
Windowed Erasure Codes
Chris Studholme

Department of Computer Science
University of Toronto

Email: cvs@cs.utoronto.ca

Ian Blake
Department of Electrical and Computer Eng.

University of Toronto
Email: ifblake@comm.utoronto.ca

Abstract— The design of erasure correcting codes and their
decoding algorithms is now at the point where capacity achieving
codes are available with decoding algorithms that have complex-
ity that is linear in the number of information symbols. One
aspect of these codes is that the overhead (number of coded
symbols beyond the number of information symbols required to
achieve decoding completion with high probability) is linear in k.
This work considers a new class of random codes which have the
following advantages: (i) the overhead is constant (in the range
of 5 to 10) (ii) the probability of completing decoding for such
an overhead is essentially one (iii) the codes are effectivefor a
number of information symbols as low as a few tens. The price
for these properties is that the decoding complexity is greater,
on the order of k3/2. However, for the lower values ofk where
these codes are of particular interest, this increase in complexity
might be outweighed by other significant advantages. The parity
check matrices of these codes are chosen at random as windowed
matrices i.e. for each column an initial starting position of a
window of length w is chosen and the succeedingw positions
are chosen at random by zero or one. It can be shown that
it is necessary that w = O(k1/2) for the probabilistic matrix
rank properties to behave as a non-windowed random matrix.
The sufficiency of the condition has so far been established by
extensive simulation, although other arguments strongly support
this conclusion.

I. I NTRODUCTION

The construction and analysis of good (capacity achieving)
erasure codes have been intensively investigated over the
past few years following the ground breaking work of Luby,
Shokrollahi, Spielman, Mitzemacher and many others. Such
codes can be used very effectively for large downloads over
the Internet in a multicast scenario in the presence of packet
losses, where there is no feedback channel, or for distributing
and reconstructing files in the presence of server crashes,
among other applications. The end result of this work, due
to Shokrollahi and Maymounkov, is that we know how to
construct erasure codes that can be decoded in linear (in
number of data symbols) time with high probability of success-
ful decoding. Such results are asymptotic in nature requiring
a large number of data symbols to achieve the promised
performance. Additionally, the number of extra coded symbols
required to ensure a high probability of decoding for block
lengths in the few thousands, might typically be on the order
of 3 to 4% of the number of data symbols.

One aspect of this work that is considered here, is to
propose a new class of codes with a decoding algorithm
that is Gaussian elimination. The class of codes will have an
encoder complexity ofO(log k) block operations per coded

symbol and a decoder complexity ofO(k3/2), wherek is the
number of data symbols. In return for this increased decoder
complexity it is shown that several advantages accrue: (i) the
relationship between the probability of decoding success and
overhead (the number of extra coded symbols) is quite precise.
Indeed, the overhead is independent of the block length and
can be very low (typically, only a few extra coded symbols).
(ii) it is shown experimentally, that the codes are effective for
numbers of data symbols down to less than one hundred. (iii)
additionally, the parity checks for these codes can be obtained
from a uniform distribution over subsets of the data symbols,
rather than a more complicated distribution used in [9] and
[10]. Thus while the codes have a significantly higher decoding
complexity, there may well be applications where the added
benefits of these codes are of interest. For lower block lengths,
the additional decoding complexity is not very significant and
these windowed codes become more attractive.

In the next section we briefly review the properties of
LT, Raptor and Online codes. The following section reviews
known rank properties of random binary matrices and intro-
duces the windowed matrices on which the new class of codes
will be based. At this point, the principal property required
for the construction of our codes can only be established as a
necessary condition. The sufficiency of the condition is only
established through extensive simulation.

Section V gives the new encoding and decoding algorithm
and relies on the work of section IV to establish their proper-
ties.

II. PREVIOUS WORK

A very limited review of the remarkable recent work on
erasure correcting codes is given. While work on low density
parity check codes originates from the sixties [5], it was only
more recent work that showed how such codes on the binary
symmetric channel with errors (a transmitted binary1 received
as a zero or vice-versa) were capable of achieving the elusive
goal of capacity. However, on the binary erasure channel a
further step was taken to actually show how codes that achieve
capacity can be constructed [7], [8], [9], [10]. Only this more
limited case of coding for erasure channels is of interest here.
Much of this work was concerned with designing (random)
codes by constructing a bipartite graph whose incidence matrix
is the parity check matrix of a linear code. A requirement of
the construction [10] was to design two distributions on the

degrees of the left and right vertices of this graph in such a
way as to achieve capacity for a given decoding process.

Subsequent to this, the work of Luby [7], [8] introduced the
notion of aratelesscode. Again, this can be thought of in terms
of a bipartite graph where the left vertices are identified with,
say,k data or input symbols (which we may take as binary
symbols for simplicity although the extension to strings of
binary symbols is trivial). The right vertices are thought of as
parity checks on the input symbols or as coded symbols. These
are generated as follows: for a given degree distribution onthe
integers1, 2, · · · , k, ρ(k), the distribution is sampled to give
an integerd, 1 ≤ d ≤ k. The corresponding code symbol is
formed by choosingd input symbols at random and XOR’ing
them. For decoding, if a sufficient number of coded symbols
are obtained, the process starts by choosing a coded symbol
of degree1 i.e. a code symbol corresponding to a right vertex
of degree1. The value of the code symbol is transferred to the
corresponding input symbol, whose value is then transferred
to all coded symbols containing it, and all the corresponding
edges are removed from the graph. If a new right vertex is
now of degree1, the process continues.

Clearly the decoding continues until it completes with all
input symbols recovered or there are no right vertices of
degree1 at some stage, in which case the decoding fails.
To minimize the probability of the latter, the distribution
ρ(i) is chosen carefully. Initially, it was suggested [7] to use
the soliton distribution given byρ(i) = 1/i(i − 1), i =
2, 3, · · · , k, ρ(1) = 1/k. The theoretical reasoning for this
distribution is sound, but it turns out in practice that the
probability, at each stage of the decoding, of having a vertex
of degree 1 is too sensitive, giving too high a probability
the decoding would not complete. To remedy the situation,
a robust soliton distribution was suggested that proved more
robust in practice. These codes are referred to as rateless since
the decoder can continue to gather coded symbols from any
source, on the same input data, until decoding completes –
there is no fixeda priori rate associated with the code. In
conventional coding, it would first be necessary to estimate
the erasure probability to allow proper code design and this
rateless feature is very useful..

For an original set ofk data or input symbols, the number
of extra (more thank) coded symbols required to give a
high probability of decoding completion is referred to as the
overhead. It is shown in [7] that ifδ is the allowable decoding
failure probability then by using the robust soliton distribution
for the generation of the coded symbols, the overhead required
to decode isO(

√
k log2(k/δ)) and the average degree of

the right vertices isD = log(k/δ)). Since the complexity
of decoding is proportional to the number of edges in the
graph, this last result shows the decoding complexity to be
O(k log(k/δ)).

To improve the situation further Shokrollahi [10] and inde-
pendently Maymounkov [9] introduced the idea ofprecoding.
Here one uses a good erasure correcting code to code the
original input symbols resulting in a certain number ofauxil-
iary symbols. These are then added to the input symbols (on

the left hand side of the bipartite graph) and the combined
set of left hand side symbols are coded using a truncated
soliton-like encoder. This latter (outer) code has a mean right
hand side degree that is independent ofk, giving linear
time encoding and decoding. In exchange for this complexity
reduction, overhead is increased toO(k) extra coded symbols.
For convenience, we note Theorem 2 from [9], using our
terminology. A similar result is found in [10].

Theorem 1 (Maymounkov): For any message of sizek input
symbols, and any parameterǫ > 0, there is a rateless locally
encodable code (right distribution) that can recover the input
symbols from any(1+ǫ)k coded symbols with high probability
in time proportional tok log(1/ǫ).

In the presence of such a powerful result one might wonder
why further work on this problem is of interest. One aspect
of the above is that they are essentially asymptotic results.
In practice, with our simulations and others available in the
references, a typical overhead for the LT decoding might be
as much as15% for a number of input symbols on the order
of a thousand and this drops to perhaps3% to 4% for a much
higher number of input symbols. The Online or Raptor codes
can be constructed to have an overhead of3% to 4%, of k for
largek.

The class of codes presented here will have a decoding com-
plexity of O(k3/2) for k input symbols. Although significantly
higher than the previous work, for lowk the increase is not
so large when all the constants in the estimates are taken into
account. In return for this increased complexity, one obtains
codes that are effective for values ofk as low as 100, are easily
generated requiring only a uniform distribution, and have a
very high and quantifiable probability of decoding completion
with an overhead that is constant, independent ofk. It is likely
there will be applications where such properties are of interest.

III. R ANDOM MATRICES

Properties of binary random matrices that are of interest
for this work are briefly reviewed here using only a few of
the large number of references [1], [2], [3], [4], [6] that have
considered this interesting problem. The following theorem,
due to Kolchin [6] but adapted to our terminology, is a
remarkable result and more general than our interests:

Theorem 2 (Kolchin): Let m ≥ 0, be a fixed integer. Let the
elements of a randomk×(k+m), m ≥ 0, matrixM = (mij)
be independent and suppose there is a positive constantδ
such that the inequalitiesδ ≤ P [mij = 1] ≤ 1 − δ hold for
i = 1, . . . , k, and j = 1, . . . , k + m. Then ask → ∞,

P [rank(M) = k] → Qm :=

∞
∏

i=m+1

(

1 − 1

2i

)

. (1)

It can also be shown that forn ≤ k, the probability thatn
random columns have full rank (forp = 0.5, but also more

generally) is given by

n
∏

i=1

(

1 − 1

2k−i+1

)

.

The difference between this result and theorem whenn = k
lies in the asymptotic nature of the former.

Although the theorem is an asymptotic result, we find that as
long asδ is close enough to1/2, and in particular, ifp = 1/2
is the probability of a1 for all matrix elements, thenQm is
a very good estimate of the probability of full rank fork as
low as 10. In fact, this expression also holds for values ofp
down to about(2 log k)/k. Below this, one can modify the
above expression forQm to take into account the likelihood
of all zero columns and rows. Such a modification is beyond
the scope of this document, but it is interesting to note thata
result of Cooper [4] indicates that this lower limit is actually
of the form (log(k) + d(k))/k, whered(k) is a function that
tends to zero sufficiently slowly ask → ∞.

When p = 1/2 the expected number of1’s per column
is k/2; however, the same probability of full rank can be
achieved forp as low as(2 log k)/k, and in this case the
expected number of1’s per column is only2 log k. The
observation we make here is that one need not distribute
these2 log k 1’s uniformly throughout the rows of the column.
Instead, one can confine these1’s to a small number of
consecutive rows, called awindow. In the next section it is
shown that results essentially the same as for random matrices
can be achieved for window sizes down to about2

√
k.

Using Qm, one can show the expected number of extra
columns needed to obtain rankk as

m̄ =

∞
∑

m=0

mPm =

∞
∑

i=0

(1 − Qi) = 1.60669515 . . .

where Pm = Qm − Qm−1 is the probability of requiring
exactly m columns beyondk for the matrix to acquire full
rank. We see that, with only2 extra columns (independent of
k), a random binary matrix has a better than50% chance of
having full rank. With7 or 8 extra columns, the probability
of full rank is very close to1. Since our windowed matrices
(with window length at least2

√
k) have a probability of full

rank that is virtually identical toQm, these matrices will also
have a high probability of full rank with only a few extra
columns. This very low overhead is a significant advantage of
the erasure code construction we give in section V.

IV. RANK PROPERTIES OF WINDOWED MATRICES

We now describe the construction of windowed matrices
and give an upper bound on the probability of full rank. The
proof of our main theorem establishes a minimum window
length of

√
k to achieve a reasonably high probability of full

rank, while the results of our simulations show that2
√

k is
sufficient. In future work we intend to show how one might
calculate the exact probability of full rank as a function of
window length.

0
...
0
1

w

?
...
?
0
...
0

k

Fig. 1. Column structure
for windowed column.

Before stating our main theorem
we wish to be precise about how
a windowed column is generated.
First, a starting row is chosen ran-
domly and uniformly from among
the k rows and a1 is placed in this
starting row. This1 is referred to as
the initial 1. Then, place1’s and0’s
in thew rows immediately following
the initial 1. We will either choose
each row independently withp being
the probability of a1, or decide on a
fixed column weight ofσ and place
σ − 1 1’s in the w rows. All other
rows simply contain0. Note that if
the initial 1 appears withinw rows
of the bottom of the column, the window will wrap back to
the top. The following theorem does not depend on which
strategy is used.

Theorem 3 For sufficiently largek, the probability that ak×
k random windowed binary matrix with window lengthw =
δ
√

k/2 has rankk is at most2Φ(δ)Q0, whereΦ(z) is the
normal distribution function andQ0 = 0.288788 . . . as given
by (1).

Proof: Let A be a matrix consisting ofk independently
generated windowed columns withw = δ

√
k/2. Without loss

of generality, assumek is even. For each column, if the initial
1 falls in the firstk/2 rows, label the column atop column.
Similarly, if the initial 1 falls in the lastk/2 rows, label it a
bottomcolumn.

Let t
¯

be a random variable representing the number of
top columns generated, and let b

¯
represent the number of

bottom columns. Both t
¯

and b
¯

are sampled from the binomial
distribution with the probability of generating each type of
column being1/2, so the expected number of columns of
each type isk/2 and the standard deviation is

√
k/2.

Now, since the top columns can have1’s in at mostk/2+w
rows, this is also the maximum number of independent top
columns A may have. Similarly, the maximum number of
independent bottom columns is alsok/2+w. Combining these
two constraints, and noting thatt + b = k, gives us

k/2 − w ≤ t ≤ k/2 + w . (2)

The above constraint is satisfied as long ast is within δ
standard deviations of the mean. Ifk is sufficiently large, the
binomial distribution may be approximated using the normal
distribution and2Φ(δ) is the probability thatt is within δ
standard deviations of the mean.

Finally, we assume that if (2) is satisfied,A’s probability of
having rankk is no greater than that of a random matrix,Q0.
Therefore, the probability of full rank is at most2Φ(δ)Q0.

For δ = 2, 2Φ(δ) is roughly0.95. The above theorem tells
us that the probability of full rank for a matrix with window
lengthw = δ

√
k/2 =

√
k will be at most0.95Q0. Actually,

our experiments show that the probability is significantly less

than this bound. Despite this, we see from extensive simulation
that with only a factor of2 increase in the window length, to
2
√

k, the bound can be achieved.

Figure 2 demonstrates this effectiveness. The open squares
and triangles show the results for window sizes of2

√
k, 1.5

√
k

and
√

k. Clearly,w = 2
√

k is necessary for good results. In the
k = 2, 500 graph, the solid triangles show that forw = 2

√
k,

a densely packed window having mean column weight
√

k is
unnecessary. Thelow weightdata series was generated using
p = (log k)/

√
k for a mean column weight of2 log k.

While our theorem gives a necessary condition for a win-
dowed matrix to have a high probability of full rank, in
future work we hope to prove that a window size of2

√
k is

sufficient. Thus far we have successfully reduced the problem
of computing the probability of full rank as a function of
window size to a cell occupancy problem. One considers
throwing k balls in k cells, where the cells are viewed as
the starting row of a column and the balls as columns. If the

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 102 104 106 108 110

Number of Columns (k+m)

theory
random

w=20
w=15
w=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 2500 2502 2504 2506 2508 2510

Number of Columns (k+m)

theory
w=100

low weight
w=75
w=50

Fig. 2. Probability of rankk for a k × (k + m) matrix. The upper
graph shows the results fork = 100, while the lower is fork = 2500.
In both graphs, the broken line isQm, the open circles show results
from random (p = 1/2) matrices, and the other symbols show results
for windowed matrices. For clarity, no open circles are shown in the
lower graph. Instead, thelow weightclosed triangles are the results
for a window size ofw = 100 but with the mean column weight
fixed at 2 log k. All data points are the results of testing at least
5, 000 matrices.

window size isw and the number of balls in anyt consecutive
cells, viewing the cells as arranged in a circle, exceedst + w,
the matrix cannot have full rank.

V. ERASURE CODE CONSTRUCTION

These windowed matrices can be used as the basis for an
efficiently encodable and decodable erasure code. The code we
describe here has an encoder complexity of about2 log k block
sums per output block and a decoder complexity of1.3k3/2

block sums. This complexity is achieved while keeping the
overhead constant at approximately2 extra blocks.

A. Encoding

The encoder hask data symbols (input blocks) that need to
be transmitted to the decoder. To create an output block, the
encoder first generates a windowed column as described in the
previous section. We suggest the encoder generate fixed weight
columns withσ = ⌈2 log k⌉odd. This notation is used to refer
to the lowest odd integer greater than or equal to2 log k. Note
that k columns each having even weight cannot have rankk,
and therefore,σ must be odd or the decoder will always fail.

Along with generating a windowed column, the encoder
sums (using bitwise exclusive or) theσ input blocks corre-
sponding to the1’s in the column. The column (or some effi-
cient encoding of it) along with the sum are then transmitted
to the decoder.

Although settingw = 2
√

k will work reasonably well, we
suggest one instead setw = 2(

√
k − 1)(σ − 1)/(σ − 2). This

slightly larger value ensures that the expected number of rows
between the first and last1 (inclusive) in each column is2

√
k.

B. Decoding

The decoding algorithm is simplyGaussian Elimination;
however, to ensure our discussion of decoder complexity is
precise, we describe a specific decoding algorithm. Decoding
has two phases:

1) Column collection. During column collection, matrix
columns, along with their associated data blocks, are
inserted into a hash table and reduced as necessary to
ensure they are independent.

2) Back filling. At the conclusion of column collection,
we have a lower triangular matrix with1’s along the
diagonal. This matrix is non-singular. With a series
of data block sums, the matrix is made diagonal and
decoding is complete.

The hash table constructed during the first phase is to have
exactly k bins and each column received hashes to the bin
whose index is the index of the first row containing a1. For
the purposes of this algorithm, columns are not considered
to wrap from bottom to top, and as a result, the first1 in a
column may not coincide with the initial 1. When this table
is full, the k columns comprise a lower triangular matrix with
1’s along the diagonal.

Hash collisions will occasionally happen during column
collection. To resolve such a collision, simply add the two
columns (and their associated data blocks) together to get a

column that hashes to a different bin. A subtle but important
detail of this algorithm is the choice of columns to keep after
collision resolution. Obviously, the sum is to be kept. The other
column to keep is theshorter of the two colliding columns.
Here, the length of a column is the number of rows between
the first1 and the last1 (inclusive). If the two columns are of
equal length, either one may be kept. Two identical columns
indicate a dependency; one is simply discarded and an extra
column must be collected.

When the hash table is full, back filling can begin. Back
filling is done starting at the last row and working up through
the matrix. First, the data block associated with the1 on the
diagonal is added to all of the data blocks associated with1’s
in the last row. Then, the second to last row is processed in
a similar manner. At the completion of back filling, the data
blocks will be the original input blocks.

Theorem 4 Worst case decoder complexity isℓ̄k data block
additions, wherēℓ is the mean column length. Column length,
ℓ, as mentioned earlier in this section, is the number of rows
between the first1 and the last1, inclusive.

Proof: During the column collection phase, one data
block addition is required each time there is a hash table
collision. If two columns, one of lengthx and the other of
length y, x ≤ y, collide, their sum will be a column whose
length is no greater thany − 1. Since ℓ̄k is the sum of the
length’s of the columns and each collision reduces this total
length by at least1, there can be at most̄ℓk collisions.

During the back filling phase, the number of data block
additions needed is exactly the weight of the matrix (after
column collection) lessk. Also, the weight of the matrix is no
greater than the total length, and the total length after column
collection no greater than the total length before column
collection less the number of collisions. Therefore, the sum
of the weight of the matrix after column collection and the
number of collisions resolved during column collection is at

 0

 1

 2

 3

 100 1000 10000
 0

 50

 100

 150

ov
er

he
ad

su
m

s
pe

r
bl

oc
k

Number of Input Symbols (k)

Fig. 3. Overhead and decoder performance for a windowed erasure
code. The circles show the mean number of extra columns needed
(left axis) while the squares show the mean number of column
operations needed per input symbol (right axis). Each data point is
the mean from 10,000 runs. The broken line is1.3

√
k.

most ℓ̄k.
The average case complexity is̄ℓk/2. This follows from

the fact that when columns of lengthx and y, x ≤ y, are
added, the expected length of the resulting column isy − 2.
Furthermore, the expected weight of the matrix after column
collection is half the total length.

To see how the complexity may be calculated fromw, first
notice that for columns that do not wrap,ℓ ≤ w +1; however,
for columns that do wrap,ℓ may be as large ask. Since
the probability of generating a column that wraps isw/k,
mean column length can be calculated asℓ̄ = (w/k)k + (1−
w/k)(w + 1) ≈ 2w. When usingw ≈ 2

√
k as suggested,

expected decoder complexity iswk ≈ 2k3/2.
Figure 3 shows that fork between 100 and 10,000 we

achieve a decoder complexity of1.3k3/2 while maintaining
an overhead of about2 extra blocks. For an idea of real world
performance we performed two tests involving a 32 MiByte
file on an AMD Athlon XP 1800+. Decoding 8192 blocks
(4 kiB each) requires about 10 seconds of CPU time, while
decoding 65536 blocks (512 bytes each) takes 2 minutes.

Finally, we note that allowing columns to wrap from bottom
to top increases decoder complexity by a factor of2. We have
developed a strategy to avoid such wrapping; however, we
find that to maintain a high probability of full rank,w must
be as large as4

√
k for some columns. This negates most of

the benefit of avoiding wrapping, and therefore, we do not
describe the strategy here.

VI. CONCLUSIONS

An efficiently encodable and decodable class of erasure
correcting codes, with decoding complexityO(k3/2), based on
the rank properties of windowed binary random matrices, has
been formulated. They have the advantages, over other classes
of erasure correcting codes, of a low and fixed overhead and
effectiveness at much lower block lengths. The necessity of
the rank properties required for the windowed matrices are
established here, and while simulation and intuitive arguments
show the conditions needed are clearly sufficient, it is hoped
to establish these properties analytically in future work.

REFERENCES

[1] Johannes Blömer, Richard Karp, and Emo Welzl,The rank of sparse
random matrices over finite fields, Random Structures and algorithms
10 (1997), 407–419.

[2] R. Brent, S. Gao, and A. Lauder,Random Krylov spaces over finite
fields, SIAM J. Dicsrete Math.16 (2003), 276–287.

[3] Colin Cooper,On the distribution of rank of a random matrix over a
finite field, Random Structures and Algorithms17 (2000), 197–212.

[4] , On the rank of random matrices, Random Structures and
Algorithms 16 (2000), no. 2, 209–232.

[5] R.G. Gallager,Low density parity check codes, MIT Press (1963).
[6] V.F. Kolchin, Random graphs, Cambridge University Press (1999).
[7] Michael Luby, LT codes, In The 43rd Annual IEEE Symposium on

Foundations of Computer Science, 2002.
[8] Michael Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel

Speilman, and Volker Stemann,Practical loss-resilient codes, STOC
(1997), 150–159.

[9] Petar Maymounkov,Online codes, 2002, Technical Report TR2002-833,
New York University, October 2002.

[10] Amin Shokrollahi, Raptor codes, 2003, Available at:
http://www.inference.phy.cam.ac.uk/mackay/DFountain.html.

