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Abstract. This report surveys certain results on random matrices over finite fields and

their applications, especially to coding theory. Extensive experimental work on such ma-

trices is reported on and resulting conjectures are noted.
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1. Introduction

The study of random matrices over a finite field arises most naturally in a variety of

contexts covered by the term ”probabilistic combinatorics”. Perhaps the prime example

of this area is the study of graphical evolution, and in particular the study of threshold

phenomena on graphs as more edges are added in a prescribed random manner to a set of

graph vertices. However, many other aspects, such as the study of random permutations,

random equations over finite fields, and many others are also of importance. The particular

application of interest in this report is to the study of rank properties of rectangular matrices

over finite fields, and their use in coding theory. The intent is a compilation and survey of

relevant results of interest. It is by no means encyclopdaeic. The only contribution of the

report is in the experimental results given in section 6.

Our main interest will be the study of rank properties of random k × (k + m) matrices

where m > −k, over Fq which will be designated Mk,k+m(q). The q will be omitted if

it is understood. When interest is restricted to square matrices over Fq of size n × n we

will use the notation Mn(q), to emphasize the difference, and again omit the q when it is

understood. In either the square or rectangular case, we say the matrix is of full rank if

it has rank min(k, k + m) (or n, respectively). Where possible, we adapt results from the

literature to this notation and note where this has not been done. Later, the notation will

be modified to accommodate the probability with which each element of the finite field is

chosen.

The reader is reminded of the standard algorithmic complexity notation [13] for a function

of an integer N, f(N): i) g(N) = O(f(N)) iff | g(N)/f(N) | is bounded from above

as N → ∞ ii) g(N) = o(F (N)) iff g(N)/f(N) → 0 as N → ∞ iii) g(N) = Ω(N) iff

| g(N)/f(N) | is bounded from above by a strictly positive number as iv) g(N) = Θ(N)

iff | g(N)/f(N) | is bounded both from above and below by a strictly positive number as

N → ∞.
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The outline of the report is as follows: The next section gives the well known enumer-

ation of certain subspaces of vectors spaces over finite fields. The following two sections

discuss random matrices, especially their rank properties, over F2 and Fq, q > 2. Section 5

considers other aspects of of both random and nonrandom matrices that are relevant to our

interests. These include the properties of windowed random matrices, and the algorithmic

construction of rectangular matrices with the property that each column has a maximum

weight and any k columns are independent. Some questions relating to the eigenvalues of

random matrices and certain randomness questions of some matrix groups are noted.

Section 6 reports extensively on experiments with certain rank properties of random

matrices. This leads to certain conjectures believed to be of interest. This is followed by

a section on codes for the erasure channel that are derived from the windowed matrices

previously considered. These codes, while having a slightly increased decoding complexity,

have a very low overhead and high probability of decoding completion.

It is empasized again that, apart from the experimental data generated, the report is

a compilation of certain of the approaches to these matrices found in the literature. It is

intended only as a summary of certain of the approaches of interest.

2. A preliminary result

Let Vn(q) denote the vector space of dimension n over the finite field Fq The number of

ways of choosing a basis for Vn(q) is easily determined as

(qn − 1)(qn − q) · · · (qn − qn−1) = qn(n−1)/2
n

∏

i=1

(qi − 1).

Likewise the number of ways of choosing a basis of a k dimensional subspace of Vn(q) is

(qn − 1)(qn − q) · · · (qn − qk−1)

and for each such subspace there are

(qk − 1)(qk − q) · · · (qk − qk−1)

ways of choosing a basis. Thus the number of distinct k-dimensional subspaces of Vn(q), a

quantity we denote by
[n

k

]

q
, is

[n

k

]

q
=

k−1
∏

i=0

(qn−i − 1)

(qk−i − 1)
.

The quantities
[n

k

]

q
are referred to as Gaussian coefficients and enjoy many properties that

are similar to those of ordinary binomial coefficients (e.g. [4]):

[n

k

]

q
=

[n − 1

k − 1

]

q
+

[n − 1

k

]

q
and

[n

k

]

q
=

(qn − 1)

(qk − 1)

[n − 1

k − 1

]

q
.

It is easy to see that one can view
[

n
k

]

q
as a polynomial (not a rational function) in q and,

if one replaces q with 1 in this polynomial, one obtains
(n
k

)

([29]).

One has the following theorem ([29]):
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Theorem 2.1 ([29], page 303). The number of surjective linear transformations from an

n-dimensional vector space Vn(q) to an m-dimensional vector space over Fq is

(2.1)

m
∑

k=0

(−1)m−k
[m

k

]

q
qnk+(m−k

2 ).

The proof (omitted here) uses Möbius inversion on the lattice of subspaces of the vector

space Vn(q). An important corollary of this theorem for our purposes is ([29]), recast with

the notation we will use in the sequel, is:

Corollary 2.2. The number of k × n matrices over Fq that have rank r is

(2.2) Nq(k, n, r) =
[n

r

]

q

r
∑

ℓ=0

(−1)r−ℓ
[r

ℓ

]

q
qkℓ+(r−ℓ

2 ).

Here, the first Gaussian coefficient is the number of distinct subspaces of an n-dimensional

space of dimension r and the summation is the number of surjective maps from a k-

dimensional space to an r-dimensional one and the result follows.

Our interest in subsequent sections will be in k×(k+m) matrices wth m > −k, (m+k >

0).

3. Random matrices over F2

The problem of determining the probability that a set of m randomly chosen k-tuples

over a finite field F2 are linearly independent (over a F2) is quite old. As noted earlier, we

denote by Mk,k+m(q) a k×(k+m) random matrix, over the finite field Fq. We will normally

be interested in the case where m ≥ 0 but will also consider the case for −k ≤ m ≤ 0. When

the finite field is understood we delete the q in the matrix notaton. Denote by ρ(Mk,k+m) the

rank of the matrix (≤ min(k, k+m)). If this probability is denoted Qk,k+m then Berlekamp

[2] (adapted to our notation) gives the argument (credited to Lansdurg [17]) that for m ≤ 0

P (ρ(Mk,k+m) = k + m) =

k+m−1
∏

j=0

(

1 − 1

2k−j

)

, −k ≤ m ≤ 0.

For k → ∞ for fixed m ≥ 0, then we will see that

Pρ(Mk,k+m) = k) = Qm =

∞
∏

i=−m+1

(

1 − 1

2i

)

,m ≥ 0.

A useful rapidly converging form ([2]) of this equation is

log Qm =
∞
∑

i=m+1

log(1 − 2−i) =
∞
∑

j=1

−2−sj

j(2j − 1)
, s ≥ 0.

In particular it is noted that

Q0 =
∞
∏

j=1

(1 − 1

2j
) = 0.2887880951 · · ·
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i.e. the probability a square random binary matrix is nonsingular as its dimension tends to

infinity. As will be noted later, this expression is very accurate even for k as low as 10.

For future reference we give an interesting approximation of Brent et al [7]. Denote by

(3.1) η(n, x) = (1 − x)(1 − x2) · · · (1 − xn)

and from the above it is clear we will have interest in expressions of the form η(n, 1/q). A

very simple and useful argument gives the result (m ≥ 0)

k
∏

i=1

(

1 − 1

qm+i

)

=

{

0.288 q = 2 m = n,

1 − 1
qm(q−1) otherwise .

To see this, note that for m ≥ n we have

η(m,x)
η(m−n,x) = (1 − xm−n+1)(1 − xm−n+2) · · · (1 − xm)

≥ 1 − (xm−n+q + xm−n+2 + · · · + xm)

≥ 1 − xm−n+1(1 + x + x2 + · · · + xn−1 + · · · )
≥ 1 − xm−n+1 · 1

1−x

from which the second result follows. When q = 2 and m = n the bound is zero and for

this case we compute:
(

1 − 1
2

)(

1 − 1
22

)

· · ·
(

1 − 1
2m

)

>
∏∞

i=1

(

1 − 1
2i

)

>
(

1 − 1
2

)(

1 − 1
22

)(

1 − 1
23

)(

1 − 1
24

)

(1 −
(

1
25 + · · · + 1

2m + · · ·
)

)

=
(

1 − 1
2

)(

1 − 1
22

)(

1 − 1
23

)(

1 − 1
24

)

(1 −
(

1
24

)

> 0.288.

The problems of random matrices over finite fields (especially binary) and their applica-

tions to graph theory, owe much to researchers in the former Soviet union. We begin by

considering the work of Kolchin ([16]) and transfer his results to the notation of interest

here. Namely, we are interested in the probabilty a k × (k + m) binary (i.e. over F2, al-

though there are many results for arbitrary finite fields Fq) matrix having rank r = k − s

for s ≥ 0, m + s ≥ 0. Clearly, if the matrix entries are chosen independently and equally

likely (P (aij = 0) = 1/2), the number of such matrices is N(k, k + m, r)2 as in equation

(2.1) and the matrices are equally likely and the result is

N(k, k + m, r)2/2
k(k+m).

Kolchin gives a different argument as follows:

Theorem 3.1 ([16], page 126, adapted). Let Mk,k+m be a binary random k× (k+m), m >

−k, matrix with entries chosen equally likely and ρ(Mk,k+m) its rank (over F2). It will

be convenient to denote the rank by ρ(Mk,k+m) = r = k − s, s ≥ 0 Then for k − s ≤
min(k, k + m), as k → ∞ we refer to s as the nullity or defect of the matrix and we have:

P (ρ(Mk,k+m) = k − s) → 2−(s)(m+s)
∞
∏

i=s+1

(

1 − 1

2i

)

m+s
∏

i=1

(

1 − 1

2i

)−1
,

where the last product is 1 if m + s = 0 (i.e. the matrix is of full rank).
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Proof : (informal) The proof technique is interesting and an indication of it is given.

Consider adding random binary columns, random k-tuples over F2, to the matrix, column

by column. If the matrix is currently of size k × (k + m − 1) and rank j (the k + m − 1

columns span a j dimensional space) the probability the (k + m)-th column is in this space

is 2j/2k. Hence the probability the rank is increased by one with the added column is

1 − 2j

2k
.

There is an easy case to dispose of, that of full rank when m + s = 0. In this case,

to achieve full rank, the rank must increase by one each time a column is added and the

probability of this is

P (ρ(Mk,k−s) = k − s) =

k−s−1
∏

j=0

(

1 − 2j

2k

)

=

k
∏

i=s+1

(

1 − 1

2i

)

, s ≥ 0.

In the general case, we consider the rank as a discrete Markov chain as a function of

the number of columns and for convenience denote ρ(Mk,k+m) by ρk+m as the rank of the

k × (k + m) matrix. Denote by ξℓ the random variable which takes on the value 1 if the

ℓ-th column increases the rank (by one) and zero otherwise. We have the probabilities:

P (ξℓ = 0 | ρℓ−1 = a) = 2a/2k, and P (ξn = 1 | ρℓ−1 = a) = 1 − 2a/2k.

The probability the rank of the k × (k + m) matrix is k − s is then the probability exactly

k − s of the (independent) random variables {ξ1, ξ2, · · · , ξk+m} have the value 1. Thus,

suppressing our previous notation using Mk,k+m, assuming the ranks remained the same

when columns R = {1 ≤ i1, i2, · · · , im+s ≤ k +m} were added, (note that k +m− (k− s) =

m + s and that Rc is the complement set in [1, k + m]) we have:

P (ρk+m = k − s) =
∑

ia∈R,jb∈Rc

∏m+s
a=1 P (ξia = 0)

∏k−s
b=1 P (ξjb

= 1)

=
∑

1≤i1≤i2≤···≤ik+m≤n

(

1 − 1
2k

)(

1 − 2
2k

)

· · ·
(

1 − 2k−s+1

2k

)

×2i1−1+i2−2+···+im+s−(m+s)

2k(m+s) .

Notice that the product term here is independent of the particular instances of when the

rank increases (ξj = 1) and so this last equation can be written as

(3.2)
P (ρk+m = k − s) = 2−k(m+s)

∏k−s−1
j=0

(

1 − 2j

2k

)

×
∑

1≤i1≤i2≤···≤im+s≤n 2i1−1+i2−2+···+im+s−(m+s).

Notice that 1 ≤ i1 < i2 < · · · < im+s ≤ k + m and so

0 ≤ i1 − 1 ≤ i2 − 2 ≤ · · · ≤ im+s − (m + s) ≤ k − s.

If we define the variables jℓ = k − s − (iℓ − ℓ), ℓ = 1, · · · ,m + s then we have

0 ≤ jm+s ≤ · · · ≤ j1 ≤ k − s.

Considering equation 3.2, noting that k(m + s) = (k − s)(m + s) + s(m + s) to account

for the subtraction of the rank, k − s, from each index in the exponent, and reversing the
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product variable (replace i with k − i) we can rewrite the equation as

(3.3)
P (ρk+m = k − s) = 2−s(m+s)

∏k
i=s+1

(

1 − 1
2i

)

×
∑

0≤jm+s≤jm+s−1≤···≤j1≤k−s 2−jm+s−jm+s−1+···−j1.

We examine the equation as k → ∞ and note the product term tends to
∞
∏

i=s+1

(

1 − 1

2i

)

.

To evaluate the sum term in 3.3 (over all possible values of the variables jℓ as k → ∞ we

have:
∑

0≤jm+s≤jm+s−1≤···≤j1

2−jm+s−jm+s−1+···−j1

=
∑

0≤jm+s≤jm+s−1≤···≤j2
2−jm+s−jm+s−1+···−j2

∑

j2≤j1
2−j1

=
∑

0≤jm+s≤jm+s−1≤···≤j2
2−jm+s−jm+s−1+···−j22−j2(1 − 1

2)−1

=
∑

0≤jm+s≤jm+s−1≤···≤j2
2−jm+s−jm+s−1+···−j3

∑

j3≤j2
2−2j2(1 − 1

2)−1

=
∑

0≤jm+s≤jm+s−1≤···≤j2
2−jm+s−jm+s−1+···−j3(1 − 1

22 )−1(1 − 1
2)−1

and so on. The final expression is then as stated in the theorem. �

Notice that the probability a random k × k binary matrix Mk is of full rank k as k

becomes large tends to the constant

P (ρ(Mk) = k) →
∞
∏

i=1

(

1 − 1

2i

)

= 0.2887880951 · · · .

More generally, the probability a random k× (k+m) binary matrix Mk,(k+m) is of full rank

k for m ≥ 0, for large k is

(3.4) Qm =

∞
∏

i=m+1

(

1 − 1

2i
) ,m = 0, 1, · · · .

If we let Pm, m ≥ 0, denote the probability that exactly m columns beyond k are needed

to obtain rank k for the k × (k + m) matrix, then

Pm = Qm − Qm−1

and the average number of extra columns needed for full rank is

m̄ =

∞
∑

m=0

mPm =

∞
∑

i=0

(1 − Qi) = 1.60669515 · · · .

The simple bounds established by Brent atl [7] noted earlier can be useful for establishing

bounds when working with such expressions.

It is interesting to observe that for such a matrix only two extra columns, on average,

beyond the k, are required to achieve a full rank matrix and this, asymptotically, is inde-

pendent of k. With 7 or 8 extra columns, the probability of achieving full rank is very close

to 1 for even very small. While the above expressions are for large k, it has been observed

experimentally that the expressions are remarkably accurate for k as small as 10.

The above result depends on the fact that, as a column (a randomly chosen binary k-

tuple) is added to the matrix, the probability the rank of the matrix is increased depends
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only on the current rank of the previous columns of the matrix. This assumes that the

probability the added column is in the column space of the previously chosen columns is

proportional to the size of the current columns space i.e. 2ℓ/2k if the current rank is ℓ.

Indeed, if the new column being added is not sufficiently random in being chosen, this

observation may not hold.

It seems somewhat surprising then that the previous results do not depend on the matrix

elements being chosen equally likely. In fact, as will be shown later in the work of Kolchin

and Cooper (due in some part to several other Russian mathematicians whose work is in

Russian and not used in this survey), as long as the probabilities tend to zero in a carefully

prescribed manner, the same results will hold. The following result of Kolchin is one form

of this kind of result.

Theorem 3.2 ([16], page 131, adapted). Let the elements of a random binary k × (k + m)

matrix be independently chosen and suppose there is a constant δ such that the probabilities

p
(k)
ij of elements aij being 1 satisfy the inequalities

δ ≤ p
(k)
ij ≤ 1 − δ, i = 1, 2, · · · , k, j = 1, 2, · · · k + m,

hold. Let s ≥ 0, and m be fixed integers, m + s ≥ 0. Then as k → ∞ we have

P (ρk(Mk,k+m) = k − s) → 2−s(m+s)
∏∞

i=s+1

(

1 − 1
2i

)
∏m+s

i=1

(

1 − 1
2i

)−1
,

where the last product is 1 if m + s = 0.

The proof of the theorem is not given in [16]. However a variety of other results in the

same direction, namely on the insensitivity of the results to variations in the matrix element

probabilities, are available and some of these are noted here.

Let A be an k × (k + m) binary random matrix, then under fairly broad conditions on

the probability distribution of the matrix elements, it is shown that the mean number of

nonzero solutions to the matrix equation

XA = 0

tends to 2−m as k → ∞, where m is allowed to be negative. For m negative, the statement

is a reflection of the expected number of vectors in the null space of the matrix (and hence

of the expected rank of the null space). For m positive it simply reflects the probability the

null space is of full rank, in some sense. The proof of this result is given in [16]. Perhaps of

more interest is the fact the result remains true if the matrix element probabilities satisfy

the inequalities
log k + x

k
≤ p

(k)
ij ≤ 1 − log k + x

k
where x is a constant. This result is made sharper in the work of Cooper to be discussed

in the next section.

We pursue the ideas a little further. Let A = Ak,k+m be a random binary k × (k + m)

matrix. If columns i1, i2, · · · , ir sum to the zero k-tuple we call the set of indices C =

{i1, i2, · · · , ir} a critical set. Note that if C1 6= C2 are critical sets then their symmetric

difference C1∆C2 is also a critical set. One can then naturally define independent critical
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sets. Clearly the maximum number of independent critical sets is the dimension of the null

space of the matrix A, s(A), (and the sum of this and the rank of the matrix is k + m).

Suppose now that the elements of the matrix A are chosen independently according to

the distribution

(3.5) P [aij = 1] = p
(k)
ij =

log k + x

k
, and P [aij = 0] = 1 − log k + x

k

where x is a constant. The limit distribution for the dimension of the null space of A, s(A)

can then be found. In particular we have

Theorem 3.3 ([16], p. 135, theorem 3.3.1). If k, k + m → ∞ such that (k + m)/k →
α < 1 and the condition (3.5) is true, then the random variable s(A) (maximum number of

independent critical sets or rank of the null space) converges to a Poisson distribution with

parameter λ = αe−x.

A restatement of the theorem is, as noted in [10] (attributed to Balakin [1] and discussed

in [16] (Theorem 3.3.2, page 142, adapted), if Ak,k+m is a random matrix over F2, m ≥ 0

and p = (ln(k) + d)/k, a = (k/(k + m)) then

(3.6) P (ρ(Ak,k+m = k − s) ∼ (ae−d)k

k!
e−ae−d

.

Furthermore it is shown that under the above conditions, the number of all zero columns

of the matrix A has a Poisson distribution with parameter λ = αe−d if (k + m)/k → α for

0 < α < ∞, a simple approximation of the binomial distribution. Further, if, under the

previous conditions, and (k + m)/k → α < 1 then indeed, with probability tending to 1,

the critical sets of A consist only of zero columns.

Similar to the above theorem we have:

Theorem 3.4 ([16] p. 142, theorem 3.3.2). Under the conditions 3.5, if k, (k+m) → ∞ such

that (k + m)/k → α > 1 then the distribution of s(A) converges to a Poisson distribution

with parameter λ = e−d/α.

We have been a little informal with stating the results. In [16] a more precise statement

of the results states that for a T × n matrix over F2, if n, T → ∞ in such a way that

T/n → a, constant, either a > 1 or a < 1, the results hold.

In essence it was shown that in the equiprobable case as k → ∞ the probability the matrix

Ak,k+m is of full rank tends to 1, under the conditions stated. The results are nontrivial to

prove.

Similar results can be obtained for nonhomogeneous equations AX = B and many other

aspects of the problem are treated in [16].

We note one further aspect of the conditions in equation 3.5. Suppose we let the proba-

bility of a 1 element in the matrix be

(3.7) p =
log(k) + x

k
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where we view x as a constant. Suppose further that (k+m)/k → α = constant, 0 < α < ∞.

Then the probability of generating an all zero column is

pk =
(

1 − log(k) + x

k

)k

and as k → ∞ in such a way that (k + m)/k is constant then the probability of an all zero

column tends to pk = e−x/k. Thus, the ’threshold value’ of p = ln(k)/k noted above (and

later, in the work of Cooper [9, 10] to be discussed) is somewhat natural. Similarly, if we

take p = (c ln(k) + x)/k for c > 0, then pk → e−x/kc and as c decreases the probability

increases. A similar argument applied to rows, is more persuasive as to this threshold, since

such a matrix with an all-zero row cannot be nonsingular. The expected number of all

zero columns in the matrix then is (k + m)pk → αe−x, a constant. For lower values of p

one would thus expect the number of all zero columns to increase as k increases. Thus the

probability of a 1 in the matrix given by 3.7 leads to an expected constant number of all

zero columns which perhaps explains somewhat the threshold effect of the probability.

4. Random matrices over Fq, q > 2

The threshold probability, mentioned in the previous section, of the probability of a one

in the random binary n × n matrix being

p =
log(n) − c

n

and its relationship to the number of zero rows or columns is explored further in a series

of papers ([5], [9]. [10]) by extending the work to matrices over Fq and obtaining sharper

estimates of the bound on the threshold probabilities. They consider only a square n × n

matrix Mn over Fq, q > 2, where the probability of a zero element is given by 1 − p where

p = (log(n) − c)/n for some constant c where the probability of each nonzero element is

equally likely at p/(q − 1). They observe that if one desires an expected rank of n − O(1)

then this is the critical probability, as noted previously and commented on further below. It

is also shown that the rank of such a random matrix is, with high probability, not much less

than its expected rank. In fact, the main technical result of the paper [5] is that the number

of linear dependencies of the rows (or columns) of the matrix is bounded by a constant iff

p ≥ (log(n) − c)/n where c is some fixed positive constant.

If we ask the further question as to how small p can be chosen so that a random matrix

is nonsingular (asymptotically with n) with some constant probability, then it seems the

techniques of this paper [5] are insufficient to answer this question. This question is consid-

ered in the work of Cooper ([9], [10]) to be considered later. Notice that it is already shown

that this is the case for random binary matrices (the constant .288...). (The proof in [25]

that this is not the case is erroneous). Also it would be of interest to show that p can be

nonconstant through the matrix elements, while preserving the property that the random

matrix is nonsingular (asymptotically) with some constant probability.

We informally discuss the results of the paper [5] and adopt and adapt their notation.

As before denote by Mn an n × n random matrix over Fq whose elements are chosen

independently with the probability of a zero element given by 1−p where p = (log(n)−c)/n
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for some constant c and the probabilities of nonzero elements equally likely at p/(q − 1).

Denote by δ(Mn) the defect or nullity, (dimension of the null space) of the matrix Mn i.e.

δ(Mn) = n − ρ(Mn), where, as before ρ(Mn) is the rank. (Note: we have used s = δ here,

but maintain the dual notation!)

We give the following sequence of theorems and corollaries of that paper with minor

adaptation of notation.

Theorem 4.1 ([5], theorem 2.1). Let Mn be a random n × n matrix over the fixed finite

field Fq (the probability of a nonzero element being p/(q − 1)) with p = (log(n) − c)/n with

n ≥ ec for a fixed c ≥ 0. Then the defect δ(Mn) satisfies

E(qδ(Mn)) = O(1).

Moreover, if the expectation is considered as a function of p then it is monotonically de-

creasing as a function in the range 0 ≤ p ≤ (q − 1)/q.

(Note: The last sentence of this theorem seems to require some clarification in that it

does not seem to rule out that, for a constant n and c, if p < (ln(n) − c)/n the size of the

null space increases as p decreases.)

The theorem implies in particular that for p above the threshold value, p = (log(n)−c)/n

for c a constant, (in fact for (ln(n) − c)/n < p < (q − 1)/q) the number of possible linear

dependencies (rows or columns) is upper bounded by a constant. Values of p close to the

threshold are of particluar interest.

The following theorem addresses the possibility of p being a function of n to see what

can be said about the rank behavior of the matrix in that case.

Theorem 4.2 ([5], theorem 2.2). Let Mn be a random matrix over Fq as before with

p(n) = (log(n) − c(n))/n for 0 ≤ c(n) < log(n) − log(q − 1). Then the defect of Mn

satisfies

E(qδ(Mn)) = Ω(e[(q−1)/4]ec

).

The expected number of all zero rows of Mn is Ω(ec).

Corollary 4.3 ([5], Corollary 2.3). Let c(n) be a function with 0 ≤ c(n) < log(n) for all n.

Then E(δ(Mn)) = O(1) for random n × n matrices over Fq with p = (log(n) − c(n))/n iff

the function c(n) is bounded.

Corollary 4.4 ([5], Corollary 2.4). For every c ≥ 0 there exists a constant Ac such that a

random n × n matrix Mn, n > ec, with p = (log(n) − c)/n satisfies

P (δ(Mn) ≥ ℓ) ≤ Ac

qℓ

for all positive integers ℓ.

Recall that a linear dependency among the rows (or columns) of the matrix Mn is a

nontrivial linear sum of rows adding to the zero row (critical set of indices in the terminology

of Kolchin). Let ℓ(Mn) be the number of such dependencies and note that ℓ(Mn) = qδ(Mn)−
1. The proof of the first of these theorems depends on the following:
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Theorem 4.5 ([5], theorem 3.3). Let Mn be a random n×n matrix over Fq for an arbitrary

p, 0 < p < 1. Then

E(ℓ(Mn)) =

n
∑

j=1

(

n

j

)

(q − 1)jPn
j

where Pj is given by

Pj =
q − 1

q

(

1 − qp

q − 1

)j
+

1

q
.

The argument of the theorem is straight forward, outlined as follows. Consider a fixed

nonzero vector c = (c1, c2, · · · , cn), ci ∈ Fq with exactly k nonzero elements, which are

assumed to be the first k elements without loss of generality. Consider the sum
∑k

i=1 cimi

for mi ∈ Fq
∗ chosen according to probability of a zero of 1−p and nonzero with equally likely

with probabilities p/(q − 1). Since the ci are fixed we have the following simple recursions:

P0 = 1, Pk = Pk−1(1 − p) + (1 − Pk−1)p/(q − 1)

from which it follows that

(4.1) Pk =
q − 1

q

(

1 − qp

q − 1

)k
+

1

q
.

The work of Blömer et al [5] raises many interesting questions, apart from establishing

many technical inequalities used in the proofs. They show that if p = (log(n) − c(n))/n

where 0 ≤ c(n) ≤ a log(n) and 0 ≤ a < 1 is an arbitrary fixed constant then the defect

satisfies

E(qδ(Mn)) ≤ eeO(c(n)+1)

and in fact the defect of Mn increases exponentially with c(n), as n → ∞. They conjecture

that this result is true for an arbitrary function 0 ≤ c(n) < log(n).

They ask the question of random binary matrices: what is the smallest p such that the

probability that Mn is nonsingular is bounded below by some constant c? The results

discussed indicate that for fixed p > 0, the probability that Mn is nonsingular tends to

.288788 · · · since as n → ∞, p becomes greater than ln(n)/n. However, Corollary 4.4 shows

that if p = (log(n) − c)/n, the matrix has constant defect with high probability, for the

appropriate condition on c.

The final theorem of [5] (Theorem 6.3) shows a generalization of the binary case to

matrices over Fq by showing that if the matrix elements are chosen zero with probability

1−p (where p is the probability of a nonzero element) and nonzero elements chosen equally

likely (with probability p/(q − 1)), for some arbitrarily small but constant p, then then the

probability an n × n matrix Mn is nonsingular is at least

P (ρ(Mn) = n) =

n
∏

i=1

(1 − ηi)

where η = max(p/(q − 1), 1− p). This equation is lower bounded by the product to infinity

which converges to some positive value. They then raise as a main open problem:
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Open problem: Is there a function p(n) that tends to 0 as n → ∞ and a constant c > 0

such that a random matrix over Fq (the paper [5] poses the question only for q = 2 but it

seems a valid question for the more general case) is nonsingular with probability at least c

This question is taken up by the work of Cooper, described next.

In the first of his two papers on this subject, Cooper [9], considers n×n matrices over Fq

and considers first the equally likely case i.e. the probability an element is chosen nonzero

is p = (q − 1)/q and each element in Fq, including the zero element, is chosen equally likely

with probability 1/q. To prepare to discuss the generalizations this work introduces, we

introduce the notation that Mm,n(p, q) be an m × n matrix over Fq where an element is

chosen to be zero with probability 1 − p (which may in general depend on the dimension,

which is then explicitly shown), and each nonzero element of Fq is chosen equally likely with

probability p/(q − 1). The case of p = (q − 1)/q is the equally likely case. Where one or

more of the matrix parameters are understood, they are omitted. In particular we denote

a square n × n matrix as Mn.

Let P (ρ(Mn(p = (q−1)/q, q)) = n−s) be the probability the random square n×n matrix

over Fq with equally likely probabilities, for nonzero elements, has rank n − s. Recall the

probability the matrix is nonsingular (s = 0) is easily calculated as (recall eqn. (3.1))

η(n, 1/q) =

n
∏

i=1

(

1 − 1

qi

)

.

It will be convenient to introduce the function π(k, q), to use the notation of Cooper.

Theorem 4.6 ([9], theorem 1).

lim
n→∞

P (ρ(Mn(p, q) = n−s)) = π(s, q) =

{

lim
n→∞

∏∞
j=1

(

1 − 1
qj

)

, s = 0,
∏∞

j=s+1(1 − 1/qj)/
∏s

j=1(1 − 1/qj)qs2
, s ≥ 1 .

(The function π defined here is closely related to the function , η defined previously (see

Eqn. (3.1)) but we make no attempt to reconcile them here as both are convenient.)

It is noted that since we have an enumeration of rectangular matrices with a given rank

(see eqn. (2.2)), in the model where these matrices are equally likely, we have the probability

as given in this theorem i.e. it can be shown (not entirely trivial) that

π(s, q) = lim
n→∞

N(n, n, n − s)q/q
n2

The following result is for binary random matrices. It is convenient to discuss it here in

the context of the above. Denote by c2 = π(0, 2), the probability a random square binary

matrix is asymptotically nonsingular. The main theorem of [9] then is a sharper result on

p(n) than was in the work of Blömer et al. for matrices over F2:

Theorem 4.7 ([9], theorem 2). Let Mn(p, 2) be a random binary matrix (over F2). Then:

(i) If p(n) = (log(n) + d(n))/n ≤ 1/2 then

lim
n→∞

P (Mn(p, 2)is nonsingular) =







0, d(n) → −∞ ,

c2 exp(−2e−d), d(n) → d = constant ,

c2, d(n) → ∞ ,
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(ii) If p(n) = 1 − (log(n) + d(n))/n ≥ 1/2 then

lim
n→∞

P (Mn(p, 2)is nonsingular) =







0, d(n) → −∞ ,

c2 exp(−2e−d)(1 + e−d)2, d(n) → d = constant ,

c2, d(n) → ∞ ,

(iii) Let F be the event that Mn(p(n), 2) has no zero rows or columns and at most one

row and column of all ones. If

(log(n) − ω(n))/n ≤ p(n) ≤ 1 − (log(n) − ω(n))/n

where ω(n) = o(log log n) then for any nonnegative integer k

lim
n→∞

P (Mn(p(n), 2) has rank n − s|F) = π(s, 2)

and in particular

lim
n→∞

P (Mn(p(n), 2) is nonsingular|F) = c2.

The proof of the theorem is intricate and uses an investigation of linear dependencies of

columns of the matrix. In particular he computes the expected values of the number of

independent linear column dependencies (he refers to these as ”simple” to avoid confusion

with other references to linear independence - we continue to use the terminology of Kolchin)

of a given size and their higher moments. He generalizes somewhat the equation of Blömer

et al 2.2 and shows, using recursion as before, that the probability that, for a fixed vector

of elements, d = (d1, · · · , dm), di ∈ Fq the probability that, for randomly chosen ai ∈ Fq,

according to p, the equation
∑

i diai = γ ∈ Fq, γ 6= 0 is

1

q

(

1 + (−1)
(

1 − q

q − 1
p
)m

), m 6= 0.

The previous expression held only for γ = 0.

The second paper of Cooper [10] considers the case of rectangular matrices over an

arbitrary finite field Fq. (Cooper’s terminology is adapted to ours.)

Theorem 4.8 ([10] theorem 1). Let Mk.k+m(p, q) where all elements of Fq are equally likely

(each having probability 1/q). Then for m ≥ 0

lim
k→∞

P (ρ(Mk,k+m(p, q)) = k−s) = πm(s, q) =

{

∏∞
j=m+1

(

1 − 1
qj

)

, s = 0 ,
∏∞

j=s+m+1(1 − 1/qj)/
∏s

j=1(1 − 1/qj)qs(s+m), s ≥ 1 .

Theorem 4.9 ([10] theorem 2). For the finite field Fq let q ≥ 3 and q = O(log log n). Let

m be a nonnegative integer and Mk,k+m(p, q) a k × (k + m) random matrix over Fq with

entries independently and identically distributed (zero element has probability 1 − p and

nonzero elements equally distributed with probability p/(q − 1)). Let cq = πm(0, q) be the

asymptotic probability, as k → ∞, the matrix has full rank (k). Let p(k) = (log(k)+d(k))/k

where d(k) ≥ − log(log(k/9q)). Then:

(i)

lim
n→∞

P (Mk,k+m((q − 1)/q, q) is nonsingular) =











0 d(k) → −∞ ,

cqe
−2e−d

d constant ,

cq d(k) → ∞ ,
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(ii) Let F be the event there are no zero rows or columns in the matrix. For any non-

negative integer s

lim
k→∞

P (Mk,k+m(p = (q − 1)/q, q) has rankk − s | F) = πm(s, q),

and in particular

lim
n→∞

P (Mk,k+m(p = (q − 1)/q, q) is nonsingular | F) = cq.

There is an interesting comment in [10] to the effect that the moments of the random

variable representing the number of solutions of a random homogeneous set of linear equa-

tions does not satisfy the Carleman conditions necesary for the probability distribution to

be uniqulet determined by its moments. However, it was noted by Alekseychuk, using other

methods, that the moments do indeed uniquely specify the distribution in this case, which

opens up the possibility of simpler proofs (see [10], page 199).

5. Results on other aspects of matrices over Fq

5.1. Windowed random binary matrices. For application to the construction of codes, to

be discussed in section 7, we will be interested in windowed binary matrices, where the

nonzero elements in the matrix are restricted to fall within a window of length w, beginning

at a randomly chosen row. Specifically, to add a column to the matrix, choose a row

number at random and fill in the w elements at random, beginning with that row, with

the probability of a 1 being p. If the initial row is chosen within w of the bottom row, the

column will wrap around to the top of the matrix. We consider only square k×k matrices in

this although the extension of the arguments to rectangular matrices is immediate. Suppose

we divide the matrix into top half rows, where the initial position is chosen among the top

k/2 rows, and bottom half rows. Suppose the number of top half rows is m0 and bottom

half rows m1 (m0 + m1 = k). It is clear that if either m0 or m1 exceeds k/2 + w the matrix

cannot achieve full rank. Furhermore, if this happens for one, the other will be less than

k/2 − w, and a necessary condition for full rank is that

k

2
− w ≤ m0 ≤ k

2
+ w.

The random variable m0 is binomially distributed with mean k/2 and variance σ =
√

k/2.

For k large, we use the normal approximation to the binomial and let

z =
m0 − (k/2)√

k/2

and note that

k/2 − w ≤ m0 ≤ k/2 + w ⇒ −2w√
k

≤ z ≤ 2w√
k
.

If we choose w =
√

k the probability needed is the probability a zero mean unit variance

normal variate falls in the interval (−2, 2) which is approximately .95. In this case the

probability the windowed matrix achieves full rank is upper bounded by .95 × .288788 · · · .
In general we have:
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Theorem 5.1. For sufficiently large k, the probability that a k×k random, windowed binary

matrix with window length w = δ
√

k/2 has rank k is at most 2Φ(δ)Q0, where Φ(z) is the

normal distribution function and Q0 = .288788 · · · as given by equation 3.4.

In the experiments described in the next section it is observed that in fact we need a

slightly larger window - it appears that a matrix with a window size of 2
√

k has a rank

behaviour indistinguishable from that of a (unwindowed) random matrix.

These matrices will be used in section 7 to construct a class of codes that are particularly

efficient in terms of coding and decoding complexity.

5.2. Random binary matrices with fixed weight columns. Calkin [8] posed the following

problem: let Sn,k ⊂ F2
n denote the set of binary n-tuples of weight k (Note the dramatic

change of terminology here - we made no attempt to reconcile it with the previous work

since it is a very different problem). How many such n-tuples must be chosen uniformly

(with replacement) from Sn,k to obtain a dependent set (over F2) with probability 1 (i.e.

almost surely)? He notes that for k = 1 this is just the birthday surprise problem. The

case of k = 2 a dependent set corresponds to a cycle in a graph on n vertices which relates

the work to the theory of random graphs ([6, 16]). The proof techniques of this work are

interesting and we outline the process here.

Let k ≥ 3 be a fixed integer and denote by pn,k(m) the probability that the n-tuples

U = {u1, u2, · · · , umǫRSn,k} chosen uniformly at random (with replacement) from Sn,k are

linearly dependent. The following two results are established:

Theorem 5.2 ([8], Theorem 1.1). For each k there is a constant βk such that if β < βk

then

lim
n→∞

pn,k(βn) = 0.

Furthermore, β ≈ 1 − e−k/ log 2 as k → ∞.

Denote by r the rank of the set of m binary n-tuples of weight k, U and by s = m− r its

nullity.

Theorem 5.3 ([8], Theorem 1.2). (a) If β < βk and m = m(n) < βn then E(2s) → ∞.

(b) If β > βk and m = m(n) > βn then E(2s) → ∞ as n → ∞.

The theorems indicate that if fewer than βkn columns are chosen then with high prob-

ability they will be full rank and, asympotically, if more than βkn columns are chosen the

null space becomes arbitrarily large (as n → ∞).

To compare these results with those of Blömer et al [5] and Cooper [9, 10] we assume

that c(n) is a function that is unbounded as n → ∞ and tht p = (log(n) − O(1))/n, the

probability of a 1 in a random n×n matrix. Then the probability that fewer than n− c(n)

of the columns of this matrix are linearly independent tends to 0 as n → ∞.

As mentioned, the proof technique of [8] is of interest. For a set of vectors u1, u2, · · ·
define the set of vectors

x0 = 0 ∈ F2
n, xi = xi−1 + ui , i = 1, 2, · · · .
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Associate with the above sequence the Markov process yi = ω(xi) defined on the states

{0, 1, 2, · · · , n} i.e. at each instant the state is the Hamming weight of the binary n-tuple

xi. The transition probabilities A = (ap,q) between the states p and q, are easily calculated

as

ap,q =

(

q
k−p+q

2

)(

n − q
k+p−q

2

)

/

(

n

k

)

.

where the binomial coefficients are to be taken as 0 if k + p + q is odd. Furthermore the

eigenvalues λi and eigenvectors ei of the transition matrix A may all be explicitly calculated

as

λi =
k

∑

t=0

(−1)t
(

i

t

)(

n − i

k − t

)

/

(

n

k

)

, ei[j] =

j
∑

t=0

(−1)t
(

i

t

)(

n − i

j − t

)

.

The expressions here are strongly related to the well known Krawtchouk polynomials of

coding theory. Interestingly the eigenvectors are independent of k. It is shown that if

U is the matrix whose columns are the n + 1 eigenvectors, and Λ the diagonal matrix of

eigenvalues, then

U2 = 2nI and A =
1

2n
UΛU.

Thus the eigenvectors are linearly independent. The eigenvalues are also shown to have

certain properties e.g. |λi| < 1 and for i > n/2, λi = (−1)kλn−i.

To relate these eigenvalue properties to the problem of rank of the set of vectors, note

that the 00-th entry of the t-step transition matrix At is the probability that the sum of

the t vectors u1, u2, · · · , ut is

n
∑

i=0

1

2n
λt

i

(

n

i

)

, U = 2nU−1, A = UΛU2n

Thus the number of linear dependencies among the vectors u1, · · · , um is just

E(2s) =

m
∑

t=0

(

m

t

) n
∑

i=0

1

2n
λt

i

(

n

i

)

=

n
∑

i=0

1

2n

(

n

i

)

(1 + λi)
m.

The previous two theorems are then proven by obtaining sufficiently good approximations

to the eigenvalues in the above relation. Notice that the threshold βk = 1 − e−k/log 2 ≈
1 − 1.446e−k and hence is less than 1 (as expected).

5.3. Algorithmic construction of binary matrices with specified properties. The remain-

ing problems considered in this section are not strictly random matrix problems. The first

considers algorithms for the construction of matrices with m rows over Fq with the maximum

number of columns possible, each column of weight at most r with the property that any

k columns are linearly independent over Fq (we make no attempt to resolve the terminolgy

here with presious usage). The maximum number of such columns is denoted Nq(m,k, r)

(in conflict with an earlier use) and this quantity has been considered in [26, 18, 19]. The

connection to coding theory is immediate since such a set of columns as a parity check

matrix, yields a code of length Nq(m,k, r) of dimension Nq − m and minimum distance

d = k+1. However it also has strong connections to random graph theory and the presence
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of cycles of length k + 1. The subject is already too large to deal with here. We mention

only some of the results. For q = 2 [18] gives a probabilistic lower bound of

N2(m,k, r) = Ω(mkr/2(k−1).

For q = 2 the deterministic algorithm results are given [18, 19] as follows. Since it is known

that N2(m, 2k + 1, r) ≥ (1/2)N2(m, 2k, r) it is sufficient, asymptotically, to consider only

even dependencies. When r = 2 the ties to graphs with no cycles of length at most k, and

hence construction of graphs with large girth, is immediate. For r ≥ 1, k ≥ 4 even, we have

[18]

N2(m,k, r) = Ω(mkr/(2(k−1))) and for k = 2i, N2(m,k, r) = O(m⌈kr/(k−1)⌉/2).

When k = 2i and gcd(k − 1, t) = k − 1 the lower and upper bounds match. When gcd(k −
1, r) = 1 the lower bound was improved ([3]) to

N2(m,k, r) = Ω(mkr/(2(k−1)) · (ln(m))1/(k−1)).

For an arbitrary finite field we have [19] the lower bounds

Nq(m,k, r) =















Ω(m(kr/2k(k−1))), for k even ,

Ω(m(k−1)r/(2(k−2))), for odd k ≥ 3 ,

Θ(mkr/(2(k−1))), gcd(k − 1, r) = k − 1,

Ω(mkr/(2(k−1)) · (log(m))1/(k−1)), gcd(k − 1, r) = 1, k ≥ 4, k even .

In addition there are polytime algorithms that can achieve the lower bounds.

In the case that k > r we have the further bound [26] that

Nq(m,k, r) = O
(

m
r
2
+ 4r

3k

)

.

5.4. Eigenvalues of random matrices. Other work ([23, 24]) considers eigenvalues of ”ran-

dom” matrices. The matrices are not really random - the randomness comes from choosing

a property and considering the probability of obtaining that in a randomly chosen matrix

from a class of matrices. To describe this work, let Mn(q) denote the space of n×n matrices

over Fq and GLn(q) the group of invertible matrices over Fq. The work of [24] describes some

eigenvalue problems for certain types of matrices using the cycle index for these matrices.

We glean only a few of the many deep results from that work.

For α ∈ GLn(q) and a ∈ Fq denote by Xa the random variable that is the dimension of

the a-eigenspace of α i.e. Xa(α) = dimker(α − aI). Thus Xa counts multiplicities and we

emphasize that interest is limited to a ∈ Fq (and not an extension field). It is noted that

the most likely multiplicity is 1. The randomness stems only from the random choice of

α ∈ Mn(q). Then we have:

Theorem 5.4 (Theorem 12, [24]). For k ≥ 1 as n → ∞

Pn(Xa = k) =
qk

(q − 1)2 · · · (qk − 1)2

∏

r≥1

(

1 − 1

qr

)

.

For k = 0

Pn(Xa = 0) =
∏

r≥1

(

1 − 1

qr

)

.



18 IAN F. BLAKE AND CHRIS STUDHOLME

Note that the asymptotic (as n → ∞) probability that a ∈ Fq is not an eigenvalue is
∏

r≥1(1 − 1/qr).

Lemma 5.5 (Proposition 15, [24]). The asymptotic (as n → ∞) expected number of eigen-

values (in Fq, with multiplicity) of a matrix over Fq is

q
∏

r≥1

(

1 − 1

qr

)

∑

k≥1

kqk

(q − 1)2 · · · (qk − 1)2
.

If we define ρk = P (Xa = k), then this gives a discrete probability distribution on the

positive integers. We have the following:

Theorem 5.6 ([24], Theorem 16). The asymptotic (as n → ∞) probability that a matrix

over Fq has k eigenvalues (counting multiplicity) in Fq is given by the coefficient of tk in

the power series

(

∞
∑

k=0

ρkt
k
)q

.

i.e.
∑

k1+k2+···+kq=k

ρk1 · · · ρkq
.

Notice from this that the probability of no eigenvalue in Fq is the constant term i.e.

ρq
0 =

∏

r≥1

(

1 − 1

qr

)q

and the probability of exactly one eigenvalue isin Fq is the coefficient of t in the expansion

i.e.

qρq−1
0 ρ1 =

1

(1 − 1
q )2

∏

r≥1

(

1 − 1

qr

)q
.

It is also shown [24] that as q → ∞ that the distribution of X =
∑

aFq
Xa, the number of

eigenvalues in the base field, approaches a Poisson distribution with a mean of 1. Define a

linear derangement as an invertible linear map that has no nonzero fixed vectors (any such

map always fixes the zero vector). Then it can be shown that the asymptotic probability

that an invertible linear map is a linear derangement is

∏

r≥1

(

1 − 1

qr

)

i.e. the probability that no vectors are fixed is the probability that 1 ∈ Fq is not an

eigenvalue.

Consider α ∈ GLn(q) and Fq
n as the projective space Pn−1(Fq) and define a projective

derangement in the natural manner. Then we can show that the asymptotic probability

that α ∈ GLn(q) is a projective derangement is

∏

r≥1

(

1 − 1

qr

)q−1
.
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Notice that the limit of this expression as q → ∞ is 1/e, a familiar expression for ordinary

permutations.

Consider the situation of eigenvalues in extension fields of the ground field Fq. It is shown

in [24] that the probability a given a ∈ Fqm is not an eigenvalue of a square matrix (over

Fq) is
∏

r≥1

(

1 − 1

qrm

)

.

One can also show that the probability that a given monic irreducible polynomial of degree

m over Fq is a factor of the characteristic polynomial of a square matrix is

1 −
∏

r≥1

(

1 − 1

qrm

)

.

The paper [24] contains many more results of a similar nature.

The same author [23] considers other problems on the enumeration of certain matrices,

namely those over F2 with no eigenvalues of 0 or 1. Notice that this is equivalent to matrices

that define a projective derangement (no fixed points). Interestingly, if the number of such

matrices over F2 is en then the generating function is given by

1 +
∑

n≥1

en

γn
un =

1

1 − u

∏

r≥1

(

1 − 1

qr

)

where γn is the number | GLn(q) |= ∏n−1
i=0 (qn − qi). More generally he shows that if dn is

the number of n × n matrices over Fq with no eigenvalues in Fq then

1 +
∑

n≥1

dn

γn
un =

1

1 − u

∏

r≥1

(

1 − u

qr

)q−1
.

5.5. Group theoretic aspects of random matrices. We mention two final papers of interest.

The work of Fulman [12] investigates a variety of problems of random matrices over finite

fields but is more concerned with group theoretic and reduction type problems for GLn(q).

The type of questions of interest there include the number of Jordan blocks in the rational

canonical form of a random matrix, the distribution of the order of a random matrix, the

probability the characteristic polynomial of a random matrix has no repeated factors and

the like. It makes heavy use of the cycle index technique.

Finally we note the work of Brent et al [7]. The item of concern in this work is the action

of a matrix on a subspace. To introduce this notion, let T Denote a linear mapping on

Vn(q) and let S ⊆ Vn(q) be a set of m vectors. The Krylov subspace generated by S under

T is defined as:

Kry(S, T ) =
{

m
∑

i=1

fi(T )vi | fi(x) ∈ Fq[x], vi ∈ S, 1 ≤ i ≤ m
}

.

Thus Kry(T,S) is just the space formed by all powers of the matrix T acting on the subset

of vectors of S. Define

κm(T ) =
1

qmn
· ‖{(v1, v2, · · · , vm) ∈ Vn(q)m, Kry(T, (v1, · · · vm)) = Vn(q)}‖.
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The paper determines lower bounds on κm(T ) using the Frobenius index of T , the number

of invariants in the Frobenius decomposition of Vn(q) under T . While they are concerned

with the this particular question, several interesting and useful bounds for the questions of

interest in this note are also developed and some of these have been noted.

6. Experimental results and conjectures

This section reports on experimental results generated and resulting conjectures, based on

the theory presented in the previous sections. We restrict attention here to binary matrices

and suppose unit elements are chosen with probability p. We first modify the expression

for a k× (k + m) matrix to be of full rank and have no all zero rows or columns. Recall the

expression for an k × (k + m) matrix is of full rank for m ≤ 0 is given by

k+m
∏

i=1

(

1 − 1

2k−i+1

)

and when m ≥ 0 this is approximated by

Qm =
∞
∏

i=m+1

(

1 − 1

2i

)

,

where the last expression is an asymptotic result as k → ∞.

For relatively large p all zero rows or columns are unlikely. As p decreases however, they

become a significant factor.

We first enumerate full rank matrices on the number of zero columns - the probability a

column is all zeros is (1− p)k. Hence the probability a k × (k + m) matrix is of full rank is

(6.1) (1 − (1 − p)k+m)k
m

∑

j=0

(

k + m

j

)

(1 − p)kj(1 − (1 − p)k)k+m−jQm−j , m > 0

where the first term is the fraction of all k×(k+m) matrices that have no all-zero rows, the

term after the binomial coefficient is the probability of exactly j particular all-zero columns,

(1 − (1 − p)k)k+m−j is the fraction of k × k + m − j matrices with no all-zero columns and

Qm−j is the fraction of all k × (k + m − j) matrices that are nonsingular. The expression

is an approximation since it assumes the probabilities of all-zero rows and columns are

independent. In addition, the expression for Qm−j does not exclude the possibility of zero

columns - the above argument essentially argues that the probability of full rank given no

all-zero columns is the same as probability of full rank. Nonetheless this expression has

been shown to be remarkably accurate for values of p well below the ln)(k)/k threshold

and we note it here. We need further work to justify this approximation. For values of p

near 1/2 the expression is very near the previous expression Equation 3.4. Equation 6.1 is

a much more accurate expression, as p decreases, although it requires further theoretical

justification.

We report rather extensively on the experimental work done, in the hope that it will

prove useful in suggesting conjectures and suggest further problems.
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To begin, we confirm various results noted in Section 3, perhaps especially Theorem 3.2.

The following graphs consider the rank of (random binary) matrices where each element is

chosen at random and independently with probability p, as shown.
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Figure 1. Probability of rank k for a k×(k+m) matrix. The left graph shows the

results for k = 100, while the right is for k = 500. In both graphs, the theoretical

expression of Equation 3.4 is shown versus experimental results for the probability

of a nonzero element p = 0.1, 0.2, 0.3, 0.4, 0.5. Each point of the experimental

results is for 50, 000 trials for k = 100 and 5, 000 trials for k = 500.

The agreement of experiment with theory, for p sufficiently large, in these graphs is quite

surprising. Further experiments for k down to 10 showed similar agreement. Note that all

values of p in these curves exceed the threshold value of ln(k)/k.

It was noted in Section 3 that a critical value for the probability p for choosing the

nonzero elements in a random matrix was p = ln k/k for a matrix with k rows. The following

experimental results attempt to justify this, showing the behavior of the probability of full

rank as p varies around log(k)/k. Additionally we show that the expression for Qm corrected

for the probability of zero rows and columns (Equation 6.1)is accurate well below this value,

although it becomes increasingly difficult to verify this experimentally.

Based on these experimental results and the expressions of the previous sections it can

be justified that the rank properties of a random matrix over F2 where the matrix elements

are chosen to be 1, independently and identically with probability p where 2 ln(k)/k <

p < 1 − 2 ln(k)/k, are indistinguishable from the purely random case where p = 1/2. For

example the expression equation (3.6) can be used to show this 1

Note that from the theorems of Section 3 the critical value of probability is p = ln(k)/k

and for a value of p slightly larger, asymptotically as k, m increase, the rank tends to full.

size of p needed to behave as a ”purely random” (p = 1/2) matrix is . Based on the work

of Kolchin and Cooper, the correct lower bound for the value of p in order for the rank

poprties of the matrix to be similar for the random (p = 1/2 case) is likely of the form

p = (ln(k) + d(k))/k for a function d(k) decreasing to 0 sufficiently slowly with k.

1The authors are grateful to Omran Ahmadi for pointing this out.
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Figure 2. Probability of full rank for p = c ln(k)/k as the number of extra

columns increases. Each data point is the result of 50, 000 trials (for k = 100)

and 5, 000 trials (for k = 500). The solid line is computed using Equation

6.1 and the dotted line (purely random matrix with constant p > 2 ln(k)/k)

for Equation 3.4.

It has been observed the the average number of columns, beyond k, for a purely random

k× (k+m) to achieve full rank with high probability, is 1.60669515 · · · . Based on the above

observations, we suggest the following:

Conjecture 6.1. If the elements of a random binary k × (k + m) matrix Mk,(k+m) are

chosen independently and identically at random to be 1 with probability p, then the expected

number of columns beyond k required to achieve full rank (k), m̄, is, asymptotically as

k → ∞
i) m̄ = ∞ for p < ln(k)/k

ii) m̄ = 1.60669515 · · · (as in section 3) for 2 ln(k)/k < p < 1 − 2 ln(k)/k

The behavior of m̄ for p = c ln(k)/k for 1 < c < 2 would be of interest.

So far we have only considered generating columns for the random matrices by choosing

the individual column elements at random, identically and independently distributed. It is

interesting to consider other mechanisms to generate the columns and we will have a use

for one such mechanism when considering applications for the material to coding.

For the mechanism to be considered, assume we have a ”degree distribution” available,

p(d), d = 1, 2, · · · , k where p(d) is the probability of choosing a degree of d. The terminology

derives from coding theory where the binary matrix is viewed as a bipartite graph. The

process will be, for each column to be added to the random matrix, d is chosen according to

the distribution, and the column is formed by choosing a random d-tuple of integers from

1 to k to place the ones. For this we use the terms weight and degree interchangeably.

Several distributions are used.

Wedge distribution: To achieve a mean column weight of σ, which we assume is not of the

form of an integer plus 0.5, we choose degrees, d − 1, d, d + 1 where d is σ rounded to

the nearest integer. The probability assigned to d is 0.5 and the sum of probabilities for

d − 1, d + 1 is 0.5, with mean degree σ, resulting in a unique distribution.
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Figure 3. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 100, while the right is for k = 500. The graphs use p = c ln(k)/k

in Equation 6.1 and the data points are derived from the wedge distribution with

the same mean.

Uniform distribution: To achieve a mean degree (weight) of σ we assign probabilities of

approximately 1/2σ to degrees 1, 2, · · · , to approximately 2σ, adjusting the probability of

the last degree to achieve the correct mean.
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Figure 4. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 100, while the right is for k = 500. The graphs use p = c ln(k)/k

in Equation 6.1 and the data points are derived from the uniform distribution with

the same mean.

Horshoe distribution: Half of the columns have low degree (2 or 3) and half have high

degree (approximately 2σ). We used two variants: in the degree 2 variant, we used half

of the columns of weight 2 and the other half of weight d and d + 2, d odd, choosing the

probabilities to give the correct mean. In the degree 3 variant we choose half of the columns

of weight 3 and the other half of degrees d and d + 1 (note: a matrix with all columns of

even weight cannot have full rank and these considerations are to avoid this possibility).
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Figure 5. Probability of rank k for a k×(k+m) matrix. The left graph shows the

results for k = 100, while the right is for k = 500. The graphs use p = c ln(k)/k in

Equation 6.1 and the data points are derived from the horshoe distribution (variant

2) with the same mean.
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Figure 6. Probability of rank k for a k×(k+m) matrix. The left graph shows the

results for k = 100, while the right is for k = 500. The graphs use p = c ln(k)/k in

Equation 6.1 and the data points are derived from the horshoe distribution (variant

3) with the same mean.

Soliton distribution: This distribution will be of interest in the coding section (Section 7).

The distribution is given by

p(d) =

{

1/k i = 1

1/i(i − 1) 2 ≤ i ≤ k.

It is seen there is very little difference in the results of the wedge, uniform and horshoe

distributions for the same mean column weight. As far as rank properties of the random

matrices are concerned, as long as the mean column weights are the same, one can either

choose the column elements at random with probability p or choose the column weight d

from the distribution and then a random d-tuple from [1, k].

However for the soliton distribution the results are significantly different (see Graph 7).

No explanation was found for this.
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Figure 7. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 100, while the right is for k = 500. The graphs use p = c ln(k)/k

in Equation 6.1 and the data points are derived from the soliton distribution with

similar mean. Note for k = 100 the mean of the soliton distribution is approximately

1.1264 ln(k) and for k = 500 it is approximately 1.093 ln(k)/k.

Experiments for the windowed matrices described in Section 5.1 are considered.
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Figure 8. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 100, while the right is for k = 900. In both graphs, the dotted

line is Qm (Equation 3.4), the open circles show results from random (p = 1/2) ma-

trices, and the other symbols show results for windowed matrices (with the specified

window size). For clarity, no open circles are shown on the right graph.

The curves of Graph 8 (and subsequent graphs) suggest the lower bound of 2
√

k for full

rank falls slightly short for lower values of k (≤ 100) but appears quite accurate for larger

values, in terms of obtaining rank behaviour of the windowed matrices equivalent to those

of a random matrix.

The Graph 10 is similar to previous curves with slightly extended horizontal range.

The conclusions of this experimental evidence suggests that windowed matrices with

window size at least w ≥ 2
√

k with mean column weight higher then 2 ln(k) give probabilities

of full rank as those of purely random matrices, but that otherwise the effect of window

size beyond 2
√

k has little effect.
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Figure 9. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 2500, while the right is for k = 10000. In both graphs, the broken

line is Qm (Equation 3.4), the open triangles show results for random (p = 1/2)

matrices (window size 2
√

k, 100 and 200 respectively), and the other symbols show

results for windowed matrices (with the specified window size). The low weight

closed triangles are the results for a window size of w = 2
√

k but with the mean

column weight fixed at 2 log k.
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Figure 10. Probability of rank k for a k × (k + m) matrix. The left graph shows

the results for k = 100, while the right is for k = 10000. In both graphs, the broken

line is Qm, and the other symbols show results for windowed matrices (with the

specified window size), for p = 1/2 within a window.

The remaining graphs are given without caption and are self explanatory, where the

termforced start refers to the first (topmost element) in the window is forced to be 1.

Curves where the probability of a nonzero element is chosen to make the mean column

weight 2 ln(k) are so marked. All other curves use p = 1/2. The dotted curve in each graph

is Equation 3.4.

Conjecture 6.2. The rank properties of a binary windowed k × (k + m) random matrix,

as discussed in section 5.1, behave as a random binary matrix iff the window length is at

least 2
√

k as long as the probability of an element being 1 is at least p, where p is chosen to

give a mean column weight of 2 ln(k).
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Figure 11. Probability of rank k for a k × (k + m) matrix for k = 100. In

both graphs, the broken line is Qm: the left graph shows results for random (p =

1/2) (windowed, forced start) matrices, and the other show results for low weight

windowed matrices.Note low value of k here.

 0

 0.2

 0.4

 0.6

 0.8

 1

 900  905  910  915  920

P
ro

ba
bi

lit
y 

of
 F

ul
l R

an
k

Number of Columns (k+m)

Probability of Full Rank (k=900; forced start)

window length = 60
window length = 45
window length = 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 900  905  910  915  920

P
ro

ba
bi

lit
y 

of
 F

ul
l R

an
k

Number of Columns (k+m)

Probability of Full Rank (k=900; weight 2 log k)

window length = 60
window length = 45
window length = 30

Figure 12. Probability of rank k for a k × (k + m) matrix. Similar to previous

graphs only for k = 900. In both graphs, the broken line is Qm. The left graph

shows results for random (p = 1/2) and forced start matrices, and the right for low

weight.

We conclude the section with some experimental results associated with the work of

Calkin [8] on random matrices with constant weight columns and to verify the behaviour

of the threshold of βk mentioned there.
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Figure 13. Probability of rank k for a k × (k + m) matrix. Similar to previous

graphs only for k = 2500. In both graphs, the broken line is Qm. The left graph

shows results for random (p = 1/2) and forced start matrices, and the right for low

weight.
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Figure 14. Probability of rank k for a k × (k + m) matrix. Similar to previous

graphs with k = 2500 and higher mean column weight. In both graphs, the broken

line is Qm.

k n = 500 n = 1000 n = 2000 theory3 theory2

2 0.464 < b < 0.466 0.459 < b < 0.460 0.4563 < b < 0.4577

3 0.914 < b < 0.916 0.916 < b < 0.917 0.9170 < b < 0.9175 0.90912 0.92817

4 0.972 < b < 0.974 0.974 < b < 0.975 0.9755 < b < 0.9760 0.96909 0.97358

5 0.990 < b < 0.992 0.991 < b < 0.992 0.9920 < b < 0.9925 0.98935 0.99028

6 0.992 < b < 0.994 0.995 < b < 0.996 0.9960 < b < 0.9965 0.99625 0.99642

7 0.996 < b < 0.998 0.998 < b < 0.999 0.9985 < b < 0.9990 0.99865 0.99868

8 0.9985 < b < 0.9990 0.99951 0.99952

9 0.9995 < b < 0.9999 0.99982 0.99982
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Figure 15. Probability of rank k for a k × (k + m) matrix. Similar to previous

graphs with k = 10000 and mean column weight as indicated. In both graphs, the

broken line is Qm.
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Figure 16. Probability of rank k for a k × (k + m) matrix. Similar to previous

graphs with k = 10000 and higher mean column weight as indicated. The broken

line is Qm.

In this table, the column labelled ‘theory3’ is the 3 term expression for βk mid way down

on page 270 of [8] and ‘theory2’ is the approximation βk ∼ 1− exp(−k)/log(2). The ranges

of values shown in columns 2 to 5 were extracted from the graph 17 below. It proved a very

difficult problem to assess these values with accuracy.

For the probabilty of independence (full rank) in the square case:

k n=500 n=1000 n=2000

3 0 0 0

5 0.007694 0.00012 0

7 0.183832 0.11501 0.0460

9 0.271318 0.25741 0.2316

11 0.2836
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In both cases, tested 500,000 matrices were tested for n = 500, and 100, 000 for n = 1000

and 10, 000 for n = 2000. From previous results it seems that for a fixed n as k exceeds

2 ln(n) the values tend to the value .288 · · · for random matrices.
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Figure 17. Probability of dependent set for constant weight matrices, k =

4, 5, 6, 7. for columns of size 1000

7. Applications to coding theory

7.1. Previous work. A very limited review of the remarkable recent work on erasure cor-

recting codes is given with a view to take the results on windowed matrices discussed above

to define a new class of codes for erasure correction. While work on low density parity check

codes originates from the sixties [14], it was only more recent work that showed how such

codes on the binary symmetric channel with errors (a transmitted binary 1 received as a

zero or vice-versa) were capable of achieving the elusive goal of capacity. However, on the

binary erasure channel a further step was taken to actually show how codes that achieve

capacity can be constructed [20, 21, 22, 27]. Only this more limited case of coding for era-

sure channels is of interest here. Much of this work was concerned with designing (random)

codes by constructing a bipartite graph whose incidence matrix is the parity check matrix

of a linear code. A requirement of the construction [27] was to design two distributions on

the degrees of the left and right vertices of this graph in such a way as to achieve capacity

for a given decoding process. More recent work has not pursued this approach.

Subsequent to this, the work of Luby [20, 21] introduced the notion of a rateless code.

Again, this can be thought of in terms of a bipartite graph where the left vertices are

identified with, say, k data or input symbols (which we may take as binary symbols for

simplicity although the extension to strings of binary symbols is trivial). The right vertices

are thought of as parity checks on the input symbols or as coded symbols. These are

generated as follows: for a given degree distribution on the integers 1, 2, · · · , k, ρ(k), the

distribution is sampled to give an integer d, 1 ≤ d ≤ k. The corresponding code symbol

is formed by choosing d input symbols at random. For decoding, if a sufficient number of

coded symbols are obtained, the process starts by choosing a coded symbol of degree 1 i.e.

a code symbol corresponding to a right vertex of degree 1. The value of the code symbol is
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transferred to the corresponding input symbol, whose value is then transferred to all coded

symbols containing it, and all the corresponding edges are removed from the graph. If a

new right vertex is now of degree 1, the process continues.

Clearly the decoding continues until it completes with all input symbols recovered or

there are no right vertices of degree 1 at some stage, in which case the decoding fails.

To minimize the probability of the latter, the distribution ρ(i) is chosen carefully. Ini-

tially, it was suggested [21] to use the soliton distribution given by ρ(i) = 1/i(i − 1), i =

2, 3, · · · , k, ρ(1) = 1/k. The theoretical reasoning for this distribution is sound, but it turns

out in practice that the probability, at each stage of the decoding, of having a vertex of

degree 1 is too sensitive, giving too high a probability the decoding would not complete. To

remedy the situation, a robust soliton distribution was suggested that proved more robust

in practice. These codes are referred to as rateless since the decoder can continue to gather

coded symbols from any source, on the same input data, until decoding completes – there

is no fixed a priori rate associated with the code. In conventional coding, it would first be

necessary to estimate the erasure probability to allow proper code design and this rateless

feature is very useful.

For an original set of k data or input symbols, the number of extra (more than k) coded

symbols required to give a high probability of decoding completion is referred to as the

overhead. It is shown in [21] that if δ is the allowable decoding failure probability then by

using the robust soliton distribution for the generation of the coded symbols, the overhead

required to decode is k + O(
√

k ln2(k/δ)) and the average degree of the right vertices is

D = ln(k/δ). Since the complexity of decoding is proportional to the number of edges in

the graph, this last result shows the decoding complexity to be O(k ln(k/δ)).

To improve the situation further Shokrollahi [27] and independently Maymounkov [22]

introduced the idea of precoding. Here one uses a good erasure correcting code to code the

original input symbols resulting in a certain number of auxiliary symbols. These are then

added to the input symbols (on the left hand side of the bipartite graph) and the combined

set of left hand side symbols are coded using a truncated soliton-like encoder. This latter

(outer) code has a mean right hand side degree that is independent of k, giving linear time

encoding and decoding. In exchange for this complexity reduction, overhead is increased

to O(k) extra coded symbols. For convenience, we note Theorem 2 from [22], using our

terminology. A similar result is found in [27, 11].

Theorem 7.1. (Maymounkov): For any message of size k input symbols, and any param-

eter ǫ > 0, there is a rateless locally encodable code (right distribution) that can recover the

input symbols from any (1 + ǫ)k coded symbols with high probability in time proportional to

k log(1/ǫ).

100%

10%

1%

0.1%
 10  100  1000  10000

Number of Input Symbols (k)
Figure 18. Mean over-

In the presence of such a powerful result one

might wonder why further work on this problem

might be of interest. One aspect of the above is

that they are essentially asymptotic results. In

practice, with our simulations and others avail-

able in the references, a typical overhead for the



32 IAN F. BLAKE AND CHRIS STUDHOLME

LT decoding might be as much as 15% for a num-

ber of input symbols on the order of a thousand

and this drops to perhaps 3% to 4% for a much

higher number of input symbols. The Online or

Raptor codes can be constructed to have an over-

head of 3% to 4%, of k for large k. For an idea of

the improvement in overhead that is possible, see

figure 18. The solid line in this figure illustrates

the overhead achievable by our erasure code con-

struction which we take as approximately 2 sym-

bols, independent of k.

The class of codes presented here will have a

decoding complexity of O(k3/2) for k input sym-

bols. Although significantly higher than the previous work, for low k the increase is not

so large when all the constants in the estimates are taken into account. In return for this

increased complexity, one obtains codes that are effective for values of k as low as 100, are

easily generated requiring only a uniform distribution, and have a very high and quantifiable

probability of decoding completion with an overhead that is constant, independent of k. It

is likely there will be applications where such properties are of interest.

7.2. Erasure code construction. In this section we describe how one might use these

windowed random matrices to construct an efficiently encodable and decodable erasure

code.

7.2.1. Encoding. The encoder begins with the k data symbols (input blocks) that need to be

transmitted. From these input blocks, the encoder generates, randomly and independently,

columns of a windowed matrix along with output data blocks (coded symbols). There is

one output block associated with each column.

Here are the steps the encoder takes to generate an output data block:

(1) Choose a starting row number (uniformly) within the range 1, . . . , k.

(2) For each of the w rows starting at this start row, decide whether a 1 or a 0 will be

placed in that row. These two choices may be equally likely, or not (see below).

(3) For each 1 in the column generated in step 2, sum the corresponding input blocks

using bitwise exclusive or.

(4) Send the column and output block (sum) to the decoder.

In this last step, sending the column need not require O (k), or even O(
√

k) space. Instead,

one might send a small seed for a pseudo-random number generator that is used by both

parties to generate the column. This requires O (log k) space.

With w = 2
√

k, the maximum number of input blocks to be summed is w. For a densely

packed window, the expected number is w/2 =
√

k; however, we can do better than this.

In figure 11, right graph, the closed triangles give the probability of full rank for w = 2
√

k

but with a mean column weight of 2 log k. Note that these results are almost as good as the

results for a densely packed window, and therefore, if one wishes to reduce the per output

block encoding time to O (log k), one can modify step 2 to instead choose 2 log k 1’s within
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the window chosen in step 1. Be careful, however, to ensure that it is not the case that

every column has even weight. Such a matrix will be singular. Perhaps choose the next

largest odd integer greater than 2 log k and generate columns with that weight.

7.2.2. Avoiding Wrapping. In the next section, while discussing the decoding algorithm,

we will notice that the decoder must treat columns that wrap from bottom to top as though

they have length k. We will also see that these long length columns can increase the work

to be done by the decoder by a factor of 2. Therefore, to avoid this extra work, we have

developed a strategy to avoid columns that wrap; however, as we will see, this strategy may

not reduce the work to be done by the decoder as much as we would like.

The strategy involves both a non-uniform distribution on the starting row selection (step

1 above) and a variable window length. The calculations required are all based on the

binomial theorem and are similar to those of previous theorems. Unfortunately, we find

that, to achieve a probability of full rank that is similar to what we see when wrapping is

allowed, the required window length for columns with an initial 1 near the middle of the

column is about 4
√

k, and the mean window length is a little greater than 3
√

k. This negates

much of the benefit of avoiding wrapping. Regardless, we will give a complete description

of the non-wrapping encoder and a detailed performance comparison in the full version of

this paper.

7.3. Decoding. The decoding algorithm is simply Gaussian Elimination; however, to en-

sure our discussion of decoder complexity is precise, we will describe a specific decoding

algorithm. Decoding has two phases:

(1) Column collection. During column collection, matrix columns, along with their

associated data blocks, are inserted into a hash table and reduced as necessary to

ensure they are independent.

(2) Back filling. At the conclusion of column collection, we will have a lower triangular

matrix with 1’s along the diagonal. This matrix is non-singular. With a series of

data block sums, the matrix is essentially made diagonal and decoding is complete.

The hash table constructed during the first phase is to have exactly k bins. Each column

received hashes to the bin whose index is the index of the first row containing a 1. When

this table is full, we will have k columns, all of which start at a different row (ie. a lower

triangular matrix with 1’s along the diagonal). For the purposes of this algorithm, we do

not consider any columns to wrap from bottom to top, and as a result, the first 1 in a

column may not coincide with the start of the window.

During column collection, we will occasionally come across two columns whose initial

1’s are in the same row. This is a hash collision and requires collision resolution. Such

resolution is easy, simply add the two columns (and their associated data blocks) together.

The resulting column is guaranteed not to have it’s initial 1 in the same row. A subtle but

important aspect of this algorithm is the choice of columns to keep after collision resolution.

Obviously, the sum is to be kept. The other column to keep is the shorter of the two colliding

columns. Here, the length of a column is the number of rows between the first 1 and the

last 1 (inclusive). If the two columns are of equal length, either one may be kept.
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It may also happen during collision resolution that the two colliding columns are identical

and their sum is the all zero column. In this case, one of the two columns is simply discarded

and an extra column must be collected.

When the hash table is full, back filling can begin. Back filling is done starting at the

last row and working up through the matrix. First, the data block associated with the 1

on the diagonal is added to all of the data blocks associated with 1’s in the last row. Then,

the second to last row is processed in a similar manner. At the completion of back filling,

the data blocks will be the original input blocks.

Theorem 7.2. Worst case decoder complexity is l̄k data block additions, where l̄ is the

mean column length. Column length, l, as mentioned earlier in this section, is the number

of rows between the first 1 and the last 1, inclusive.

Proof. During the column collection phase, one data block addition is required each time

there is a hash table collision. If two columns, one of length x and the other of length y,

x ≤ y, collide, their sum will be a column whose length is no greater than y − 1. Since l̄k

is the sum of the length’s of the columns and each collision reduces this total length by at

least 1, there can be at most l̄k collisions.

During the back filling phase, the number of data block additions needed is exactly the

weight of the matrix (after column collection) less k. Also, the weight of the matrix is no

greater than the total length, and the total length after column collection no greater than

the total length before column collection less the number of collisions. Therefore, the sum

of the weight of the matrix after column collection and the number of collisions resolved

during column collection is at most l̄k. �

The average case complexity is l̄k/2. This is easily seen by noting that when columns of

length x and y, x ≤ y, are added, the expected length of the resulting column is at most

y − 2. Furthermore, the expected weight of the matrix after column collection is half the

total length.

To see how the average case complexity may be calculated from w, first notice that for

columns that do not wrap, l ≤ w; however, for columns that do wrap, l may be as large as

k. In the case where wrapping is allowed, we suggest w = 2
√

k is sufficient to achieve low

overhead. Note that the probability of generating a column that wraps is w/k. This means

that, after k columns have been generated, we only expect w of them to wrap. The mean

column length (as seen by the decoder) is thus l̄ = wk + (k −w)w ≈ 2wk. This gives us an

average case decoder complexity of wk = 2k3/2.

It was suggested earlier that we may be able to avoid generating columns that wrap;

however, in doing so columns with a window length as large as 4
√

k may be generated.

This means l̄ may be as large as 4
√

k and thus decoder complexity is still 2k3/2. Actually,

in this no-wrapping case, l̄ is closer to 3
√

k so there may yet be a benefit to avoiding

wrapping.

7.4. Conclusions. An efficiently encodable and decodable class of erasure correcting codes,

with decoding complexity O(k3/2), based on the rank properties of windowed binary random

matrices, has been formulated. They have the advantages over other classes of erasure
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correcting codes of a low and fixed overhead and effectiveness at much lower block lengths.

The necessity of the rank properties required for the windowed matrices are established

here. While simulation and intuitive arguments show the conditions needed are clearly

sufficient it is hoped to establish these properties analytically in future work.

8. A diversion

There are numerous applications of the matrices considered here as well as many other

related problems, including combinatorics, coding, theoretical computer science etc.. We

mention a problem that has been of interest in computer science, that of the singularity of

random (equally likely) ±1 matrices taken over the integers (or rationals). (Recall, the work

of this report has been concerned exclusively with rank over the finite field of interest.) Let

Mn be an n × n random ±1 matrix. It long been conjectured that

P (det(Mn) = 0) ≥ (1 + o(1))n221−n,

a result of the fact that such a random matrix with two identical or opposite columns

has a determinant of 0, which has also been conjectured as the main source of singularity.

However the best actual result in this direction is:

Theorem 8.1.

P (det(Mn) = 0) = O((1 − ǫ)n)

where [15] ǫ = .001 improved to ǫ = .0691 · · · [28].

(The constant ǫ = .0691 · · · in the theorem is the unique solution to the equation

h(ǫ) + ǫ/(log2(16/15)) = 1

in the interval (0, 1/2), where h(·) is the binary entropy function.) It is also noted there

([28]) that from Hadamard’s inequality we have that

det(Mn) ≤ nn/2

with equality iff Mn is a Hadamard matrix. Furthermore it can be shown that

E((det Mn)2) = n!

and higher moments are also computable. A main result of [28] is that

P (det(Mn) = ±
√

n! exp(−o(n1/2+ǫ)) =
1

2
− o(1).

It is interesting, although not surprising, that the behavior of this case is so different than

the binary {0, 1} over F2.

9. Comments

A very brief overview of certain aspects of rank properties of random matrices over finite

fields has been considered and certain questions of interest have been posed. It has been

intended only as a document for possible use in pursuing further work in the area.

Acknowledgements: The authors would like to thank Igor Shparlinski for his careful

reading of the report and suggestions for improvement.
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