrypted with distinct

public keys.

To test an adversary, as defined by the algorithm A, later referred to as an adversarial

algorithm, we define an experiment for KI as follows. Two private ElGamal keys are

generated along with two random encryption exponents. Then, an encryption of the

identity element is formed using each key and the corresponding random exponent. The

adversary is given these two ciphertexts in some randomly chosen order along with the

two public keys and asked to guess the order of the ciphertexts. If the adversary guesses

correctly the experiment terminates with an output of ’1’. Otherwise the output is ’0’.

As mentioned above, ElGamal is parametrized under the security parameter κ.

Experiment 5.1.1 ExpKI
A (EG, κ)

u0, u1 ∈R Zq;

r0, r1 ∈R Zq;

C0 ← (gu0r0 , gr0); C1 ← (gu1r1 , gr1);

b ∈R {0, 1};
b′ ← A(gu0 , gu1 , Cb, C1−b, “guess”);

if b = b′ then output ’1’ else output ’0’ fi

Definition 5.1.1 The ElGamal cryptosystem EG provides KI if for any adversary A
with resources polynomial in κ the probability pr[ExpKI

A (EG, κ) = ’1’]− 1/2 is negligible

in κ.

Theorem 5.1.1 Under the DDH assumption, ElGamal provides KI.

Proof: By contradiction, assume adversary A is successful in breaking KI. We will show

how this adversary can be used to break the DDH assumption.

Consider the following slightly altered experiment:

Expaltki
A (EG, κ)

u0, u1, u
′
1 ∈R Zq;

r0, r1 ∈R Zq;

C0 ← (gu0r0 , gr0); C1 ← (gu1r1 , gr1);

b ∈R {0, 1};
b′ ← A(gu0 , gu′1 , Cb, C1−b, “guess”);

if b = b′ then output ’1’ else output ’0’ fi

Chapter 5. Secret Permutations 54

The only difference between this experiment and Experiment 5.1.1 is that, in the

latter, one of the public keys passed to the adversary is corrupt (alternatively, one of the

ciphertexts is corrupt). The adversary may, however, still have sufficient information to

determine b. This gives us two cases to consider.

Case 1: pr[Expaltki
A (EG, κ) = ’1’]− 1/2 is negligible in κ. The adversary is not capable

of handling corrupt parameters. We can construct an adversary A′ successful against

DDH as follows. Recall that the DDH test is to determine if z = xy.

funct A′(gx, gy, gz, “guess”) ≡
u0, r0 ∈R Zq;

C0 ← (gu0r0 , gr0); C1 ← (gz, gy);

b ∈R {0, 1};
b′ ← A(gu0 , gx, Cb, C1−b, “guess”);

if b = b′ then output ’1’ else output ’0’ fi.

If z = xy then A will see parameters constructed as in Experiment 5.1.1; however, if

z 6= xy the ciphertext C1 will not be a properly formed encryption under the key gx and

A will be unable to determine b.

Case 2: pr[Expaltki
A (EG, κ) = ’1’]− 1/2 is not negligible in κ. In this case the adversary

is clever enough to handle partially corrupt input, however, we can still construct an

adversary A′ successful against DDH.

funct A′(gx, gy, gz, “guess”) ≡
u1, u

′
1, r1 ∈R Zq;

C0 ← (gz, gy); C1 ← (gu1r1 , gr1);

b ∈R {0, 1};
b′ ← A(gx, gu′1 , Cb, C1−b, “guess”);

if b = b′ then output ’1’ else output ’0’ fi.

If z = xy then A will see partially corrupt parameters yet does have an advantage

when guessing b. When z 6= xy, no information about b is passed to A, and therefore,

the adversary cannot possibly determine b with a probability significantly greater than

1/2.

These constructions prove that KI follows from the DDH assumption.

Chapter 5. Secret Permutations 55

We also note that key addition with offset δ cannot be performed if one only has gδ.

This is obvious if one recalls that, for C ∈ E(u), key addition with offset −u is equivalent

to decryption and that g−u can be easily computed from gu. If one could do this, one

could decrypt using only the public key.

Theorem 5.1.2 Assuming KI and given a ciphertext C ∈ E(u) and a public key gx, for

any adversary A with resources polynomial in κ the probability that A outputs a ciphertext

C ′ = (α′, β′) for which β′ 6= 1 and C ′ ∈ E(u + x) is negligible in κ.

Proof: Given any ciphertext C and a public key gu, a successful adversary A can

determine if C ∈ E(u) as follows. Choose δ ∈R Zq and compute g−u+δ. Then use A
to compute key addition with offset −u + δ. If this last step is successful, the resulting

ciphertext will be an element of E(δ) (which is easily checked) if and only if C ∈ E(u).

Since A is not always successful but is assumed to be successful with a probability that is

non-negligible in κ, the above steps must be repeated many, but no more than polynomial

in κ, times to attain confidence in the result. If any of these repetitions results in an

element of E(δ), we assume that C ∈ E(u). A test of this form is sufficient to break KI,

thus proving the theorem.

Corollary 5.1.1 Given as input ciphertexts C1 ∈ E(u1) and C2 ∈ E(u2), for any ad-

versary A with resources polynomial in κ the probability that A outputs a ciphertext

C ′ = (α′, β′) for which β′ 6= 1 and C ′ ∈ E(u1 + u2) is negligible in kappa.

Finally, we define a generalized form of KI, called generalized oracle key indistinguisha-

bility (GOKI). KI is generalized in two ways: there are h ≥ 2 keys and the adversary

is provided with an oracle that can recognize ciphertexts encrypted under one of these

keys. The following experiment tests an adversary A for GOKI. Note that π(C1, . . . , Ch)

produces a permuted list where Ci is located in position π(i).

Experiment 5.1.2 ExpGOKI
A (EG, κ, h)

u1, . . . , uh ∈R Zq;

r1, . . . , rh ∈R Zq;

for i := 1 to h do

Ci ← (guiri , gri);

od

π : [1 . . . h]→ [1 . . . h] ←− random permutation;

Chapter 5. Secret Permutations 56

(p, q)← A(gu1 , . . . , guh , π(C1, . . . , Ch), Ou1,...,uh
, “guess”);

if p = π(q) then output ’1’ else output ’0’ fi

The oracle Ou1,...,uh
, on input a ciphertext C = (α, β), determines if α = βui for

some i. If index i exists, the oracle outputs ’1’, otherwise it outputs ’0’. Obviously, the

oracle does not reveal which key matched.

Definition 5.1.2 The ElGamal cryptosystem EG provides GOKI if for all h and any ad-

versary A with resources polynomial in κ, the probability pr[ExpGOKI
A (EG, κ, h) = ’1’]−

1/h is negligible in κ.

Conjecture 5.1.1 Under the DDH assumption, ElGamal provides GOKI.

5.2 Secret Permutation Sharing

Before stating the protocol, it is useful to have in mind, at least informally, the security

properties this protocol seeks to provide. They are:

• Invalid permutation detection. No coalition can manipulate messages in such

a way that two honest clients will believe their respective shares of the permutation

are the same.

• Privacy. No coalition of n−2 or fewer clients can learn the complete permutation.

A coalition will know which shares are held by the honest clients, but as long as

there are at least 2 honest clients, the coalition will be unable to determine the

mapping of shares held by honest clients to those clients with a probability greater

than that of random guessing.

• Fairness. The positions of the honest clients in the final permutation are dis-

tributed uniformly.

After stating the protocol we will define these properties formally and prove that they

hold under suitable assumptions against an honest but curious (semi-honest) adversary.

The protocol, as stated, is not secure against a malicious adversary, but we will discuss

what is required to make it secure against such an adversary and describe our efforts to

prove security in this case.

Assume g ∈ G and q = |G| are publicly known. The clients are initially in some order

and numbered 1 to n. The protocol for generating a permutation of n items is as follows:

Chapter 5. Secret Permutations 57

1. Each client chooses at random two private keys xi ∈R Zq and ui ∈R Zq. The public

key gui is sent to Client 1.

2. Client 1 uses the n public keys to form an initial list of ciphertexts

[(gu1 , g), . . . , (gun , g)]. Note that each of these ciphertexts is an encryption of the

message 1 ∈ G under the corresponding public key.

3. Each client in turn, starting with Client 1, will perform key addition with offset

xi on each ciphertext, re-encrypt each ciphertext and shuffle the list. Suppose

Client i is processing the ciphertext Cj = (αj, βj). The client will, with random

re-encryption factor rj ∈R Zq, compute

C̄j = (α
rj

j β
xirj

j , β
rj

j) . (5.1)

After processing each ciphertext in this manner, a random permutation is chosen

and the list of ciphertexts is reordered. The new list is then sent to the next client

for similar processing.

4. After Client n has completed the above step, she broadcasts the list of ciphertexts

to all clients.

5. After receiving the list, each client broadcasts their xi value to all clients.

6. Finally, each client will attempt to decrypt all messages using the secret key wi =

ui +
∑

j xj. If Client i locates exactly one ciphertext for which α/βwi = 1, β 6= 1,

then the client takes the position of this message within the list as his share of the

secret permutation.

If one wishes a permutation on a larger number of items, say a multiple of n, each

client can simply act as multiple clients; however, to improve efficiency slightly, each

client only needs to choose a single xi and perform Step 3 once.

5.2.1 Complexity

The computational complexity of the protocol is O (nκ) group operations per client

(O (n) exponentiations), while the communication complexity is O (nκ) bits per client

(O (n) group elements). This assumes that in Step 4 the final list is either efficiently

broadcast or passed through the clients in a daisy chain manner (for example, from one

client to the next in the reverse order of Step 3).

Chapter 5. Secret Permutations 58

To ensure the probability that two clients choose the same key is negligible, the key

space must have at least n2 elements. This implies that the security parameter κ must

be at least proportional to log n, and thus, the communication complexity is O (n log n)

bits per client.

Consider the communication costs associated with either the clients deciding on a

non-secret permutation or having a third party choose the permutation and send it to

each client. Encoding a permutation of n items requires O (n log n) bits. In this sense,

our permutation generation protocol is optimal (to within a constant).

Of course, if a third party were to generate the permutation and only send each

client his share of the permutation, the communication complexity would be O (log n)

per client, but O (n log n) for the third party. In this sense, our protocol is not quite

optimal.

5.3 Security

We consider 3 types of adversary:

1. Global passive. The global passive adversary has access to all communication

and wishes to learn something about the generated permutation.

2. Semi-honest client. This client follows the protocol as stated but attempts to

learn any additional information she can from the messages she sees and the secrets

she has.

3. Malicious adversary. This adversary has complete control over one or more

clients, and as such, may not follow the protocol. Of course, if any other client

detects a problem with the messages sent out by the adversary, they may terminate

the protocol. The goal of the malicious adversary is to break one of the security

properties while avoiding premature termination.

All clients are computationally bounded and run in time polynomial in the security

parameter κ. Furthermore, we assume that all communications are secure in the sense

that if one honest client sends/broadcasts a message to some other honest client, the

message will arrive intact.

Our protocol does not require that any of the communication be private. That is,

all communication can be considered to be broadcast to all clients. Because of this, the

Chapter 5. Secret Permutations 59

above list is totally ordered on the strength of the adversary and proof of security against

a malicious adversary implies security against the others.

We now formally define each of the three desired security properties, prove our SPG is

secure against a semi-honest adversary, and discuss security against a malicious adversary.

5.3.1 Invalid permutation detection

Client i, assumed to be following the protocol, will take his position in the final permu-

tation to be j if and only if the jth ciphertext in the final list, say Cj = (αj, βj), has the

property that αj = βwi
j and βj 6= 1. Recall that wi = ui +

∑
k xk. An invalid permutation

has been selected if Client i and Client i′, i 6= i′, take the same final position j. This can

occur if and only if one of the following holds: wi = wi′ or the two clients see a different

ciphertext at position j, say Cj 6= C ′
j, respectively.

The probability that ui = ui′ is negligible in the security parameter so we assume

this is not the case. The sum of the xk can only be different (for different clients) if

when broadcasting xk in Step 5 some client sends different values to different clients.

This cannot happen in the case of a semi-honest adversary or in the case where a reliable

broadcast channel is used. For the case where the adversary is malicious and uses point-

to-point transmission of messages, we discuss below the changes necessary to ensure all

clients receive the same x values, thus preventing the adversary from causing an invalid

permutation to be generated in this manner.

We also note that all clients will see the same ciphertext in a given position, say

ciphertext Cj in position j, both in the case of a semi-honest adversary and in the

case where a reliable broadcast channel is used in Step 4. If a malicious adversary is

present and the final list is distributed via point-to-point transmission (either directly

from Client n or daisy chained through all clients) we suggest a simple verification of the

final list. Given a collision resistant hash function1 H : G2n → G, broadcast in Step 5

both xi and the hash value computed by applying H to the final list received in Step 4.

Then, in Step 6, every client verifies that the n− 1 hash values they received match the

hash value they computed. If the values do not match, the permutation generation fails.

1For example, apply SHA-512 to a bit-string representation of the element of the domain, and then
map the result x to an element of G by treating x as an integer and computing gx. To scale with κ,
substitute a hash function with a sufficiently large range for SHA-512.

Chapter 5. Secret Permutations 60

5.3.2 Privacy

To formally define privacy we first design an experiment which tests an adversary’s

ability to correctly determine an honest client’s share of the permutation. We assume

that either the adversary is semi-honest and may obtain the secret material held by an

arbitrary subset of the clients or the adversary is malicious and may control an arbitrary

subset of the clients. The following experiment could be simplified somewhat if only a

semi-honest adversary were being considered, but we wish to use the same definition for

both types of adversary and will consider the proof of privacy in the semi-honest case to

be a sketch of the proof for the malicious adversary case.

The experiment that follows is intended to simulate the protocol but we have made

a few simplifications which are justified as follows:

• Since the order in which the clients process the list in Step 3 does not affect cor-

rectness, we may assume that both Client 1 and Client n are adversary controlled.

This gives the adversary the most power. In addition to this, we will assume that

some number of adversary controlled clients go first, then all of the honest clients,

and finally the remaining adversary controlled clients. Furthermore, the actions of

these groups of clients may be aggregated. Note that even in the case where there

are one or zero adversary controlled clients, we let the adversary process the list

both first and last.

• In aggregating the actions of the honest clients in Step 3 we let x =
∑

xi.

• We force the adversary’s xi values to sum to zero. The adversary may initially

perform key addition with some non-zero offset and then later undo this by per-

forming key addition with the additive inverse. This does not weaken a semi-honest

adversary as the adversary may also perform key addition with any desired offset

on any private copies of ciphertexts as they desire.

• Forcing the adversary’s xi values sum to zero does weaken a malicious adversary

against the protocol as stated. If such an adversary is able to choose his xi values as

a function of the honest client’s xi values, the adversary will have control over the

sum
∑

j xj computed in Step 6 and can break privacy. To prevent this, we describe

later how a non-mailable commitment scheme can be used to ensure that the value

of the sum
∑

j xj is distributed uniformly. For the purposes of this definition, we

simply assume this is the case.

Chapter 5. Secret Permutations 61

• Finally, in aggregating the honest clients, we assume they all see the same final

list. This list must have either been distributed using reliable broadcast or a hash

function has been employed as described in the invalid permutation section above.

With these simplifications in mind, we now design an experiment for a probabilistic

adversarial algorithm A. Assume the secret permutation generator is parametrized by κ,

the security parameter, n, the number of clients, and h, the number of honest clients. In

the case of a semi-honest adversary, n−h is the number of clients open to the adversary.

We restrict the adversarial algorithm to running in time polynomial in κ.

The experiment proceeds as follows. First the honest clients choose their secret keys

and send the public keys to the adversary. The adversary generates and returns a “first

list” of ciphertexts along with two polynomial time algorithms to be invoked later. This

first list includes the actions of the adversary in Step 3 of the protocol. The experimenter

then performs Step 3 on behalf of the honest clients, using the aggregated x, and passes

the resulting list to the adversary provided algorithm A which generates the “final list”

of ciphertexts. This final list is tested to ensure it is valid, i.e. it contains exactly one

ciphertext for each honest client. If the list is not valid, the experiment terminates with

the special output value ’⊥’. This output value distinguishes this outcome from a failed

guess, which produces an output of ’0’. Finally, after being given the value of x, the other

adversary provided algorithm, A′, guesses an honest client mapping, and if this guess is

correct, the output is ’1’. Note that π(C̄1, . . . , C̄n) produces a permuted list where C̄i is

located in position π(i).

Experiment 5.3.1 Exppriv
A (SPG, κ, n, h)

for i := 1 to h do

ui ∈R Zq;

od

(C1, . . . , Cn; A,A′)←− A(gu1 , . . . , guh); // “first list”

x ∈R Zq;

for i := 1 to n do

if αi /∈ G or βi /∈ G or βi = 1 then output ’⊥’ fi // Ci = (αi, βi)

ri ∈R Zq;

C̄i ←− (αri
i βxri

i , βri
i);

od

Chapter 5. Secret Permutations 62

π : [1 . . . n]→ [1 . . . n] ←− random permutation;

(C ′
1, . . . , C

′
n)←− π(C̄1, . . . , C̄n);

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n); // “final list”

for i := 1 to h do

zi ←−
{

j | α′′j = (β′′j)ui+x
}

; // C ′′
j = (α′′j , β

′′
j)

if |zi| 6= 1 then output ’⊥’ fi

od

(p, q)←− A′(x, C ′
1, . . . , C

′
n); // “the guess”

if α′′p = (β′′p)uq+x and β′′p 6= 1 then output ’1’ else output ’0’ fi

Definition 5.3.1 The secret permutation generator SPG with n parties, h ≥ 2 of which

are honest, has privacy if for any adversary A with resources polynomial in κ, the prob-

ability pr[Exppriv
A (SPG, κ, n, h) = ’1’]− 1/h is negligible in κ.

A semi-honest adversary has additional restrictions not inherent in the above experi-

ment that will be discussed in the proof of the following theorem. Also, notice that with

a semi-honest adversary, the experiment will never terminate with an output of ’⊥’, and

therefore, the tests that lead to this output could be removed if one is only interested in

privacy against a semi-honest adversary.

Theorem 5.3.1 Assume ElGamal has GOKI. If we consider only semi-honest adver-

saries A then our secret permutation generation protocol has privacy.

Proof: By contradiction, we suppose there exists a semi-honest adversary A for which

pr[Exppriv
A (SPG, κ, n, h) = ’1’] − 1/h is non-negligible in κ and use this algorithm to

construct an adversary A′ that can break GOKI.

Throughout this proof we will assume the h keys gu1 , . . . , guh provided by Experi-

ment 5.1.2 are distinct. The probability that they are not is negligible in κ.

There exists a vector (v1, . . . , vn) ∈ Zn
q for which each Ci ∈ E(vi) and C̄i(x) ∈

E(vi + x). We denote C̄i as C̄i(x) to emphasis the dependence on x.

Since the adversary is semi-honest, it must be the case that there exists δ ∈ Zq such

that for each j there exists a unique i for which Ci ∈ E(uj − δ) (i.e. vi = uj − δ).

Furthermore, the algorithm A must perform a key addition with offset δ on each input

ciphertext, a re-encryption of each ciphertext, and some permutation (shuffling) of the

ciphertexts. We note that the shuffling of the ciphertexts cannot help the adversary in

Chapter 5. Secret Permutations 63

any way and so, without loss of generality, we assume algorithm A does not shuffle its

output.

We saw in Section 5.1.1 that an algorithm which performs key addition with offset

δ can be transformed into an algorithm that performs key addition with offset −δ by

simply negating the key of both the input ciphertext and the output ciphertext. In this

way, we construct algorithm A− from A which performs key addition with offset −δ (and

re-encryption) on each of the input ciphertexts. Note that the composition of A and A−

in either order is an algorithm which, on input a list of n ciphertexts, simply re-encrypts

each ciphertext and outputs them.

Now we describe the construction of the adversary A′. In Experiment 5.1.2, the

adversary is invoked with the line

(p, q)←− A′(gu1 , . . . , guh , Ĉ1, . . . , Ĉh, Ou1,...,uh
, “guess”) .

The first thing to do is simply pass the keys to the adversary

(C1, . . . , Cn; A,A′)←− A(gu1 , . . . , guh) ,

and then follow Experiment 5.3.1, choosing a x and π, until we have completed the

computation of the “final list”

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n) .

By performing key addition on each of these ciphertexts with offset −x and passing

the result to the oracle, the set H = { i | C ′′
i ∈ E(uj + x) for some j } can be computed.

Since the adversary is semi-honest, this set must have exactly h elements.

Now, construct a new final list (Ĉ ′′
1 , . . . , Ĉ ′′

n) as follows. For each i, if i /∈ H then set

Ĉ ′′
i = C ′′

i , otherwise Ĉ ′′
i is Ĉj with the offset x added to the key. Each Ĉj must be used

exactly once so we choose a bijection µ : [1 . . . h]→ H and set j = µ−1(i).

With this new final list, apply A− to compute a new intermediate list

(Ĉ ′
1, . . . , Ĉ

′
n)←− A−(Ĉ ′′

1 , . . . , Ĉ ′′
n) .

Finally, the new intermediate list is simply passed to algorithm A′ to obtain a mapping

(p, q)←− A′(x, Ĉ ′
1, . . . , Ĉ

′
n) .

If this mapping is an obviously incorrect guess, i.e. p /∈ H, then A′ is to output a random

guess and terminate. Otherwise, the pair (µ−1(p), q) is output to indicate that Ĉµ−1(p) is

an element of E(uq).

Chapter 5. Secret Permutations 64

Guesses made by A fall into three categories: correct, wrong and obviously wrong

(p /∈ H). Since an obviously wrong guess is turned into a valid guess for A′ we have

that the probability A′ outputs a correct guess is Pcorrect + Pbad(1/h), where Pbad is the

probability that a guess is obviously wrong. Since Pcorrect ≥ 1/h + k−ε for some ε > 0

and infinitely many κ (the security parameter), we conclude that A′ is correct with at

least this same probability, thus breaking GOKI.

Privacy against a malicious adversary

As mentioned, our protocol does not provide privacy against a malicious adversary with-

out a few modifications. The most significant change here is to make use of a non-mailable

commitment scheme to ensure that no client can compute his xi value as a function of

the other client’s values. The commitment scheme is a method that allows a client to

commit to their value while keeping it hidden. Later, the client can reveal his value and

all other clients can verify that it is the one committed to. The non-mailable aspect of

such a commitment is discussed below. The modifications required to the steps of the

protocol are as follows:

Step 1: Using a non-mailable commitment scheme C, each client broadcasts a commit-

ment C(xi) to xi.

Step 3: Each client must verify that all of the ciphertexts in the list they receive are

properly formed. This is done by checking that for all j, αj ∈ G, βj ∈ G and βj 6= 1. If

any of these checks fail, the protocol is terminated.

Step 5: In broadcasting xi to all clients, the commitment C(xi) is opened. Also, as

described in the above section on invalid permutation detection, if the use of a hash

function is required the hash value is broadcast in this step.

Step 6: In addition to the other checks described, the validity of the commitments is

checked, and if a hash function was used, the hash values are also checked. If any of

these checks fail, the protocol terminates with failure.

One must carefully choose the commitment scheme to use. If one client, say Client i,

commits to xi with C(xi), some other client could commit to the same value, but since

that client does not know xi, that client would be unable to correctly perform Step 3.

The result would be failure of the protocol. However, if a client, given the commitment

C(xi), can generate either C(−xi) or C(xj − xi), for some xj, the privacy of the protocol

Chapter 5. Secret Permutations 65

can be broken. For this reason using gxi as a commitment to xi will not work. We

believe committing to each bit in the binary representation of xi should suffice. Other,

more efficient, non-mailable commitment schemes may work as well. From this point on

we assume a suitable commitment scheme has been selected.

With these modifications to the protocol in mind, we now prove our SPG has pri-

vacy against an almost malicious client. The adversary is malicious but has one re-

striction placed upon it; the algorithm A(C̄1, . . . , C̄n) is implemented as n algorithms

A1(C̄1), . . . , An(C̄n). We are working to remove this restriction.

Before stating our theorem, we prove two important lemmas. The first allows us to

prove that for each public key uj, at least one ciphertext in the “first list” is a function of

that key and that key alone. The second is needed to prove that each of the h ciphertexts

in the “first list” that are functions of the public keys have a specific form.

The following experiment tests an adversary’s ability to produce two final ciphertexts

from one intermediate ciphertext. We refer to this experiment as the dual experiment to

emphasize the generation of two ciphertexts from one.

Experiment 5.3.2 Expdual
A (κ)

u1, u2 ∈R Zq;

(C0, A)←− A(gu1 , gu2); // “initial ciphertext”

if α0 /∈ G or β0 /∈ G then output ’0’ fi // C0 = (α0, β0)

x1, x2 ∈R Zq;

r1, r2 ∈R Zq;

C ′
1 ←− (αr1

0 βx1r1
0 , βr1

0);

C ′
2 ←− (αr2

0 βx2r2
0 , βr2

0);

(C ′′
1 , C ′′

2)←− A(C ′
1, C

′
2); // “final ciphertext”

if β′′1 = 1 or β′′2 = 1 then output ’0’ fi // C ′′ = (α′′, β′′)

if α′′1 = (β′′1)u1+x1 and α′′2 = (β′′2)u2+x2 then output ’1’ else output ’0’ fi

Lemma 5.3.1 Assuming KI (as in Theorem 5.1.2), the probability pr[Expdual
A (κ) = ’1’]

is negligible in κ.

Proof: By contradiction, suppose A is an adversary that is successful in the experi-

ment with non-negligible probability. We show how this adversary can be used to break

Theorem 5.1.2.

Chapter 5. Secret Permutations 66

We are given as input a key gx and a ciphertext C ∈ E(u), and we must show how to

compute a ciphertext C ′ = (α′, β′) for which β′ 6= 1 and C ′ ∈ E(u + x).

Choose u1 ∈R Zq, compute gu1 , and set gu2 = gx. These two public keys are given to

A to get a ciphertext C0. There exists some v0 for which this ciphertext is an encryption

under the key gv0 .

During a “normal” invocation of A, the ciphertext C ′
1, an encryption under the key

gv0+x1 , is transformed into C ′′
1 , an encryption under the key gu1+x1 . This is key addition

with offset u1 − v0. Likewise, the ciphertext C ′
2 is transformed into C ′′

2 via key addition

with offset u2 − v0.

In Section 5.1 we noted that an algorithm that performs key addition with offset δ can

be easily transformed into an algorithm to perform key addition with offset −δ. Simply

negate the key of both the input ciphertext and the output ciphertext. Let A− be A

transformed as described.

To break the lemma, we need two invocations of A. For the first, we provide C as

input to A−, first parameter, to obtain an element of E(u− u1 + v0). Using key addition,

this ciphertext is transformed into an element of E(u + v0). Finally, this latter ciphertext

is given to A as the second parameter to obtain an element of E(u + u2) = E(u + x).

If each invocation of A yields an appropriate result with probability greater than k−ε,

then our final probability of success at least k−2ε, which is non-negligible in κ.

We further note that this lemma holds even if the probability is only computed over

experiments for which x1 = x2 as the proof does not require that these two values be

independent.

Lemma 5.3.2 Suppose h coloured balls are tossed (randomly) into n coloured bins with at

most one ball allowed in each bin. The colours are chosen from some set and duplicates

are allowed. Unless all of the balls are the same colour, the probability that each ball

matches the colour of the bin it lands in is at most 1/h.

Proof: Suppose d of the balls are, say, red and h − d are black. Also, to ensure the

probability of a match is non-zero, we assume that at least d bins are red and at least

h− d are black. Some bins (up to n−h) may be painted some third colour. We consider

a toss of the balls to have been a success if the colour of each ball matches the colour of

the bin it landed in.

Let the bins be lined up in some order, toss the balls, and consider the h bins that

have a ball in them. If any of these bins are a third colour, the toss was a failure. Assume

Chapter 5. Secret Permutations 67

this is not the case. Map the colours of the h bins to a string of bits with red mapping

to 1 and black mapping to 0. If this bit string (of length h) is not of weight d, the toss

was a failure, so we assume this is not the case. Label this bit string X.

Now consider the h balls and map their colours to the bits of a bit string labelled Y .

The toss is only a success if the two bit strings match exactly (i.e. X = Y).

The bit string Y has weight d and was selected uniformly from the set of all weight d

strings. This set is of size
(

h
d

)
. Therefore, the probability that X = Y is 1/

(
h
d

)
, and since

we made some assumptions about X above, this probability is an upper bound. Notice

that for 0 < d < h, 1/
(

h
d

) ≤ 1/h. Only if d = 0 or d = h is a probability greater than

1/h possible.

Finally, we note that if there are more than two distinct ball colours, the probability

of success is further reduced, thus proving the lemma.

Theorem 5.3.2 Assume ElGamal has GOKI. If we consider only malicious adversaries

A for which the adversary provided algorithm A(C̄1, . . . , C̄n) is implemented as n algo-

rithms A1(C̄1), . . . , An(C̄n), then our (modified) secret permutation generation protocol

has privacy.

Proof: By contradiction, we suppose there exists an adversary A for which

pr[Exppriv
A (SPG, κ, n, h) = ’1’] − 1/h is non-negligible in κ and use this algorithm to

construct an adversary A′ that can break GOKI.

Throughout this proof we will assume the h keys gu1 , . . . , guh provided by Experi-

ment 5.1.2 are distinct. The probability that they are not is negligible in κ.

There exists a vector (v1, . . . , vn) ∈ Zn
q for which each Ci ∈ E(vi) and C̄i(x) ∈

E(vi + x). We denote C̄i as C̄i(x) to emphasis the dependence on x.

Claim: If, for some i, j, k, and non-negligibly many x, algorithm Ak, on input C̄i(x),

outputs an element of E(uj + x), then for all j′ 6= j and k′, the number of x values for

which algorithm Ak′ , also on input C̄i(x), outputs an element of E(uj′ + x), is negligible.

This follows from Lemma 5.3.1 and establishes that each ciphertext Ci can be used

to generate elements of E(uj + x) for at most one j. Therefore, each of at least h of the

n ciphertexts output by A as the “first list” must have been constructed for the purpose

of generating elements from a particular set E(uj + x).

Chapter 5. Secret Permutations 68

Each algorithm Ak is probabilistic and therefore its action is difficult to predict.

Despite this, we will consider each of these algorithms, on any particular run, to be

performing key addition with some offset; however, the offset may vary from one run to

the next. Our justification for this is that the algorithm cannot (with non-negligible

probability) output an element of one of the sets E(uj + x) without performing key

addition (even if it is with an offset of 0). Indeed, on any particular run, the probability

that at least h of the algorithms are performing key addition must be at least 1/h.

Claim: There exists δ ∈ Zq such that for all j there exists an i for which Ci ∈ E(uj − δ)

(i.e. vi = uj − δ).

Suppose, during some run of the algorithms, each algorithm Ak performs key addition

with the offset δ′k. Furthermore, each Ci ∈ E(uj − δi) for some j and δi. Actually, with

the latter, for all j there exists some δi for which Ci ∈ E(uj − δi), but we assume the

adversary had some j in mind when he generated Ci. If algorithm Ak is to process

the input C̄i(x) and output an element of E(uj + x), then it is necessary that δ′k = δi.

Because of this we consider each ciphertext Ci to be coloured by δi and each algorithm

to be coloured by δ′k. A valid final list can only be produced if the permutation π maps

h of the ciphertexts to similarly coloured algorithms.

Lemma 5.3.2 establishes that unless at least h of the ciphertexts are of the same

colour, the probability that a valid final list is generated is at most 1/h. Let δ be this

colour. Furthermore, because of the specific requirements for a valid final list, it must be

the case that for every j there exists an i for which Ci ∈ E(uj − δ).

Now we describe the construction of the adversary A′. In Experiment 5.1.2, the

adversary is invoked with the line

(p, q)←− A′(gu1 , . . . , guh , Ĉ1, . . . , Ĉh, Ou1,...,uh
, “guess”) .

The first thing to do is simply pass the keys to the adversary

(C1, . . . , Cn; A1, . . . , An, A′)←− A(gu1 , . . . , guh) ,

and then follow Experiment 5.3.1, choosing a x and π, until we have completed the

computation of the “final list”

(C ′′
1 , . . . , C ′′

n)←− (A1(C
′
1), . . . , An(C ′

n)) .

By performing key addition on each of these ciphertexts with offset −x and passing the

result to the oracle, the set H = { i | C ′′
i ∈ E(uj + x) for some j } can be computed. If

Chapter 5. Secret Permutations 69

this set does not have exactly h elements, then A′ is to output a random guess and

terminate. From the claims proven earlier, we know that with probability at least 1/h,

H has exactly h elements, for each j there exists an i ∈ H such that C ′′
i ∈ E(uj + x),

and there exists a δ such that for k ∈ H, Ak, during this run, performed key addition

with an offset of δ.

Now, let algorithm A−
k be Ak but with both the input ciphertext and output ciphertext

modified by key negation. Recall that the result of this is that if Ak performs key addition

with offset δ, then A−
k will perform key addition with offset −δ.

To finish the construction of the adversary, we now compute a new intermediate

ciphertext list (Ĉ ′
1, . . . , Ĉ

′
n). For each i, if i /∈ H then set Ĉ ′

i = C ′
i, otherwise Ĉ ′

i is

Ĉj with the offset x added to the key and processed with A−
i . Each Ĉj must be used

exactly once so we choose a bijection µ : [1 . . . h] → H and set j = µ−1(i). As above,

with probability at least 1/h, the h algorithms used here all performed key addition with

offset δ.

Finally, the new intermediate list is simply passed to algorithm A′ to obtain a mapping

(p, q)←− A′(x, Ĉ ′
1, . . . , Ĉ

′
n) .

If this mapping is an obviously incorrect guess, i.e. p /∈ H, then A′ is to output a random

guess and terminate. Otherwise, the pair (µ−1(p), q) is output to indicate that Ĉµ−1(p) is

an element of E(uq).

The probability that A′ makes it to this last step and the list (Ĉ ′
1, . . . , Ĉ

′
n) is a well

formed ciphertext list (i.e. there exists some π that would yield this intermediate list in

Experiment 5.3.1) is at least 1/h2. If Pguess is the probability that A correctly guesses a

mapping given that the final list is valid, then the probability that A′ outputs a correct

mapping is at least (
1− 1

h2

)
1

h
+

1

h2
Pguess .

If Pguess ≥ 1/h+k−ε for some ε > 0 and infinitely many κ (the security parameter), then

the probability that A′ is correct is at least 1/h + k−ε/h2 which is non-negligibly greater

than 1/h, thus breaking GOKI.

It is our intention to show, in future work, that the restricted form of the algorithm A

does not in fact weaken the adversary. Not only does re-arrangement of the ciphertexts,

using an intermediate ciphertext more than once, and duplicating output ciphertexts

not provide the adversary with any advantage, we also note the infeasibility of creating

Chapter 5. Secret Permutations 70

an algorithm that takes as input two ciphertexts and combines them to create a single

meaningful ciphertext as output. With this in mind, we state the following conjecture.

Conjecture 5.3.1 Assuming ElGamal has GOKI, our (modified) SPG protocol has pri-

vacy against a malicious adversary.

5.3.3 Fairness

We stated earlier that fairness is the property that the positions of the honest clients

in the final permutation are distributed uniformly. If there are h honest clients and n

positions, we have
(

n
h

)
distinct arrangements of honest clients. It is from this set the

positions are to be selected uniformly.

To test an adversary’s ability to break fairness, we consider the following experiment.

Let κ be the security parameter, n the number of clients, h of which are honest, and

H ⊆ {1, . . . , n}, |H| = h, the set of positions the adversary is aiming to put the honest

clients into. The bulk of the following experiment is identical to Experiment 5.3.1 with

the only difference being after the final list has been tested for validity. If the final list

is valid the experiment simply checks to see if the honest clients are in the positions

specified by the set H. If so, the experiment terminates with output ’1’. If not, the

output is ’0’.

Experiment 5.3.3 Expfair
A (SPG, κ, n, h, H)

for i := 1 to h do

ui ∈R Zq;

od

(C1, . . . , Cn; A)←− A(gu1 , . . . , guh); // “first list”

x ∈R Zq;

for i := 1 to n do

if αi /∈ G or βi /∈ G or βi = 1 then output ’⊥’ fi // Ci = (αi, βi)

ri ∈R Zq;

C̄i ←− (αri
i βxri

i , βri
i);

od

π : [1 . . . n]→ [1 . . . n] ←− random permutation;

(C ′
1, . . . , C

′
n)←− π(C̄1, . . . , C̄n);

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n); // “final list”

Chapter 5. Secret Permutations 71

for i := 1 to h do

zi ←−
{

j | α′′j = (β′′j)ui+x
}

; // C ′′
j = (α′′j , β

′′
j)

if |zi| 6= 1 then output ’⊥’ fi

od

H ′ ←− {
j | α′′j = (β′′j)ui+x for some i

}
;

if H = H ′ then output ’1’ else output ’0’ fi

Definition 5.3.2 The secret permutation generator SPG with n parties, h of which are

honest, is fair if for any adversary A with resources polynomial in κ and any H ⊆
{1, . . . , n}, |H| = h, the probability pr[Expfair

A (SPG, κ, n, h,H) = ’1’]−1/
(

n
h

)
is negligible

in κ.

While our SPG does provide fairness against a semi-honest adversary, even the mod-

ified version does not provide fairness against a malicious one. There is a malicious

adversary that can break fairness, but only with a high probability that the experiment

fails with an invalid “final list”. Such an adversary operates as follows. Each ciphertext

Ci is an encryption under one of the public keys uj, where each public key is used roughly

the same number of times. Then, algorithm A is constructed to randomly choose exactly

h of the intermediate ciphertexts and combine them with n− h randomly generated ci-

phertexts. The chosen intermediate ciphertexts take the positions described by H in the

final list. If the final list is valid, the honest client ciphertexts are in exactly the right

positions.

We calculate that the probability the final list is valid is approximately (n/h)h/
(

n
h

)

(if n is a multiple of h, this expression is exact). Clearly, for all h < n, this probability is

strictly greater than 1/
(

n
h

)
. We conjecture, however, that in an environment where the

adversary has a strong incentive to not cause the protocol to fail with an invalid final

list, our SPG is fair.

Conjecture 5.3.2 Assume ElGamal has GOKI. If we consider only malicious adver-

saries A for which the probability pr[Expfair
A (SPG, κ, n, h,H) = ’⊥’] is negligible in κ,

then our (modified) secret permutation generation protocol is fair.

Furthermore, we suspect this restriction is too strong and we are exploring the possi-

bility that a higher bound on the probability that the final list is invalid may be allowed.

Note that we are not very concerned with this weakness in the protocol for two

reasons: first, our intended use of this protocol is for anonymous message delivery to be

Chapter 5. Secret Permutations 72

discussed in the next chapter and such use does not require an SPG protocol that is fair,

and second, there is a straightforward way to add fairness to any SPG protocol.

Adding Fairness

The fairness property is not as essential to a SPG protocol as privacy because fairness

can be easily added with one additional round of communication and a constant factor

increase in communication complexity. The additional steps simply require that, after the

secret permutation has been generated, the clients participate in a protocol to generate

a non-secret fair permutation and then compose the two permutations to yield a secret

and fair final permutation.

One example of a non-secret fair permutation generation protocol is as follows. Each

client chooses an integer from Zn!. The clients then commit to and reveal their integers.

The commitment is to ensure the integers are independent. Finally, the clients sum the

integers modulo n! and map the result to a permutation on n items.

5.4 Application to Games

A secret permutation sharing scheme can be used in a variety of games to either select a

secret ordering of the players or to shuffle a deck of cards. Some games (e.g. the board

game Civilization) require the players to draw numbers from a hat to determine an initial

secret ordering. Many other games require a deck of cards to be shuffled and dealt. For

games where an entire deck is to be dealt out (e.g. Bridge or Hearts), the application of

our secret permutation sharing scheme is straightforward. Suppose 4 players are to be

dealt 13 cards each. In Step 2, Client 1 forms an initial set of 52 ciphertexts from the 4

public keys received

[(gu1 , g), . . . , (gu1 , g), (gu2 , g), . . . , (gu2 , g), (gu3 , g), . . . , (gu3 , g), (gu4 , g), . . . , (gu4 , g)].

This list contains 13 copies of each of the 4 ciphertexts. Then, in Step 6, each client

can expect to find exactly 13 ciphertexts for which α/βwi = 1. The 52 list positions are

associated with the cards of a standard deck and each player takes the cards associated

with the 13 such ciphertexts as their hand. We are also working on an extension of our

protocol to allow the cards to be revealed to players slowly over time.

Chapter 6

Anonymous Message Delivery

In this chapter we put the secret permutation generation protocol developed in the last

chapter to good use in the development of a secure and efficient anonymous message

delivery protocol. As discussed earlier, our reasons for wanting an anonymous message

delivery protocol for our distributed backup system is to ensure an adversary cannot

selectively deny service by hording the blocks output by a single user and then preventing

their retrieval.

Anonymous message delivery has been an area of intense research in recent years and

has been an area of study since the 1980’s, when Chaum introduced the first primitives.

In 1981 he introduced the idea of a mixnet [7] and then in 1988 the idea of dining

cryptographers [8].

With a mixnet, a client who makes use of the mixnet to anonymously route messages

must trust that at least one node of the mixnet is acting in an honest manner and that at

least some of the other clients of the mixnet are honest and genuinely seeking anonymity.

Of course, nothing prevents clients from participating in the mixnet as nodes themselves,

but as we will discuss below, this approach can be inefficient.

In a dining cryptographers network (DC-net) the participants all broadcast their

messages simultaneously. Since this is a broadcast network, there is no recipient per se

nor any routing nodes to trust. One must simply trust that not all of the other clients

are colluding against them.

Existing DC-net protocols are not particularly efficient as they typically impose an

expansion factor of n, the number of participating clients, to each message broadcast.

Furthermore, many DC-net protocols are not collusion resistant. If any one client decides

73

Chapter 6. Anonymous Message Delivery 74

to reveal their local information, the anonymity of all participants is compromised. Our

goal is to address these two shortcomings.

In this chapter we will first describe the basic protocols used in the implementation of

a mixnet and then discuss how one might implement a secure DC-net. Finally, we detail

our efficient DC-net protocol and discuss its security. We will also introduce private

information retrieval (PIR) as it is a necessary primitive used by our DC-net protocols

and is of interest in its own right.

6.1 Mixnets

In its simplest form, a single mix node will first receive several equal length messages

from some number of clients. The mix node then reorders the messages according to

some random permutation chosen by the mix node and kept secret. Finally, the mix

node will forward each message to the next hop along the way to its final destination;

however, to ensure that an outside observer privy to both the messages going in to and

out of the mix node cannot simply match the inputs to the outputs, the mix node must

modify each message in some way. Typically the mix node will either decrypt, encrypt

or re-encrypt each message.

Since the mix node knows the permutation it used to mix the messages, any anonymity

gained through the use of the mix node can just as quickly be taken away. To reduce

the impact of a dishonest mix, clients typically route their messages through several mix

nodes. Doing this ensures that the client maintains at least some anonymity as long as

at least one of the mix nodes is honest. In addition to trusting at least one mix node,

the client must also trust that at least some of the other clients using the mix network

are honest as well. The focus of this work is to eliminate the former, the client’s need to

trust the mix node or nodes.

The need for clients to trust at least one node of a mixnet can be rendered moot

if the clients themselves form the mixnet. For each message block to be sent to the

server, each client first prepares (encrypts) their message for entry into the mixnet and

then sends the message to Client 1. Then, one by one, each client mixes the batch of n

messages and sends the batch to the next client. Finally, Client n forwards the batch

of messages to the server. Regardless of the specifics of how this done, it is obvious

that total communication is at least O (n2 |m|), where |m| is the size of a single message

block. If the clients had simply sent their message blocks directly to the server, the total

Chapter 6. Anonymous Message Delivery 75

communication would be O (n |m|), so routing though the mixnet, in this case, imposes

a factor of n increase in communication. We now discuss various ways to construct such

a mixnet and provide a more accurate estimate of the complexity of each.

With a mixnet based on onion routing, each client encrypts their message block n

times using the public keys of clients n through 1, in that order. Then, when mixing

the batch of messages, each client can remove one layer of encryption by decrypting with

their private key. After Client n has mixed and decrypted the messages, the plaintext

message blocks are sent to the server. If it is undesirable to allow Client n to see the

plaintext message blocks, the blocks can be pre-encrypted with the server’s public key.

To prevent an adversary from simply encrypting the output of a particular mix node

with that node’s public key and then comparing the resulting ciphertext to the inputs

of that node to determine the mixing permutation, a probabilistic public key encryption

scheme must be used. Such schemes inevitably expand the message. At the very least,

the ciphertext must be some constant number of bits larger than the plaintext. After

the n encryptions needed to form the onion, each ciphertext will have size at least |m|+
O (n). This makes the total communication cost of this scheme at least O (n2 |m|+ n3);

obviously favouring large message blocks. Note that the pre-encryption with the server’s

public key need not be probabilistic as no one other than the server and the client that

sent the message will have access to the plaintext. One advantage of this scheme is that

each client must, necessarily, be involved in the mixing of the messages. Malicious clients

cannot easily route around the honest ones.

Another technique for constructing mixnets is to use a probabilistic encryption scheme

that allows re-encryption or universal re-encryption [16]. Re-encryption is, informally,

the transformation of one ciphertext into another ciphertext that is an encryption of the

same message under the same key, but which cannot be linked to the original ciphertext

as being such (i.e. the new ciphertext looks entirely different). With non-universal re-

encryption, each mix node must know the public key under which each ciphertext is to be

re-encrypted. Because of this, all ciphertexts must be encrypted under the same public

key. If this public key is that of the server, then any collusion between the server and a

client will allow the two to decrypt all of the messages passing through that client. The

use of universal re-encryption allows the various messages to be encrypted under different

public keys as the public key under which a particular ciphertext is encrypted need not

be known to the node doing the re-encryption. Even in this case, what public key does

one use?

Chapter 6. Anonymous Message Delivery 76

Another problem with the use of re-encryption is ensuring that every client has a

chance to shuffle the messages. That is, malicious clients cannot route the batch of

ciphertexts around honest clients. To combat this problem a verifiable shuffle may be

used [5, 31, 33, 32, 37]. With a verifiable shuffle, each mix node provides some sort of

proof that the outgoing ciphertexts are indeed a re-encryption of the input ciphertexts in

some permuted order, thus allowing others to verify the correct operation of the node. In

[40], a zero knowledge proof is given to convince others that a mix node shuffling secret

shares has not tampered with the shares. Unfortunately, constructing and verifying these

proofs can add considerably to the time and communication complexity of the mixnet.

6.2 Dining Cryptographers

In its most basic instance, at most one of the “dining cryptographers” has a message to

transmit “I paid for the meal.” The other cryptographers at the table are only interested

in learning whether or not one of them paid for the meal, not which one. Chaum’s story

to motivate this problem is that the cryptographers have been informed that someone has

paid the bill for the entire table. The cryptographers are both interested in preserving

their anonymity, and hence cannot reveal who paid, but are also concerned that the U.S.

National Security Agency (NSA) has secretly funded their dinner. If, upon execution

of the protocol, they find that no one indicates that they paid the bill, then their NSA

fear may be justified. More sophisticated variants involve multi-bit messages and a

mechanism by which multiple parties may each have a message to transmit. The latter

of these variants is where this work contributes.

In a dining cryptographers network (DC-net) at most one party can successfully

transmit within each slot, where a slot is either in time or in space. If slots are spread

out in time (the clients take turns) and the overall message rate is low, the clients may

simply transmit when they want and, in the event of a collision, employ a random back-

off and retransmit protocol. However, if slots are spread out in space, the message rate is

relatively large, or if high efficiency is required, the clients must first agree on an ordering

of the slots, i.e. a permutation of themselves, and then each transmit their message in

the appropriate slot. Furthermore, to reduce the damaging effects of a collusion among

players, such a permutation should be kept secret in the sense that each party should

only know their slot number. We note that in “Dining Cryptographers Revisited”, Golle

and Juels [17] comment on the problem of generating such a secret permutation:

Chapter 6. Anonymous Message Delivery 77

“The problem can be avoided through techniques like secure multiparty

computation of a secretly distributed permutation of slots among players, but

this is impractical.”

We hope the secret permutation generation primitive introduced in the previous chapter

satisfies this requirement.

The Golle and Juels paper addresses the issue of robustness in a DC-net by allowing

parties to detect those who seek to jam the network and recover from their actions. Their

work is orthogonal to ours and we believe some combination of the techniques used there

and here may be possible in future work.

6.2.1 Our Requirements

The problem we seek to solve is the following. Some number of parties, say n, referred to

as clients, each have a message of some fixed length to transmit. The clients participate

in a multi-round interactive protocol which utilizes only a broadcast channel, and at

the end of the protocol anyone in possession of a complete transcript of the broadcasts,

say a server, can run a reconstruction algorithm to recover the messages. Finally, as an

unavoidable side-effect of reconstruction, the output messages are reordered according to

some secret permutation relative to the ordering of the clients.

Formally, each client takes as input the parameters κ, n, i and Mi, where κ is the

security parameter, n is the number of clients, i ∈ {1, . . . , n} is the index of the client

and Mi is the client’s message. All messages are the same length, say |Mi| = `.

A DC-net scheme must have, at least, the following two properties:

• Correctness. An algorithm exists which runs in time polynomial in κ and, on

input the transcript of broadcasts, outputs the multiset of messages.

• Permutation indistinguishability. The server (now an adversary) learns noth-

ing about the permutation from the transcript of broadcasts (beyond what may

be guessed from the content of the messages). Specifically, if the server provides

two message assignments (n-vectors) that are the same multiset, from which one is

chosen as input to the clients, then the probability that the server can determine

which message assignment was chosen will be negligibly (in κ) greater than 1/2. We

assume the clients are honest and the server is computationally bounded (running

in time polynomial in κ).

Chapter 6. Anonymous Message Delivery 78

In addition to these properties, we are only interested in DC-net schemes that can be

divided into two phases: a setup phase and a message phase. The setup phase is comprised

of all rounds except the last and proceeds independently of the messages. The final round

is the message phase, is obviously non-interactive, and is the only round that is dependent

on the message.

In practice, the message may be broken into fixed size blocks and sent in a series of

sub-rounds (steps) during the message phase. Despite this, we require that each client

proceed independent of the others during this phase.

We are interested in creating a DC-net scheme that has some or all of the following

additional properties:

• Setup efficient. The total size of the broadcasts made during the setup phase

should be independent of the size of the messages. Furthermore, we prefer that the

size of these broadcasts be proportional to a small polynomial in n, but we do not

state a specific requirement.

• Message efficient. The total size of the broadcasts made during the message

phase should be linear in the total size of the messages. We will refer to the ratio

of the size of the messages to the size of the broadcasts as the rate of the DC-net.

The DC-net is message efficient if this rate is constant.

• Collusion resistance. Suppose h < n clients are honest and the remaining n− h

clients are chosen (in advance) to reveal all their secrets to the server (i.e. they are

chosen to collude with the server). As with permutation indistinguishability, the

server provides two message assignments that are the same multiset; however, these

message assignments must agree on the messages provided to the n − h colluding

clients. If one assignment is chosen as input to the clients, the probability that

the server can determine which message assignment was chosen will be negligibly

greater than 1/2. Collusion resistance may be considered in two settings: the

colluding clients are semi-honest or the colluding clients are malicious, they go last

in each round, their input is irrelevant, and the honest clients may start sending

garbage if things go wrong. As before, the server (and any malicious clients) are

computationally bounded.

In this chapter we will describe two DC-net protocols. The first is setup efficient

and collusion resistant but not message efficient, while the second is message efficient

Chapter 6. Anonymous Message Delivery 79

and either setup efficient or collusion resistant. The second protocol we describe can be

made to have all of the above properties but only if a key-evolving primitive providing

key independence for discrete logarithm based cryptosystems exists. This is currently an

open problem and therefore we are unable to provide a DC-net protocol providing all of

the desired properties at this time. We describe the needed key-evolving protocol and

discuss this open problem in greater detail toward the end of the chapter.

Before describing our DC-net schemes, we must introduce the notions of private in-

formation retrieval (PIR) and oblivious transfer (OT) as such protocols are a required

primitive in both of our DC-net schemes. Furthermore, PIR is a useful way to anony-

mously retrieve data that was stored anonymously using a DC-net.

6.3 Private Information Retrieval (PIR)

PIR, first introduced by Chor, et. al. in 1995 [9], is a method by which a user can

request and later receive data from a database without revealing to the database the

name, index or any other information about the data requested, including the data itself.

The database can process the query and return the correct data item (in some encrypted

form) without ever learning anything about the data requested.

PIR schemes come in two flavours: ones providing information theoretic privacy and

ones providing computational privacy. With the former, privacy is maintained regardless

of the servers’ processing capabilities; however, to achieve this level of privacy with

acceptable communication complexity, one must either replicate the database among

multiple non-communicating servers or make use of auxiliary servers [14]. On the other

hand, if one assumes one-way functions exist [3], along with certain common intractability

assumptions, computational privacy can be achieved with only a single server running in

polynomial time.

6.3.1 Information Theoretic Privacy

It has been proven that no PIR scheme sending less than the entire database to the

user can have information theoretic privacy and be implemented with a single server

[9]. Therefore, to achieve lower communication complexity, IT-PIR schemes require that

either the database be replicated among multiple servers or auxiliary servers holding data

that is independent of the database be employed [14]. To maintain the user’s privacy,

Chapter 6. Anonymous Message Delivery 80

these servers must not be allowed to communicate during the online phase of the protocol.

Furthermore, for each query the user wishes to make, the user prepares a request for each

of the servers and then reconstructs the answer to the query from the replies received

from the servers.

Two modifications to the basic schemes are possible. With a threshold scheme, the

parameter t specifies the maximum number of servers that may conspire against the

user without breaking the user’s privacy. For the basic schemes, we can say t = 1. As

t increases, the communication complexity of the scheme also increases to pay for this

insurance. If t is equal to the number of servers, then the servers may be considered parts

of a single server and they will necessarily need to return the entire database to the user

in response to each query.

Robust PIR addresses the issue of server failure. Protocols have been developed to

allow successful data reconstruction provided a sufficiently large fraction of the servers

responded to the query. The definition of “sufficiently large” is a parameter set before

hand. Beimel and Stahl [4] also give a protocol that can tolerate byzantine servers that

maliciously corrupt their reply to a query.

6.3.2 Computational Privacy and Oblivious Transfer

Kushilevitz and Ostrovsky [22] describe the first single-server PIR scheme with sub-linear

communication complexity. Their scheme relies on the hardness of computing quadratic

residues modulo a composite and has communication complexity O (nε), for any ε > 0.

Chang [6] describes a single server PIR scheme that requires only logarithmic com-

munication and is based on Paillier’s cryptosystem [36]. Chang’s scheme can also be

directly used to implement 1-out-of-n oblivious transfer (OT).

OT is closely related to PIR in that it also involves a transfer of information from

a sender (server) to a receiver (user) without the server knowing which information was

sent; however, with 1-out-of-n OT, the privacy of the database is preserved as the user

only receives the one item that was sent and no information about the other database

items.

Since our DC-net schemes will require a single server OT solution, we recommend

the use of Chang’s scheme and briefly describe it here. This description of both Paillier’s

cryptosystem and the basic Chang scheme are duplicated from [6] with some minor

changes in notation.

Chapter 6. Anonymous Message Delivery 81

Paillier’s Cryptosystem

Let N = pq be an RSA modulus where p and q are two large safe primes, and let g ∈ Z∗N2

be an element whose order is some multiple of N . Encryption of a ∈ ZN is performed by

choosing b ∈R Z∗N and computing

w = Eg(a, b) = gabN mod N2 . (6.1)

At the heart of Paillier’s cryptosystem is the fact that, for any given w ∈ Z∗N2 , there

exists a unique pair a ∈ ZN and b ∈ Z∗N such that (6.1) holds. Furthermore, if one knows

the factorization of N , one can compute

a = Dg(w) =
L[wλ mod N2]

L[gλ mod N2]
mod N , (6.2)

where L[v] = (v − 1)/N and λ = lcm(p− 1, q − 1). Once a is known, b can be found (if

needed) by computing an N -th root mod N .

Paillier’s cryptosystem is additive homomorphic, having the following two properties:

• Dg(Eg(m0, r0)Eg(m1, r1)) = m0 + m1 mod N , and

• Dg(Eg(m0, r0)
c) = cm0 mod N .

Basic PIR Scheme

Let n = `2 be the size of the database held by the server (in bits) and x(i, j), 0 ≤ i, j < `,

denote the bit x[i`+ j]. Also let I(t, t0) be an indicating function such that I(t, t0) = 1 if

and only if t = t0, otherwise I(t, t0) = 0. We assume the user wants to learn bit x(i∗, j∗).

The basic scheme, called PIR on 2-Hypercube, is:

• Initializing: User sends αt = Eg(I(t, i∗), rt) and βt = Eg(I(t, j∗), st) to the server

for 0 ≤ t < `, where rt, st ∈R Z∗N .

• Filtering: The server computes σi =
`−1∏
t=0

βt
x(i,t) mod N2 for 0 ≤ i < `.

• Splitting-and-then-filtering: The server splits each σi by computing ui, vi ∈ ZN

such that σi = uiN + vi, and then sends u =
`−1∏
t=0

αt
ut mod N2 and v =

`−1∏
t=0

αt
vt mod

N2 to the user.

• Reconstructing: The user computes x(i∗, j∗) = Dg(Dg(u)N +Dg(v)).

Chapter 6. Anonymous Message Delivery 82

With this scheme, server-side communication is 2κ bits and user-side communication

is 2κn1/2 bits, where κ = 2 log N is the security parameter. The paper [6] goes on to

describe PIR on a c-Hypercube, which has server-side communication of 2c−1κ bits and

user-side communication of cκn1/c. By choosing the constant c appropriately, and given

that κ must be at least log n, user-side communication can be made O (nε log n) for

arbitrarily small ε while server-side communication remains O (log n).

While the algorithm described above is for a database with single bit entries, extension

of the algorithm to the case where each database entry is an element of ZN is trivial.

As a simple test of this PIR scheme, we have implemented it in C++ using Shoup’s

NTL library [39] for the finite field arithmetic. In testing on a machine with a 1 GHz

processor, we found that about 5 minutes were required to query a single 512 bit entry

from a database with 216 entries. In this test both the client and the server processes

were running on the same machine. The RSA modulus used was 512 bits in length and

we chose c = 4.

6.3.3 Private Information Storage

Closely related to PIR, Ostrovsky and Shoup have described a protocol for achieving

private information storage [35]. Their protocol provides information theoretic storage

of individual bits in the multi-server database. To our knowledge, no protocols providing

private information storage on a single server exist. We propose that a DC-net, combined

with a PIR scheme, could be used to implement a form of single database private infor-

mation storage. To make updates to the database, several clients will use the DC-net to

send their updates to the server. To later query the database, single database private

information retrieval can be used. The DC-net schemes we present in this paper favour

long messages, so this form of private information storage will work best for databases

containing a relatively small number of large files. Alternatively, many updates can be

sent in a single DC-net session provided the server’s ability to link several updates as

coming from the same client does not compromise the privacy or anonymity of the clients.

6.4 Collusion Resistant DC-net

We now describe an inefficient (lacks message efficiency) but collusion resistant DC-net

protocol with a communication complexity of O (n`) per client for setup, where ` is the per

Chapter 6. Anonymous Message Delivery 83

query complexity of the OT scheme, and a rate of 1/n during the message transmission

phase. Note that this protocol has comparable complexity to previously known DC-net

protocols but adds the collusion resistance property.

In addition to secret permutation sharing, the following standard primitives are re-

quired:

• Single server 1-out-of-n oblivious transfer (OT). Chang’s OT scheme with

logarithmic communication [6] should suffice and will result in a per client setup

complexity of O (n log n).

• Non-mailable bit commitment. To make the simultaneous revelation of a bit

string possible.

• Stream cipher or pseudo random number generator (PRNG). Any keyed

secure pseudo random number generator will suffice.

The scheme described here is essentially a simple secret sharing scheme. Each client

splits his message into n shares and (in a sense) distributes these shares to the clients.

The clients then send all of their shares to the server. From these n2 shares, the server

can recover the n messages, but does not learn the origin of each message.

During setup, each client distributes to every other client a key for a pseudo random

number generator (PRNG). Then, the way each client splits their message is by having

the other clients use the PRNG to generate their shares of the message, and the client

with the actual message compute the sum of the message and the output of the PRNG

keyed with each of the keys the other clients have. The security of this scheme relies

on the fact that the server cannot distinguish between pure PRNG output and PRNG

output that has been summed with the message.

1. Setup phase:

(a) The clients engage in secret permutation sharing to generate a permutation

of themselves π : {1, . . . , n} → {1, . . . , n}. Each client j will know the value

π(j) but no others.

(b) Each client, say Client j, chooses n − 1 keys to use as seeds for the PRNG

and one extra key. Call them Ki,j, where 1 ≤ i ≤ n. The key Kπ(j),j is the

one not used to seed a PRNG and is only present because a malicious client

might request it in the next step.

Chapter 6. Anonymous Message Delivery 84

(c) To properly encrypt each message block, Client i needs to know Kπ(i),j, for

all j 6= i; however, to ensure that Client i does not reveal π(i) to Client j,

Client i must request Kπ(i),j using OT.

(d) To ensure each key, except Kπ(i),i, is fetched exactly once, the clients perform

a simple parity calculation. After completing the OT queries, each client will

have 2n−2 keys (not including Ki,π(i)). Let ci be the bitwise xor of the 2n−2

keys held by Client i. The clients then simultaneously reveal their checksums.

Since such simultaneity is difficult in practice, the clients will first commit

to their ci using the bit commitment scheme and then reveal the checksums.

After all of the checksums have been revealed, each client can verify that they

xor to the all-zero bit string. This result is expected because each key is held

by exactly 2 clients.

2. Message phase:

(a) Client i has message mi to send to the server. Let ri,j be the next output

from the PRNG keyed with Ki,j. Client i will generate 2n− 2 such blocks of

random bits, each having length equal that of the message block.

(b) Compute

e
π(i)
i = mi

⊕

j 6=i

rπ(i),j , (6.3)

and set ej
i = rj,i for all j 6= π(i). The ciphertext will be a concatenation of n

blocks Ei = e1
i ‖e2

i ‖ · · · ‖en
i .

(c) Send the ciphertext Ei to the server.

3. Reconstruction algorithm:

(a) The server receives n ciphertext messages Ei. To decrypt the server simply

computes the bitwise xor of all of these messages. The result will be n con-

catenated plaintext message blocks

mπ−1(1) ‖ mπ−1(2) ‖ · · · ‖ mπ−1(n) . (6.4)

Chapter 6. Anonymous Message Delivery 85

Message Integrity

Each message is essentially encrypted with n − 1 instances of a stream cipher, and as

such, are susceptible to bit manipulation by malicious clients. One can protect against

such manipulation using any technique applicable to stream ciphers. For example, one

might structure each plaintext message block as the concatenation

r ‖ m ‖ H(r ‖m) , (6.5)

where r is a sufficiently large number of secret random bits, m is the actual message block,

and H is some secure hash function. The server would reject any decrypted message that

does not have this form.

6.5 An Efficient DC-Net

The DC-net scheme described in this section is loosely based on Paillier’s homomorphic

cryptosystem [36], and it can achieve both our efficiency requirements and collusion re-

sistance if one has a key-evolving scheme for discrete logarithm based cryptosystems that

supports key independence. Unfortunately, the existence of such a scheme is currently

an open problem in cryptography. Without this primitive, the protocol we describe is

message efficient and either setup efficient or collusion resistant, but not both. We will

first describe a basic protocol that is efficient but not collusion resistant, and then later

we discuss the changes needed to add collusion resistance.

The basic idea is that the clients will send the server a n × n permutation matrix

corresponding to some randomly chosen permutation π. During each message sub-round,

the server receives a column whose n rows are the ciphertext messages from the clients

and then computes the “matrix product” of the permutation matrix and this ciphertext

column to produce a column of plaintext messages (in the permuted order). The actual

calculation is not exactly matrix multiplication as we do exponentiation in place of mul-

tiplication when computing the inner product of the column and each row of the matrix.

Obviously, this permutation matrix cannot have the traditional 0’s and 1’s. Instead, each

entry is encrypted in such a way that the server cannot distinguish 0’s from 1’s. Finally,

“multiplication” with the permutation matrix does not only permute the messages, but

decrypts them as well. If any of the ciphertexts are missing or corrupted, none of the

decryptions will yield any information about the plaintext messages.

Chapter 6. Anonymous Message Delivery 86

6.5.1 Composite Modulus Discrete Logarithm

Recall our brief introduction to the Paillier cryptosystem in Section 6.3.2. Paillier uses

a partial discrete logarithm calculation as a decryption function, but for our DC-net

protocol, we will use a similar discrete log calculation to encrypt each plaintext message

block that is to be sent to the server. Each client will have their own RSA modulus and

the server will need to combine calculations done using each of these moduli. To facilitate

this, the server will choose an integer s and all messages blocks will be interpreted as

elements of Zs. The only restrictions on s are that s < N and gcd(s,N) = 1. This latter

restriction will most certainly be satisfied provided the party generating N is competent.

The problem we solve is, given m ∈ Zs, find e such that

m = (ge mod N2) mod s . (6.6)

Note that this expression is not well defined if one considers the entity in the brackets

to be an equivalence class. Instead, we must insist that from now on anytime we write

A mod B we mean the least non-negative residue (i.e. the common residue). We claim

an e satisfying (6.6) can be found if one knows λ = lcm(p − 1, q − 1), but we take this

one step further. Given any fixed integer x, we find y such that

m = (gx+yλ mod N2) mod s . (6.7)

To see that such a y must exist, first note that the set of N distinct residues{
gx+yλ mod N2

∣∣ 0 ≤ y < N
}

is the same, but with a different element ordering, as

the set { (gx mod N) + zN | 0 ≤ z < N }. This follows from gλ = 1 mod N . Then, with

s < N and s prime to N , we have that this set must form a complete set of residues

modulo s (and include N − s duplicates). Note that for some m, more than one y in

0 ≤ y < N may satisfy the relation, but we only concern ourselves with finding one such

y.

To find a satisfying y, we start by writing

m + us = gx+yλ mod N2 , (6.8)

for some non-negative integer u. If this expression holds modulo N2, it must also hold

modulo N , but in this latter case we note that gλ = 1 mod N and write

m + us = gx mod N . (6.9)

Chapter 6. Anonymous Message Delivery 87

Solving for u gives

u = (gx −m)s−1 mod N . (6.10)

This u is in the range 0 ≤ u < N , but there are some values of u ≥ N for which

m + us < N2. In particular, if u′ = u + N , where u is as calculated above, is such that

m + u′s < N2, then u′ can be used to find an alternate solution for y. Since we do not

care which value of y we find, we will not consider this possibility further.

Now, to calculate y, we just rewrite (6.8) as

(m + us)g−x = gyλ mod N2 , (6.11)

and make use the identity y = L[gyλ]/L[gλ] mod N . This identity is just (6.2) with

w = ga. This gives us

y =
L[(m + us)g−x mod N2]

L[gλ mod N2]
mod N . (6.12)

6.5.2 Basic Protocol

As with the protocol given in Section 6.4, this protocol is broken into three phases.

1. Setup phase:

(a) The clients choose a random permutation of themselves π : {1, . . . , n} →
{1, . . . , n}.

(b) Set s = 2κ, where κ is the security parameter. Note that each message block

will be interpreted as an element of Zs.

(c) Each client must generate an RSA modulus. Client j chooses safe primes pj

and qj to form the modulus Nj = pjqj > s and then broadcasts Nj to all other

parties. Let λj = lcm(pj − 1, qj − 1).

(d) Each client then chooses random ring elements with maximal order αj ∈R Z∗N2
j

and βj ∈R Z∗N2
j
, |〈αj〉| = |〈βj〉| = λjNj. Also, for each i 6= π(j), choose a ran-

dom exponent bi,j ∈R Z∗λj
, and compute βi,j = β

bi,jNj

j . Client j is responsible

Chapter 6. Anonymous Message Delivery 88

for generating column j of the permutation matrix to be used by the server:



β1,j

...

βπ(j)−1,j

αj

βπ(j)+1,j

...

βn,j




. (6.13)

Notice that αj is in row π(j). Each client sends the column it generated to

the server and the server will assemble these columns to form its permutation

matrix. For reasons given below the server cannot distinguish between α’s

and β’s.

(e) Each client j sends the exponents bπ(i),j to the respective clients i 6= j.

(f) Finally, each client needs to choose a seed for a pseudo random number gen-

erator and use this PRNG to generate a sequence of exponents 1 ≤ xj,t < λj,

where t is the sub-round number. These seeds, along with βj, need to be shared

with all clients so they can compute the sequence γj,t = β
xj,tNj

j mod N2; how-

ever, the values xj,t must be kept secret from the server.

2. Message phase:

(a) In sub-round t, Client i has message block mi,t ∈ Zs, random ring elements

γj,t ∈ Z∗N2
j

and the exponent xi,t.

(b) First compute m′
i,t = mi,t −

∑

j 6=i

(γ
bπ(i),j

j,t mod N2
j) mod s.

(c) The ciphertext message Client i must output is an exponent ei,t which satisfies

the equations {
m′

i,t = (α
ei,t

i mod N2
i) mod s

γi,t = β
ei,tNi

i mod N2
i

. (6.14)

Since βNi
i has order λi (or some factor of λi) and γi,t = β

xi,tNi

i , we can set

ei,t = xi,t + yi,tλi and compute yi,t by solving the first equation. But this

equation is just (6.7) so one can find yi,t by evaluating (6.10) and (6.12).

(d) Each client sends its ciphertext ei,t to the server.

Chapter 6. Anonymous Message Delivery 89

3. Reconstruction algorithm:

(a) The server has a n× n matrix that consists of elements αj and βi,j, i 6= π(j);

however, since the server cannot distinguish α’s from β’s, let us set βπ(j),j = αj

and say the server has the matrix {βi,j}. The server can recover the plaintext

message blocks mi∗,t, for 1 ≤ i∗ ≤ n, by computing

mi∗,t =
∑

j

(βi∗,j
ej,t mod N2

j) mod s . (6.15)

Note that mi∗,t is the message block sent by client i = π−1(i∗).

The communication complexity of the setup phase is O (n) per client and the rate for

Client i is log s / log Niλi, which is approximately 1/2 if Ni ≈ s.

6.5.3 Correctness

The server, when computing message block mi∗,t, is really recovering Client i’s plaintext

via the equation

mi,t = (α
ei,t

i mod N2
i) +

∑

j 6=i

(βπ(i),j
ej,t mod N2

j) mod s . (6.16)

Since βi,j has order λj and βi,j = β
bi,jNj

j , we can expand the above equation to

mi,t = (α
ei,t

i mod N2
i) +

∑

j 6=i

(βj
xj,tbπ(i),jNj mod N2

j) mod s . (6.17)

Now, γj,t = β
xj,tNj

j , so we simplify to get

mi,t = (α
ei,t

i mod N2
i) +

∑

j 6=i

(γj,t
bπ(i),j mod N2

j) mod s . (6.18)

Finally, note that m′
i,t = (α

ei,t

i mod N2
i) mod s, as dictated by the first equation of (6.14),

so

mi,t = m′
i,t +

∑

j 6=i

(γj,t
bπ(i),j mod N2

j) mod s , (6.19)

which is equivalent to the equation evaluated in Step 2b of the protocol.

Chapter 6. Anonymous Message Delivery 90

6.5.4 Security

The security of this scheme against an honest but curious server depends on two factors:

the decisional composite residuosity assumption (DCRA) and the fact that the server

does not know any of the exponents xi,t.

The decisional composite residuosity assumption [36] simply states that “there exists

no polynomial time distinguisher for N -th residues modulo N2.” This assumption ensures

that, given columns of the form (6.13), the server cannot distinguish the α’s from the

β’s.

Any party having knowledge of both xi,t and ei,t for some i and t can compute yi,tλi,

and given this multiple of λi very likely factor Ni. This fact is the primary reason why

our efficient scheme is not also collusion resistant (and cannot be easily made collusion

resistant, as discussed in the next section). Every client knows all of the exponents xi,t

and the server knows the ciphertexts ei,t. If any client colludes with the server, they can

factor every other clients’ moduli.

6.6 Towards Efficiency and Collusion Resistance

To bring collusion resistance to the efficient scheme, the steps 1a, 1e and 1f of the setup

phase must be altered. For steps 1a and 1e, the changes are straightforward; however,

without an appropriate key-evolving scheme the necessary changes to Step 1f are not

possible.

Step 1a: The modification required to this step is to make use of a secret permutation

sharing scheme to generate the permutation π.

Step 1e: Client j cannot send exponent bπ(i),j to Client i as Client j does not know π(i).

Instead, Client i must request bπ(i),j from Client j and to ensure that Client i does not

reveal π(i) to Client j, Client i must make this request using OT. Since OT is being used

here, each Client j must generate a phony exponent bπ(j),j even though no other client

will request it.

We believe the OT scheme developed by Chang [6] is ideally suited to this task. This

scheme is also based on Paillier’s cryptosystem so the same RSA moduli can be used.

Furthermore, if the exponents being fetched are less than the modulus, a single query

returning the entire exponent can be performed. Assuming s is sufficiently large, choosing

Chapter 6. Anonymous Message Delivery 91

exponents that are less than s will ensure that each one is small enough to be returned in

a single OT query. Finally, since the exponent being fetched is at the same index in each

client’s database, the same query can be broadcast to all clients. If an efficient broadcast

channel is available, this latter point suggests one might choose a OT scheme where a

small reply is returned in response to each relatively large query.

As with the collusion resistant scheme presented in Section 6.4, we must ensure that

each exponent (except bπ(j),j) is fetched exactly once. Again we propose a simple check-

sum calculation. Each client first computes

cj =
∑

i 6=j

bπ(j),i −
∑

i 6=π(j)

bi,j mod s , (6.20)

and then they all reveal their checksums simultaneously. Since such simultaneity is

difficult, the clients first perform some sort of bit commitment and then reveal their cj.

All clients verify that these cj sum to zero (mod s).

Step 1f: Client i needs to generate a pseudo random sequence of exponents {xi,t} and

all other clients need the pseudo random sequence {γi,t}, where γi,t = β
xi,tNi

i mod N2
i . As

discussed in the previous section, anyone knowing both ei,t and xi,t, for one particular t,

can likely factor Ni. Therefore, to achieve collusion resistance, clients other than i must

not learn xi,t, but still compute γi,t.

This problem is identical to the problem of constructing a key-evolving protocol for

discrete logarithm based cryptosystems that provides key-independence. Lu and Shieh

[23] describe two such protocols. Their first protocol, which works in Z∗p but could be

adapted for Z∗N , provides t-bounded key-independence. This protocol could be used

to provide a collusion resistant DC-net provided at most t message/reconstruction sub-

rounds are performed. Unfortunately, if one considers the additional overhead required in

the setup phase, this DC-net protocol is no better than the inefficient collusion resistant

protocol described in Section 6.4. Nevertheless, in applications where achieving a high

rate in the message phase is more important than the complexity of the setup phase, this

protocol may have value.

Protocol 2 of Lu and Shieh claims to provide key-independence in Z∗N by making

use of a trapdoor discrete logarithm technique first introduced by Maurer and Yacobi

[29]. Unfortunately, this method has been discounted as insecure [21]. An effective

trapdoor discrete logarithm technique would solve both the key-evolving problem and our

collusion resistant DC-net problem, but is such a technique required? To our knowledge

Chapter 6. Anonymous Message Delivery 92

no one has proved that a trapdoor discrete logarithm is required to generate this sort

of pseudo random sequence where the one party having secret information knows the

discrete logarithms of the elements.

Chapter 7

Data Backup

Thus far we have discussed the erasure codes necessary to ensure backed-up data is not

lost in the event that some of the encoded blocks become irretrievable, and we have

discussed the use of anonymous message delivery and recovery techniques to prevent

an adversary from selectively denying service to specific parties. The final component

we develop is a technique for breaking one’s files into fixed sized blocks and efficiently

encoding the changing state of the files over time.

To break a set of files into blocks, one might simply use the UNIX tape archive utility

tar. This tool is intended to be used when backing up files to tape, and newer versions

have the ability to pipe the data through compress or gzip as a means of reducing local

redundancies; however, these compression tools usually fail to find the duplication of

entire files or large portions of files.

A more difficult problem is efficiently encoding the changes to a set of files over time.

Most people have a large number of files that rarely change and only a few files that change

frequently (e.g. from one day to the next). An efficient backup strategy will attempt to

capture only the data that has changed during each backup period. Traditional methods

employ a combination of full backups and incremental or differential backups. Obtaining

an optimum mix of these backup types is tricky and infrequent full backups make recovery

tedious.

In this chapter we propose a technique by which files can be stored as a set of fixed

size blocks and, as additional files are added to this store, the presence of any previously

seen blocks within these new files can be easily detected; thus reducing the number of new

blocks that must be created. This block detection technique does not rely on the blocks

being aligned on block boundaries. It can detect a block lying on any byte boundary.

93

Chapter 7. Data Backup 94

This solves the problem of recognizing duplicate files or large sections of duplicate data

within the initial set of files being backed up and the problem of detecting and encoding

only the changes in a set of files that are backed up at regular intervals. Recovery is also

simplified as the most recent backup is always, essentially, a full backup.

7.1 The rsync algorithm

The rsync algorithm, invented by Tridgell [45], provides a method by which one can

update a local file to make it an identical copy of some remote file. If the remote file

is largely similar to the local file, say a newer version of the local file, this update can

be done using a low-bandwidth high-latency bi-directional communication link. The

protocol requires as little as one round of communication (hence its suitability on a high-

latency link), is capable of analyzing the differences between the two files without having

them located on the same machine, and only transmits these differences from the server

to the client.

Suppose the client has a file that can be broken into equal size blocks like so

A B C D E ,

and that the server’s version of the file has been modified so that (in terms of these

blocks) it looks like

x C D E y A z
.

The rsync algorithm provides a way for the server to determine that its version of the file

contains the blocks A, C, D, and E, which the client already has, and that it must only

send the partial blocks x, y, and z, along with instructions describing how to assemble

these pieces to produce a copy of the server’s file.

7.1.1 Rolling Checksum

To ensure the server can find the locations of blocks the client has within its file, the

client first sends the server a set of checksums (or hashes) of the blocks it has. The key

to the rsync algorithm is that there are two checksums computed from each block. One

is a cryptographically strong hash function (such as SHA-256) which can be assumed to

uniquely represent the block. The other is a weak “rolling” checksum.

Chapter 7. Data Backup 95

The rolling checksum, for bytes [Xs, Xs+1, . . . , Xt−1], is defined as

a(s, t) =
t−1∑
i=s

Xi mod M

b(s, t) =
t−1∑
i=s

(t− i)Xi mod M.

(7.1)

We note two well known checksum algorithms that make use of this general construc-

tion. Adler’s adler-32 uses M = 65521 (the largest prime number smaller than 216) and

is considered to be almost as effective at detecting random errors as a cyclic redundancy

check (CRC) but is much faster to compute in software. An even faster but not quite as

effective checksum is Fletcher’s checksum. This checksum uses M = 65535 to make

the modular reduction slightly faster, but the real key to speed is doing the calculations

using 16-bit words instead of 8-bit bytes. These changes can give the Fletcher’s checksum

calculation as much as a two-fold increase in speed over adler-32.

For rsync, M = 216 and the calculation is done on individual bytes. The latter is

essential to ensure blocks can be matched regardless of their relative alignment. For our

data backup application, we extend the rolling checksum beyond 32 bits by using larger

values of M .

The “rolling” part of this checksum comes from the observation that if one knows the

checksum for a particular block of the file starting at position s and ending at position

t− 1, one can, in constant time, compute the checksum for the block starting at position

s + 1 and ending at position t. This calculation is

a(s + 1, t + 1) = a(s, t)−Xs + Xt mod M

b(s + 1, t + 1) = b(s, t)− (t− s)Xs + a(s + 1, t + 1) mod M.
(7.2)

Because of the rolling nature of the checksum, the server can efficiently compute the

checksum for a block of a particular size starting at each and every possible byte boundary.

As the server works its way through its file computing the rolling checksum at each byte

boundary, it can check if the checksum matches any of the checksums provided by the

client. If a match is found, the strong checksum of the block in question is computed

and checked against the manifest provided by the client. This additional calculation is

required to detect the false positives that occur because of the limited range of the rolling

checksum and the ease by which collisions can be maliciously generated. If a block is

found for which both checksums match, the server can be sure that the client already has

Chapter 7. Data Backup 96

a copy of that block and instead of sending the block to the client, the server indicates

to the client that it should copy its existing block to the new file being constructed.

If the two files have many whole blocks in common, regardless of the positioning

of these blocks, the rsync algorithm will greatly reduce the amount of communication

required to transmit the new file to the client.

7.2 Using rsync for backup

The rsync algorithm can be used for backup to solve the following two problems:

1. achieving compression by only storing the changes in a directory tree from one

backup session to the next and

2. achieving compression by recognizing similarities between files within a directory

tree during a single backup session.

There have been other attempts at using rsync for backup (for example, [20, 46]); how-

ever, while these address the first problem to the extent that as long as a file has not

changed or moved, it is only stored once, they do not address the second. Another similar

tool is rdiff-backup [12] which uses reverse diffs to efficiently encode changes to files

that have not moved, but again, this tool does not address the second problem.

Our proposal is to split the backup copy of a set of files into two parts: a dictionary of

blocks and an object store. The dictionary is simply a collection of fixed size data blocks

for which both the rolling (weak) checksum and the cryptographically strong checksum

have been calculated. When backing up a file that is at least one block is length, the

rolling checksum is computed at each byte offset to determine which, if any, of the blocks

currently stored in the dictionary appear within the file being backed up. As such blocks

are found, the file is compressed by replacing these blocks with some sort of reference to

the block within the dictionary (either the strong hash or an index). Any whole blocks

within the original file that are not found in the dictionary are added to the dictionary

and similarly replaced with a reference in the original file. Of course, before adding a new

block to the dictionary, the algorithm must scan at least one block length further into

the file to ensure a partial block of data has not been inserted between two known blocks.

In this way, the file being backed up is compressed to a mixture of block references and

partial blocks of data. If the resulting file, after compression, is still at least one block in

Chapter 7. Data Backup 97

length, the compression algorithm is repeated recursively. The final result will be a file

that is smaller than one block in size. We call this resulting data an object and store it

in the object store.

The object store is simply a hash table where the keys are a cryptographically strong

hash of each original file backed up and the values stored are the objects that result from

compression of those files. When backing up a directory, a file is created that is the

list of files contained in the directory along with the hashes of those files and any other

metadata one wishes to preserve.

Our goal is to realize the following benefits:

1. identical files appearing in multiple locations within the directory tree are only

stored once,

2. files that have not changed from one backup session to the next are not stored

during subsequent backups, even if they have been moved,

3. any pair of files containing whole blocks with identical data will be efficiently stored

as those identical blocks are only stored once,

4. files that have partially changed from one backup session to the next are stored

efficiently as whole blocks that have not changed are not stored more than once,

and

5. a file that has been split into multiple files or multiple files concatenated into one

require minimal additional storage.

Although the above list appears to focus on individual files, the main benefit here is a

de-emphasis on files in favour of (generally smaller) blocks. Once a block of data has been

added to the dictionary, any time an identical copy of that block is observed anywhere

within any file in the directory tree, during any later backup session, it will be replaced

with a short reference and space will have been saved.

In the next section we discuss the impact of block size on the performance of the

algorithm, and then in later sections we describe our implementation of these structures

and our empirical results.

Chapter 7. Data Backup 98

7.3 Choice of Block Size

In Tridgell’s PhD thesis [44], he suggests the optimal block size for rsync is
√

24n/Q,

where n is the length of the file and Q is the number of distinct differences (each separated

by at least one full block) between the two files. This calculation assumes one is interested

in balancing communication between the client and the server, and since our goal is quite

different, this calculation is of little use.

Our goal, of course, is to minimize the total size of the dictionary and object store.

Having smaller blocks will allow the changes in files to be identified and stored with

greater efficiency; however, small blocks imply there will be a large number of them and

this will introduce overhead as the blocks must be tracked. When compressing individual

files, each block of data is reduced to a reference which, in a practical system, is likely to

be at least 64 bits in size, and therefore, one component of this overhead is the ratio of the

block size to the size of these references. Another significant component of the overhead

is the ratio of the block size to the combined size of the weak and strong checksums

(256 bits in our implementation); however, it is possible to avoid computing and storing

the strong checksum if one is willing to directly compare each block for which the weak

checksum matches to the corresponding blocks in the dictionary, an option that is not

possible with rsync.

Unfortunately, knowledge of these ratios is not sufficient to compute an optimal block

size. Ultimately, the optimal block size is a function of the data being backed up, the

nature of its internal redundancy and the way in which the dataset changes over time.

Furthermore, the optimal block size may change with the data over time. Therefore, we

will take a different approach to determining an appropriate block size; we compute the

effective maximum dictionary size as a function of block size.

In theory, the maximum number of blocks that can be stored in the dictionary is

unlimited; however, in practice, there is a limit and it is related to how often the rolling

(weak) checksum falsely matches a block in the dictionary. Recall that the rolling check-

sum is updated once for each new byte read from a file being backed up and after each

update the checksum is used as an index into the dictionary. If any blocks with a match-

ing checksum are found in the dictionary, either a strong hash is computed and compared

to these blocks or the blocks themselves must be compared. Updating the rolling check-

sum is very fast but comparing blocks is not, so the number of false rolling checksum

matches must be minimized.

Chapter 7. Data Backup 99

We propose the following rule of thumb. The mean rate of false positives should not

exceed one per block of data processed. Our justification for this rule is as follows. When

processing a data file, the strong checksum is computed once per rolling checksum match

or new block added to the dictionary. This amounts to computing the strong checksum

over the entire file once. A false positive rate of one per block also amounts to computing

the strong checksum over the entire file once (making it twice). Our implementation,

described below, also does an initial hashing of the entire file to determine if it has

already been seen or not. Therefore, depending on whether the file is normally hashed

once or twice, this false positive rate increases the total computation by a factor of either

2 or 1.5 respectively. We believe this is a reasonable upper limit on this type of overhead.

With this rule of thumb, we can compute an upper bound on the size of the dictionary.

Let 2`, for some positive integer `, be the block size. From (7.1), ignoring the “modM”

parts, we can compute the maximum value for a and b as a ≤ 255 · 2` < 2`+8 and

b ≤ 255 · 2`−1(2` − 1) < 22`+7, respectively. This tells us that the entropy to be found in

the rolling checksum, i.e. the size of the weak hash, is at most 3` + 15 bits. If we assume

that collisions in this hash function are randomly and uniformly distributed, then the

collision rate can be kept to less than 2−` if the size of the dictionary is restricted to

22`+15 blocks. Table 7.1 summarizes these calculations for a variety of choices of ` that

may be used in practice.

7.4 Implementation

To test our ideas in a real world setting, we have created an implementation of this

backup strategy written in C++ and utilizing Berkeley DB [34] for the object store. This

implementation consists of the following components:

• Dictionary: Each fixed size block of data to be stored is stored along with a 64

byte structure holding, primarily, the 8 byte rolling checksum, the 24 byte strong

hash (SHA-256 truncated to 192 bits), a 24 byte hash as a “reverse” reference to

an object referencing this block, and for the few blocks that are referenced by

multiple objects, a link to a linked list (stored in a separate file) of additional

reverse references.

Each block is tested for compressibility using the deflate algorithm of gzip. If the

block compresses to a size at least 16 bytes less than the block size, it is deemed to

Chapter 7. Data Backup 100

` 10 11 12 13 14 15 16

block size (bytes) 1024 2048 4096 8192 16384 32768 65536

hash bits 45 48 51 54 57 60 63

false positive rate 2−10 2−11 2−12 2−13 2−14 2−15 2−16

maximum blocks 235 237 239 241 243 245 247

maximum bytes1 32 TiB 256 TiB 2 PiB 16 PiB 128 PiB 1 EiB 8 EiB

Table 7.1: Maximum dictionary size as a function of the block size. The false positive

rate is a maximum as per our rule of thumb. Also, the rolling checksum (weak hash)

computation is assumed to produce values that are distributed uniformly within the range

and since this assumption does not hold in practice, this maximum dictionary size should

be considered an upper bound.

be compressible and is compressed along with up to 15 other compressible blocks.

Compressing multiple blocks together can increase the compression ratio, and since

files are processed sequentially, compressible blocks are likely to be compressed

together with other blocks from the same file (likely increasing the compression

ratio further). Although one could simply compress all blocks, we feel that not

storing compressed versions of incompressible blocks will improve later read-back

performance (thus compensating for the extra “test for compressibility” step we

perform).

• Object Store: As mentioned, the object store is implemented using a hash table

in Berkeley DB version 4.4. The keys are simply the 24 byte hash (again SHA-256

truncated to 192 bits) of the original file and the value is the object data.

No attempt is currently made to compress objects. For the tests described in our

results section below where we report the total compressed size of the backup, we

have used the UNIX gzip tool to compress the Berkeley DB data file and are re-

porting its compressed size. We believe an online database supporting compression

would be of a similar size.

1In 1999, the International Electrotechnical Commission introduced a series of prefixes to be used
when specifying binary multiples of a quantity and clarified the position that SI prefixes only have their
base-10 meaning and never have a base-2 meaning. The IEEE has also adopted this standard and we
use it here.

Chapter 7. Data Backup 101

• store: When given a starting directory, this tool performs a depth first search

of the directory hierarchy, first checking to see if each file is already stored in the

object store, and then if it is not found, converting each file to an object and storing

it. Since storing a file in the object store incurs an overhead of at least 48 bytes

(a 24 byte hash stored both with the object and in the directory referencing it),

any file of size less than 64 bytes is not stored as an object and is instead included

directly in the directory where it was found.

Directories are stored as XML files and are simply lists of file names along with their

associated object store keys (or embedded data). UNIX style permission bits, user

and group ids, and information about special files are also stored.

• stat: This program computes various statistics from the distribution of data in

the dictionary and object store, including:

– total blocks in the dictionary,

– ratio of compressed to uncompressed and spaced saved by compression,

– distribution of reverse references and spaced saved by not storing redundant

blocks,

– distribution of rolling checksum values showing the number of collisions,

– number of objects, and

– distribution of object size, mean and median size.

Many of these statistics are shown in the next section.

7.5 Empirical Results

To assess the potential benefits of this algorithm, we have performed an experiment

involving the backing up of 16 versions of my home directory taken at times ranging from

February 2004 to January 2007. Furthermore, this experiment has been repeated for the

5 distinct values of the block size corresponding to 10 ≤ ` ≤ 14. For each experiment,

the 16 versions of my home directory are backed up one-by-one in chronological order

and a variety of statistics were recorded after each version had been processed.

Figure 7.1 shows how our backup strategy compares to the more traditional strategies

of raw storage and strategies capable of identifying redundant (or unchanged) files. When

Chapter 7. Data Backup 102

 0

 5

 10

 15

 20

 25

 30

10821081108010791078107610691055104010279998614923582950

B
ac

ku
p

S
iz

e
(G

iB
)

Days since Feb 11, 2004

raw storage
file redundancy removed

block size 4096

 0

 0.5

 1

 1.5

 2

 2.5

10821081108010791078107610691055104010279998614923582950

M
ar

gi
na

l S
iz

e
(G

iB
)

Days since Feb 11, 2004

raw storage
file redundancy removed

block size 4096

 0

 5

 10

 15

 20

10821081108010791078107610691055104010279998614923582950

C
om

pr
es

se
d

S
iz

e
(G

iB
)

Days since Feb 11, 2004

raw storage
file redundancy removed

block size 4096

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10821081108010791078107610691055104010279998614923582950

M
ar

gi
na

l S
iz

e
(G

iB
)

Days since Feb 11, 2004

raw storage
file redundancy removed

block size 4096

Figure 7.1: Size of backup and marginal rate for both uncompressed and compressed

backups. These graphs compare the strategies: raw backup of files, removal of redundant

files, and our rolling checksum based method with a block size of 4096. The top graphs are

for uncompressed storage while the bottom graphs are the results with compression. With

our rolling checksum based strategy, the daily marginal rate for uncompressed storage is

less than 20 MiB and with compression it is less than 10 MiB.

Chapter 7. Data Backup 103

looking at only the last week’s worth of data (where the backups were made daily), we

see that with a redundant file based strategy, the daily marginal rate is about 200 MiB

uncompressed or 60 MiB compressed. Our strategy reduces this marginal rate to 20

MiB uncompressed or 10 MiB compressed. For the redundant file based strategy, the

time required to double the size of the backup (starting at its current size) would be

approximately 1 month, while with our strategy about 6 months are required.

Figure 7.2 compares the various block sizes tested. When the data is stored uncom-

pressed the largest block size (16384) has the worst performance. This is to be expected

as there are fewer opportunities for compression due to redundant blocks being found.

On the other hand, when the data is compressed, the smallest block size (1024) had the

worst performance. We suspect the reason for this is that with a smaller block size more

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10821081108010791078107610691055104010279998614923582950

B
ac

ku
p

S
iz

e
(G

iB
)

Days since Feb 11, 2004

1024
2048
4096
8192

16384
 0

 0.2

 0.4

 0.6

 0.8

 1

10821081108010791078107610691055104010279998614923582950

M
ar

gi
na

l S
iz

e
(G

iB
)

Days since Feb 11, 2004

1024
2048
4096
8192

16384

 0

 0.5

 1

 1.5

 2

 2.5

10821081108010791078107610691055104010279998614923582950

C
om

pr
es

se
d

S
iz

e
(G

iB
)

Days since Feb 11, 2004

1024
2048
4096
8192

16384
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10821081108010791078107610691055104010279998614923582950

M
ar

gi
na

l S
iz

e
(G

iB
)

Days since Feb 11, 2004

1024
2048
4096
8192

16384

Figure 7.2: Size of backup and marginal rate for both uncompressed and compressed

backups as a function of block size. The top graphs are for uncompressed storage while

the bottom graphs are the results with compression.

Chapter 7. Data Backup 104

of the data is in the dictionary where not all blocks are compressed; however, with the

larger block size more data is in the object store, which we have compressed completely.

Furthermore, the heuristic we have used to determine if a block is compressible favours

larger block sizes.

Table 7.2 summarizes the final state of the dictionary and object store for each of

the block sizes tested. Notice that, as expected, a smaller block size yields a greater

reduction in storage due to redundant blocks, but a larger block size allows for more

efficient compression of those blocks.

In Section 7.3 we suggested that the most significant factor limiting the size of the

dictionary is false matches of the rolling checksum. Figure 7.3 compares the actual false

positive rate to the expected (optimistic) value. Counter-intuitively, the false positive

rate seems to go down as the dictionary is filled. We suspect this must be due to

some peculiar data found in our data set, but we concede that this could also be further

evidence that the rolling checksum is not a very good hash function. For a fully populated

dictionary, Table 7.2 has data showing the number of blocks having a weak hash that

has already been seen and the collision rate that can be calculated from this statistic.

These observations suggest that, in practice, it might be best to ensure the size of the

dictionary remains well below the maximum size given in Table 7.1.

Table 7.2 also gives the mean and median object size as a function of block size. The

reasons these values are considerably less than half the block size (as would be expected)

must be due to the distribution in size of the files in the directory hierarchy being backed

up. In particular, having a large number of files with a size less than one block will skew

the distribution. This effect is larger for the larger block sizes.

Finally, the time required to complete each experiment on an AMD Athlon XP 1800+

machine is the last statistic given in Table 7.2. As expected, having a larger block

size reduces the total number of blocks to keep track of and increases I/O efficiency;

however, beyond the 4096 byte block size, our software is I/O bound. From this data we

recommend that the typical home user with at most a few tebibytes of data should use

a 4kiB block size. For a corporate or industrial user a larger block size may be needed

to ensure large datasets can be efficiently backed up. Alternatively, we are evaluating

possible changes to the rolling checksum to increase its effective size (number of hash

bits) while not significantly slowing it down. With such a modification one could choose

a smaller block size and still store a large dataset provided their machine has enough

RAM to store a complete table of weak hash values.

Chapter 7. Data Backup 105

-26

-24

-22

-20

-18

-16

-14

-12

-10

10821081108010791078107610691055104010279998614923582950

P
ro

ba
bi

lit
y

of
 F

al
se

 P
os

iti
ve

 (
lo

g
ba

se
 2

)

Days since Feb 11, 2004

block size 1024

found
expected

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

10821081108010791078107610691055104010279998614923582950
P

ro
ba

bi
lit

y
of

 F
al

se
 P

os
iti

ve
 (

lo
g

ba
se

 2
)

Days since Feb 11, 2004

block size 2048

found
expected

-30

-25

-20

-15

10821081108010791078107610691055104010279998614923582950

P
ro

ba
bi

lit
y

of
 F

al
se

 P
os

iti
ve

 (
lo

g
ba

se
 2

)

Days since Feb 11, 2004

block size 4096

found
expected

-35

-30

-25

-20

-15

10821081108010791078107610691055104010279998614923582950

P
ro

ba
bi

lit
y

of
 F

al
se

 P
os

iti
ve

 (
lo

g
ba

se
 2

)

Days since Feb 11, 2004

block size 8192

found
expected

-40

-35

-30

-25

-20

-15

10821081108010791078107610691055104010279998614923582950

P
ro

ba
bi

lit
y

of
 F

al
se

 P
os

iti
ve

 (
lo

g
ba

se
 2

)

Days since Feb 11, 2004

block size 16384

found
expected

Figure 7.3: Rolling checksum false positive rate for various block sizes. The solid line

is the expected rate as a function of the number of blocks currently in the dictionary. In

cases where a data point is not present, zero false positives were observed. Note that the

top edge of each graph is the maximum tolerable rate as per our rule of thumb.

Chapter 7. Data Backup 106

block size 1024 2048 4096 8192 16384

blocks referenced 4849597 2425240 1207403 601039 297588

blocks stored 2789504 1418705 715928 360283 179383

storage reduction 42.5% 41.5% 40.7% 40.0% 39.7%

compressed blocks 1603328 859895 462052 250669 133856

reduction 34.3% 36.8% 38.2% 38.8% 39.2%

duplicate weak hash 1816 187 33 7 2

collision rate 2−10.6 2−12.9 2−14.4 2−15.7 2−16.5

expected rate 2−23.6 2−27.6 2−31.6 2−35.5 2−39.6

total objects 53890 53890 53890 53890 53890

mean size 492 869 1398 2120 3666

median size 474 774 1118 1427 1661

cpu time (hours) 2.4 2.0 1.7 1.5 1.3

clock time 3.1 2.7 2.4 2.4 2.4

Table 7.2: Summary of statistics collected during experiment. Blocks referenced does

not include the additional references to blocks referenced more than once within a single

object. All tests were performed on a machine with an AMD Athlon XP 1800+ processor.

The difference between cpu time and clock time is the time spent waiting for I/O.

Chapter 8

Open Problems

This thesis addresses several of the challenges to be overcome in the development of an

Internet based data backup application. We have proposed a new class of low overhead

erasure codes that could be useful in such an application. Also, to avoid selective denial

of service type attacks, we proposed an anonymous message delivery scheme to be used to

prevent an adversary from determining which data blocks belong to each node. Finally,

we have proposed a technique for efficiently dividing the data backed up by a user each

day into fixed size blocks. Our work in these areas has suggested several avenues for

future work.

8.1 Erasure Codes

Our windowed erasure codes have an overhead which is independent of the length of the

code and very low (about 2 extra coded symbols), but the price paid for this low overhead

is the higher decoder complexity O
(
k3/2

)
. For lower decoder complexity, LT codes [24]

have the complexity of O (k log k) but with a higher overhead of O
(√

k
)

extra coded

symbols.

Does there exist a code having both low overhead and a decoder complexity of

O (k log k)? We consider the following two pieces of evidence. First, if one substitutes

ε = 1/k into Theorem 3.1.1 (Theorem 2 from [30]), the theorem is made to read “there

is a rateless locally encodable code that can recover the input symbols from any k coded

symbols with high probability in time proportional to k log k”. The second piece of ev-

idence is Figure 3.1 (right graph) which shows that if the robust soliton distribution is

decoded using Gaussian elimination, the overhead appears to be independent of k. This

107

Chapter 8. Open Problems 108

implies that LT codes can have both low overhead and low decoder complexity, but not

both simultaneously.

One possibility was suggested at the end of Chapter 3; a combination of LT codes

and windowed codes. The degree 2 coded symbols from the robust soliton distribution

must be chosen uniformly from the set of
(

k
2

)
possibilities (otherwise duplicates appear

too often), but for coded symbols of degree 3 or greater, the chosen input blocks could

be confined to a window of size O
(√

k
)
. Assuming such a restriction does not increase

the overhead, it may lead to a low complexity decoder capable of recovering the input

blocks with an overhead similar to Gaussian elimination.

8.2 Anonymous Message Delivery

We have stated that to make our DC-net protocol both efficient and collusion resistant

a key-evolving protocol for discrete logarithm based cryptosystems that provides key-

independence is required. Such a protocol is trivial with a trapdoor discrete logarithm

primitive, but the issue of whether such a primitive is essential is an open problem.

Another direction for further research is to determine how our efficient DC-net pro-

tocol could utilize the work of Golle and Juels [17]. They consider the issue of detecting

malicious players who attempt to jam the DC-net. Furthermore, after such a detection

and expulsion of the offending parties, they offer techniques for recovering from the at-

tack. This type of robustness will be important to any practical DC-net construction,

and therefore, we would want to consider the possibilities of applying these methods to

our efficient DC-net protocol.

8.3 Block Based Backup

The only problems with our rolling checksum based backup strategy are technical in

nature. While our goal was to encode the files stored in a directory hierarchy into fixed

size blocks and the blocks in our dictionary are of fixed size, the objects created vary

in size. Furthermore, if one wants to make use of a compression algorithm to further

reduce the space needed, the resulting compressed blocks will also vary in size. Packing

the resulting compressed blocks and objects into fixed size blocks will be necessary to

utilize an erasure code and an anonymous delivery protocol.

Chapter 8. Open Problems 109

Another issue is dealing with a dictionary containing millions or billions of blocks.

One must ensure that the hash table used to lookup the rolling checksum as each byte of

a file is processed is a fast as possible. We note that the vast majority of these lookups

will produce a negative result so one might optimize for this case. Perhaps one could

construct a compact in-core structure to be used only to determine if a lookup would

result in a hit or not, and only in the case of a possible hit is a, presumably slower,

lookup done in a hash table.

8.4 Additional Challenges

In addition to potential improvements to the primitives we have discussed in this thesis,

we also note a couple of problems that have not been addressed.

One is to determine how best to spread the encoded data blocks around the Inter-

net. The actual distribution need not be too difficult; merely attempt to spread blocks

uniformly among the available nodes using a DC-net scheme to ensure nodes cannot link

data blocks to their source. Problems, however, arise when one attempts to determine

how to retrieve the data blocks. Usually, the node retrieving a block of data will be the

same node that initially published that data block, and therefore, to continue to pre-

serve the unlinkability between data block and source, some sort of private information

retrieval technique may be needed.

Also, if one has lost all of their data, they will not know which nodes have each of

their data blocks nor the indices of those blocks. Some sort of search on encrypted data

may be required to boot strap the recovery process.

The final problem we mention is related to the retrieval of data blocks and is ensuring

that nodes keep the blocks that have been entrusted to them. The erasure code allows

for some loss, but nodes will likely need to be tested periodically to ensure they are

maintaining the blocks. If a node is found to be cheating, sanctions may be necessary;

however, if a node has suffered some sort of catastrophic failure, that node must be given

a chance to retrieve their data before such sanctions begin to take effect.

Finally, while we believe the methods developed in this thesis will be useful in the

construction of an online secure distributed backup protocol, we also note that our erasure

code construction and rolling checksum based backup strategies can be used to improve

the efficiency and robustness of a more traditional backup strategy. One could use our

Chapter 8. Open Problems 110

rolling checksum based backup strategy to minimize the space required to keep an online

backup copy of one’s data, useful for restoring files deleted accidentally, and from this

online backup, one could then use our erasure code construction to improve the robustness

of an offline copy of the data stored offsite on some stable media. While distributing one’s

data globally provides the best insurance against data loss, a local offsite backup copy is

certainly preferred to no backup copy at all.

Bibliography

[1] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the kth-

ranked element. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT,

pages 40–55. Springer, 2004. LNCS 3027.

[2] Ross Anderson. The eternity service. In Proceedings of Pragocrypt ’96, 1996.

[3] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. One-way functions are

essential for single-server private information retrieval. In Proc. of 31st Symposium

on Theory of Computing, pages 89–98, 1999.

[4] Amos Beimel and Yoav Stahl. Robust information-theoretic private information

retrieval. In Proc. of the 3rd Conference on Security in Communication Networks,

2002.

[5] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications

to voting. In CCS ’02: Proceedings of the 9th ACM conference on Computer and

communications security, pages 68–77, New York, NY, USA, 2002. ACM Press.

[6] Yan-Cheng Chang. Single database private information retrieval with logarithmic

communication. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, edi-

tors, ACISP, pages 50–61. Springer, 2004. LNCS 3108.

[7] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[8] David Chaum. The dining cryptographers problem: Unconditional sender and re-

cipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[9] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-

mation retrieval. In IEEE Symposium on Foundations of Computer Science, pages

41–50, 1995.

111

Bibliography 112

[10] Yvo G. Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO ’89:

Proceedings on Advances in cryptology, pages 307–315, New York, NY, USA, 1989.

Springer-Verlag New York, Inc. LNCS 435.

[11] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-to-peer

storage utility. In HotOS VIII, Germany, May 2001.

[12] Ben Escoto. rdiff-backup. http://www.nongnu.org/rdiff-backup/.

[13] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18,

New York, NY, USA, 1985. Springer-Verlag New York, Inc. LNCS 196.

[14] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A random server model for private

information retrieval or how to achieve information theoretic PIR avoiding database

replication. 1998. LNCS 1518.

[15] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,

28(2):270–299, 1984.

[16] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-

encryption for mixnets. In RSA Conference Cryptographer’s Track, pages 163–178,

2004. LNCS 2964.

[17] Philippe Golle and Ari Juels. Dining cryptographers revisited. In Proceedings of

Eurocrypt 2004, pages 456–473, May 2004. LNCS 3027.

[18] Jim Hamilton and Eric W. Olsen. Design and implementation of a storage repository

using commonality factoring. In MSS ’03: Proceedings of the 20th IEEE/11 th NASA

Goddard Conference on Mass Storage Systems and Technologies (MSS’03), page 178,

Washington, DC, USA, 2003. IEEE Computer Society.

[19] V.F. Kolchin. Random graphs. Cambridge University Press, 1999.

[20] Kevin Korb. Backups using rsync. http://www.sanitarium.net/golug/rsync_

backups.html.

[21] Dennis Kügler and Markus Maurer. A note on the weakness of the Maurer-Yacobi

squaring method. Technical Report TI-15/99, Fachbereich Informatik, Technische

Bibliography 113

Universität Darmstadt, 1999. Available at ftp://ftp.informatik.tu-darmstadt.

de/pub/TI/-TR/TI-99-15.weaksquaring.ps.gz.

[22] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE

database, computationally-private information retrieval. In IEEE Symposium on

Foundations of Computer Science, pages 364–373, 1997.

[23] Cheng-Fen Lu and Shiuh-Pyng Winston Shieh. Secure key-evolving protocols for

discrete logarithm schemes. In CT-RSA ’02: Proceedings of the The Cryptographer’s

Track at the RSA Conference on Topics in Cryptology, pages 300–310, London, UK,

2002. Springer-Verlag.

[24] Michael Luby. LT codes. In the 43rd Annual IEEE Symposium on Foundations of

Computer Science, 2002.

[25] Michael Luby, Gavin Horn, Jeffrey J. Persch, John Byers, Armin Haken, and Mike

Mitzenmacher. On demand encoding with a window. United States Patent and

Trademark Office, Patent No. 6,486,803, November 26, 2002.

[26] Michael Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel Speilman, and

Volker Stemann. Practical loss-resilient codes. Proc. of Symposium on Theory of

Computing, pages 150–159, 1997.

[27] David MacKay. Information Theory, Inference, and Learning Algorithms. Chapter

50, http://www.inference.phy.cam.ac.uk/mackay/DFountain.html.

[28] Emin Martinian. Distributed Internet Backup System (DIBS). http://web.mit.

edu/~emin/www/source_code/dibs/index.html.

[29] Ueli Maurer and Yacov Yacobi. A non-interactive public-key distribution system.

Designs, Codes and Cryptography, 9(3):305–316, November 1996.

[30] Petar Maymounkov. Online codes, 2002. Technical Report TR2002-833, New York

University, October 2002.

[31] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In CCS

’01: Proceedings of the 8th ACM conference on Computer and Communications

Security, pages 116–125, New York, NY, USA, 2001. ACM Press.

Bibliography 114

[32] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: A

formal model and a Paillier-based efficient construction with provable security. In

Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, ACNS, pages 61–75.

Springer, 2004. LNCS 3089.

[33] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. A provably secure and

efficient verifiable shuffle based on a variant of the Paillier cryptosystem. Journal of

Universal Computer Science, 11(6):986–1010, 2005. http://www.jucs.org/jucs_

11_6/a_provably_secure_and.

[34] Oracle. Berkeley DB. http://www.oracle.com/database/berkeley-db/.

[35] Rafail Ostrovsky and Victor Shoup. Private information storage. In Proc. of 29th

Symposium on Theory of Computing, pages 294–303, 1997.

[36] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT, pages 223–238, 1999. LNCS 1592.

[37] Kun Peng, Colin Boyd, and Ed Dawson. Simple and efficient shuffling with provable

correctness and ZK privacy. In Victor Shoup, editor, CRYPTO, pages 188–204.

Springer, 2005. LNCS 3621.

[38] Amin Shokrollahi. Raptor codes, 2003. Available at: http://www.inference.phy.

cam.ac.uk/mackay/DFountain.html.

[39] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/

ntl/.

[40] Marius-Cualin Silaghi. Zero-knowledge proofs for mix-nets of secret shares and a

version of ElGamal with modular homomorphism. Technical report, Florida Institute

of Technology, May 1 2005.

[41] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy, pages

44–55, 2000.

[42] Chris Studholme and Ian Blake. Windowed erasure codes. In International Sympo-

sium on Information Theory (ISIT), 2006.

Bibliography 115

[43] Latanya Sweeney and Michael Shamos. Multiparty computation for randomly or-

dering players and making random selections. Technical Report CMU-ISRI-04-126,

Carnegie Mellon University, School of Computer Science, Pittsburgh, July 2004.

[44] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis,

1999.

[45] Andrew Tridgell and Paul Mackerras. The rsync algorithm. http://samba.anu.

edu.au/rsync/tech_report/.

[46] Andreas kre Solberg. rsyncbackup: A backup solution. http://rsyncbackup.

erlang.no/.

