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Abstract—The design of erasure correcting codes and their symbol and a decoder complexity OX(k3/?), wherek is the
decoding algorithms is now at the point where capacity achieng  number of data symbols. In return for this increased decoder
codes are available with decoding algorithms that have coniex- complexity it is shown that several advantages accruehé) t

ity that is linear in the number of information symbols. One . ' . :
a>s/pect of these codes is that the overhead (number of codedrEIat'onSh'p between the probability of decoding success a

symbols beyond the number of information symbols required ¢ Overhead (the number of extra coded symbols) is quite gecis
achieve decoding completion with high probability) is linar in k. Indeed, the overhead is independent of the block length and
This work considers a new class of random codes which have the can be very low (typically, only a few extra coded symbols).
following advantages: (i) the overhead is constant (in theange (i) it is shown experimentally, that the codes are effexfior

of 5 to 10) (ii) the probability of completing decoding for swch b f dat bols d ’ to | th hundred. (iii
an overhead is essentially one (iii) the codes are effectifer a num .ers of data sy_m 0lS down 10 Iess than one hundre '_("')
number of information symbols as low as a few tens. The price additionally, the parity checks for these codes can be nbthi
for these properties is that the decoding complexity is grear, from a uniform distribution over subsets of the data sympols
on the order of k*/%. However, for the lower values ofk where rather than a more complicated distribution used in [9] and
th.eshe EOdes are Ohf gal;”c“'ﬁr im.ere.‘;‘.t' this Z‘”ease in ‘#‘mex_ity [10]. Thus while the codes have a significantly higher decgdi
might be outweighed by other significant advantages. The paty . .

check matrices of these codes are chosen at random as windalve Comp!eXIty, there may well bef applications where the added
matrices i.e. for each column an initial starting position ¢ a benefits of these codes are of interest. For lower block kgt
window of length w is chosen and the succeeding positions the additional decoding complexity is not very significanda
are chosen at random by zero or one. It can be shown that these windowed codes become more attractive.

it is necessary thatw = O(k'/?) for the probabilistic matrix In the next section we briefly review the properties of

rank properties to behave as a non-windowed random matrix. i he followi . .
The sufficiency of the condition has so far been establishedyb LT, Raptor and Online codes. The following section reviews

extensive simulation, although other arguments strongly spport ~ known rank properties of random binary matrices and intro-
this conclusion. duces the windowed matrices on which the new class of codes

will be based. At this point, the principal property reqgire

for the construction of our codes can only be established as a
The construction and analysis of good (capacity achievinggcessary condition. The sufficiency of the condition isyonl

erasure codes have been intensively investigated over ##gablished through extensive simulation.

past few years following the ground breaking work of Luby, Section V gives the new encoding and decoding algorithm

Shokrollahi, Spielman, Mitzemacher and many others. SugRd relies on the work of section IV to establish their preper
codes can be used very effectively for large downloads ougss.

the Internet in a multicast scenario in the presence of gacke

losses, where there is no feedback channel, or for disinidput Il. PREVIOUS WORK

and reconstructing files in the presence of server crashes,

among other applications. The end result of this work, dueA very limited review of the remarkable recent work on

to Shokrollahi and Maymounkov, is that we know how t@rasure correcting codes is given. While work on low density

construct erasure codes that can be decoded in linear farity check codes originates from the sixties [5], it wag/on

number of data symbols) time with high probability of sussesmore recent work that showed how such codes on the binary

ful decoding. Such results are asymptotic in nature reqgirisymmetric channel with errors (a transmitted binarngceived

a large number of data symbols to achieve the promisad a zero or vice-versa) were capable of achieving the elusiv

performance. Additionally, the number of extra coded sylsbogoal of capacity. However, on the binary erasure channel a

required to ensure a high probability of decoding for blockurther step was taken to actually show how codes that aehiev

lengths in the few thousands, might typically be on the ordeapacity can be constructed [7], [8], [9], [10]. Only this o

of 3 to 4% of the number of data symbols. limited case of coding for erasure channels is of interest.he
One aspect of this work that is considered here, is dMuch of this work was concerned with designing (random)

propose a new class of codes with a decoding algorithendes by constructing a bipartite graph whose incidencexmat

that is Gaussian elimination. The class of codes will have @nthe parity check matrix of a linear code. A requirement of

encoder complexity ofD(log k) block operations per codedthe construction [10] was to design two distributions on the

I. INTRODUCTION



degrees of the left and right vertices of this graph in suchtle left hand side of the bipartite graph) and the combined

way as to achieve capacity for a given decoding process. set of left hand side symbols are coded using a truncated
Subsequent to this, the work of Luby [7], [8] introduced theoliton-like encoder. This latter (outer) code has a meght ri

notion of aratelesscode. Again, this can be thought of in termd&and side degree that is independent kof giving linear

of a bipartite graph where the left vertices are identifiethyi time encoding and decoding. In exchange for this complexity

say, k data or input symbols (which we may take as binameduction, overhead is increased®¢k) extra coded symbols.

symbols for simplicity although the extension to strings dfor convenience, we note Theorem 2 from [9], using our

binary symbols is trivial). The right vertices are thoughas terminology. A similar result is found in [10].

parity checks on the input symbols or as coded symbols. These

are generated as follows: for a given degree distributiothen thaorem 1 (Maymounkov): For any message of skzénput
integersl, 2, .-, k, p(k), the distribution is sampled to givegy mpois, and any parameter> 0, there is a rateless locally
an integerd, 1 < d < k. The corresponding code symbol is;ncodable code (right distribution) that can recover thpun

formed by choosingl input symbols at random and XOR'inggymhols from anyl +¢)k coded symbols with high probability
them. For decoding, if a sufficient number of coded symboj§ ime proportional tok log(1/¢)

are obtained, the process starts by choosing a coded symbol

of degreel i.e. a code symbol corresponding to a right vertex |n the presence of such a powerful result one might wonder
of degreel. The value of the code symbol is transferred to thghy further work on this problem is of interest. One aspect
corresponding input symbol, whose value is then transferrgf the above is that they are essentially asymptotic results
to all coded symbols containing it, and all the correspogdinn practice, with our simulations and others available ia th
edges are removed from the graph. If a new right vertex figferences, a typical overhead for the LT decoding might be
now of degreel, the process continues. as much as5% for a number of input symbols on the order
Clearly the decoding continues until it completes with alhf 4 thousand and this drops to perhapéto 4% for a much
input symbols recovered or there are no right vertices gfgher number of input symbols. The Online or Raptor codes
degreel at some stage, in which case the decoding failsan be constructed to have an overhead%fto 4%, of k for
To minimize the probability of the latter, the distributiongrge.
p(i) is chosen carefully. Initially, it was suggested [7] to use The class of codes presented here will have a decoding com-
the soliton distribution given byp(i) = 1/i(i — 1), i = plexity of O(k3/2) for k input symbols. Although significantly
2,3,---,k, p(1) = 1/k. The theoretical reasoning for thispigher than the previous work, for low the increase is not
distribution is sound, but it turns out in practice that thgg |arge when all the constants in the estimates are taken int
probability, at each stage of the decoding, of having a ¥ertgccount. In return for this increased complexity, one otstai
of degree 1 is too sensitive, giving too high a probabilityodes that are effective for valuesiogs low as 100, are easily
the decoding would not complete. To remedy the situatiogenerated requiring only a uniform distribution, and have a
a robust soliton distribution was suggested that proved MOKg:ry high and quantifiable probability of decoding comlati
robust in practice. These codes are referred to as ratefe®s syith an overhead that is constant, independerit ot is likely

the decoder can continue to gather coded symbols from &R¥re will be applications where such properties are oféste
source, on the same input data, until decoding completes —

there is no fixeda priori rate associated with the code. In I1l. RANDOM MATRICES

conventional coding, it would first be necessary to estimate

the erasure probability to allow proper code design and thisProperties of binary random matrices that are of interest

rateless feature is very useful.. for this work are briefly reviewed here using only a few of
For an original set of: data or input symbols, the numberthe large number of references [1], [2], [3], [4], [6] thatvea

of extra (more thank) coded symbols required to give aconsidered this interesting problem. The following theore

high probability of decoding completion is referred to as thdue to Kolchin [6] but adapted to our terminology, is a

overhead It is shown in [7] that ifJ is the allowable decoding femarkable result and more general than our interests:

failure probability then by using the robust soliton distriion

for the generation of the coded symbols, the overhead redjuimheorem 2 (Kolchin): Letm > 0, be a fixed integer. Let the

to decode isO(vklog?(k/d)) and the average degree oflements of a randoriax (k+m), m >0, matrix M = (m;;)

the right vertices isD = log(k/d)). Since the complexity be independent and suppose there is a positive constant

of decoding is proportional to the number of edges in thsuch that the inequalitied < P[m;; = 1] < 1 —§ hold for

graph, this last result shows the decoding complexity to he=1,... .k, andj =1,...,k + m. Then ask — oo,
O(klog(k/0)). -

To improve the situation further Shokrollahi [10] and inde- Plrank( M) = k — 1— 1 1
pendently Maymounkov [9] introduced the ideapyécoding [rank(2) I = @m H 2t )" (@)

. 1=m-+1
Here one uses a good erasure correcting code to code the

original input symbols resulting in a certain numberaixil- It can also be shown that for < k, the probability that
iary symbols. These are then added to the input symbols (@ndom columns have full rank (fgr = 0.5, but also more



generally) is given by Before stating our main theorem

" we wish to be precise about how 0

<1 _ 14 ) a windowed column is generated. :

e 2k—itl First, a starting row is chosen ran- 0

. . domly and uniformly from among 1

The difference between this result and theorem whea £ e - rows and al is placed in this ”
lies in the asymptotic nature of the former. starting row. Thisl is referred to as : k

Although the theorem is an asymptotic result, we find that gse initial 1. Then, placel’s and0’s w :

long asd is close enough ta/2, and in particular, ip = 1/2 i thew rows immediately following ?

is the probability of al for all matrix elements, thed),, IS  the initial 1. We will either choose
a very good estimate of the probability of full rank feras each row independently with being :
low as 10. In fact, this expression also holds for valuespof the probability of al, or decide on a O

down to about(2log k)/k. Below this, one can modify the fixed column weight ofr and place
above expression fof),, to take into account the likelihood ; _ 1 1's in the w rows. All other
of all zero columns and rows. Such a modification is beyongys simply containd. Note that if
the scope of this document, but it is interesting to note &akne injtial 1 appears withinw rows

result of Cooper [4] indicates that this lower limit is adtya of the bottom of the column, the window will wrap back to

of the form (log(k) + d(k))/k, whered(k) is a function that the top. The following theorem does not depend on which
tends to zero sufficiently slowly &s — oo. strategy is used.

When p = 1/2 the expected number af’'s per column . -
is k/2; however, the same probability of full rank can bd N€orem 3 For sufficiently largek, the probability that & x

achieved forp as low as(2logk)/k, and in this case the k:\;e_mdom windowed binary matrix with window lengih=
expected number of’s per column is only2logk. The OVFk/2has rankk is at most2®(4)Q, where &(z) is the

observation we make here is that one need not distript@mal distribution function and), = 0.288788... as given
these2 log k 1's uniformly throughout the rows of the column. y (2).

Instead, one can confine thed&s to a small number of Proof: Let A be a matrix consisting of independently
consecutive rows, called window In the next section it is generated windowed columns with = 6v/k/2. Without loss

shown that results essentially the same as for random reatrief generality, assume is even. For each column, if the initial

Fig. 1. Column structure
for windowed column.

Using Q,., one can show the expected number of extr@milarly, if the initial 1 falls in the lastk/2 rows, label it a
columns needed to obtain rafkas bottomcolumn.

Let t be a random variable representing the number of
top columns generated, and letrbpresent the number of
bottom columns. Both.&nd bare sampled from the binomial
distribution with the probability of generating each type o
where P, = Qm — Qm-1 is the probability of requiring column being1/2, so the expected number of columns of
exactly m columns beyond: for the matrix to acquire full each type isi/2 and the standard deviation igk /2.
rank. We see that, with On|¥ extra columns (independent of Now, since the top columns can hai/s in at mostk/2+w
k), a random binary matrix has a better th&0% chance of rows, this is also the maximum number of independent top
having full rank. With7 or 8 extra columns, the probability columns A may have. Similarly, the maximum number of
of full rank is very close tol. Since our windowed matricesindependent bottom columns is alsg2+w. Combining these
(with window length at IeasE\/E) have a probability of full two constraints, and noting that+ b = k, gives us
rank that is virtually identical t@),,, these matrices will also
have a high probability of full rank with only a few extra k2—w <t < k/2+w. @)

columns. This very low overhead is a significant advantage ofThe above constraint is satisfied as longtas within &

m=Y mPp=Y (1-Q;)=160669515...
m=0 =0

the erasure code construction we give in section V. standard deviations of the mean Afis sufficiently large, the
binomial distribution may be approximated using the normal
IV. RANK PROPERTIES OF WINDOWED MATRICES distribution and2®(s) is the probability thatt is within 4

We now describe the construction of windowed matrice§andard deviations of the mean. =
and give an upper bound on the probability of full rank. The Finally, we assume that if (2) is satisfied’s probability of
proof of our main theorem establishes a minimum windof2ving rankk is no greater than that of a random mati.
length of /% to achieve a reasonably high probability of fullherefore, the probability of full rank is at mo2®(5)Qo. =
rank, while the results of our simulations show tRatk is For § = 2, 28(8) is roughly0.95. The above theorem tells
sufficient. In future work we intend to show how one mighis that the probability of full rank for a matrix with window
calculate the exact probability of full rank as a function ofengthw = §v/k/2 = v/ will be at most0.95Q,. Actually,
window length. our experiments show that the probability is significanégs



than this bound. Despite this, we see from extensive simoulat window size isw and the number of balls in anyconsecutive
that with only a factor of increase in the window length, tocells, viewing the cells as arranged in a circle, exceeds,
2v/k, the bound can be achieved. the matrix cannot have full rank.

Figure 2 demonstrates this effectiveness. The open squares
and triangles show the results for window sizeg ¢f, 1.5vk _ _ _
andv/k. Clearly,w = 2v/k is necessary for good results. In the 1hese windowed matrices can be used as the basis for an
k = 2,500 graph, the solid triangles show that far= 2v/%, efﬁue_ntly encodable and decodable erasure code. The cede w
a densely packed window having mean column weightis describe here has an encoder complexity of abdmgk blocg
unnecessary. Thiew weightdata series was generated usingums per output block and a decoder complexityl 8>/

p = (logk)/v/k for a mean column weight df log k. lock sums. This complexity is achieved while keeping the

While our theorem gives a necessary condition for a wirt erhead constant at approximatélgxtra blocks.

dowed matrix to have a high probability of full rank, inA. Encoding

future work we hope to prove that a window size 1k is The encoder hak data symbols (input blocks) that need to

sufficient. Thus far we have successfully reduced the pmbl%e transmitted to the decoder. To create an output block, the

of computing the probability of full rank as a function Ofencoderfirst generates a windowed column as described in the

\t/r\:mdqw ‘:ZE f|o a Ze" ﬁccupﬁncytﬁroble”m. One. con§|de£ evious section. We suggest the encoder generate fixethtveig
rowing & balls In & Cells, where the Cells are VIEWEE a%.41ymns witho = [21og k],,,. This notation is used to refer

the starting row of a column and the balls as columns. If tk{g the lowest odd integer greater than or equal kgs . Note

that £ columns each having even weight cannot have rank
and thereforeg must be odd or the decoder will always fail.

V. ERASURE CODE CONSTRUCTION

! ' o R x Along with generating a windowed column, the encoder
o e sums (using bitwise exclusive or) the input blocks corre-
08 |- iy ¢ oo sponding to the’s in the column. The column (or some effi-
e . ° cient encoding of it) along with the sum are then transmitted
06t o - to the decoder.
Je . theory Although settingw = 2/ will work reasonably well, we
ol random 2 i sgggest one instead set=2(vk — 1)(c —1)/(o — 2). This
" wels o slightly larger value ensures that the expected numbervws ro
o between the first and last(inclusive) in each column igv/k.
0.2 i
. v 7 B. Decoding
0 - L ' The decoding algorithm is simplfsaussian Elimination
100 102 104 106 108 110 . . . .
Number of Columns (km) however, to ensure our discussion of decoder complexity is
1 . . —F—7 T T precise, we describe a specific decoding algorithm. Degpdin

£ has two phases:

08 | g o 9 8 h 1) Column collection. During column collection, matrix

>3

4 columns, along with their associated data blocks, are
06 | S | inserted into a hash table and reduced as necessary to
& e ensure they are independent.
S w:;o%’ a 2) Back filling. At the conclusion of column collection,
0.4 low weight 4 E . . .y
w=75 © we have a lower triangular matrix with's along the
w=50 v . . . . . . .
diagonal. This matrix is non-singular. With a series
02T e e v 7] of data block sums, the matrix is made diagonal and
A decoding is complete.
0 1 1 1 1 . . .
500 2500 504 2506 508 2510 The hash table constructed during the first phase is to haye
Number of Columns (k+m) exactly £ bins and each column received hashes to the bin

. B _ whose index is the index of the first row containing .aFor
Fig. 2. Probability of rankk for a k x (k 4 m) matrix. The Upper he purposes of this algorithm, columns are not considered

graph shows the results fér= 100, while the lower is fork = 2500. e
In both graphs, the broken line @,,, the open circles show resultsto wrap from bottom to top, and as a result, the firsh a

from random f = 1/2) matrices, and the other symbols show result§0lumn may not coincide with the initial 1. When this table
for windowed matrices. For clarity, no open circles are shawthe is full, the &£ columns comprise a lower triangular matrix with
lower graph. Instead, thew weightclosed triangles are the results1’s along the diagonal.

for a window size ofw = 100 but with the mean column weight Hash collisions will occasionally happen during column

fix t 2log k. All dat ints are the results of testing at least . J. .
5 ggoamatr?geks data points are the results of testing & €% ollection. To resolve such a collision, simply add the two

columns (and their associated data blocks) together to get a



column that hashes to a different bin. A subtle but importamost (k. [ |
detail of this algorithm is the choice of columns to keeprafte The average case complexity #%/2. This follows from
collision resolution. Obviously, the sum is to be kept. Thigeo the fact that when columns of length andy, = < y, are
column to keep is theshorter of the two colliding columns. added, the expected length of the resulting columg is 2.
Here, the length of a column is the number of rows betwe&urthermore, the expected weight of the matrix after column
the first1l and the lastl (inclusive). If the two columns are of collection is half the total length.
equal length, either one may be kept. Two identical columnsTo see how the complexity may be calculated fremfirst
indicate a dependency; one is simply discarded and an extidice that for columns that do not wrap< w + 1; however,
column must be collected. for columns that do wrap/ may be as large a. Since
When the hash table is full, back filling can begin. Backhe probability of generating a column that wrapsuigk,
filling is done starting at the last row and working up througmean column length can be calculatedéas (w/k)k + (1 —
the matrix. First, the data block associated with then the w/k)(w + 1) ~ 2w. When usingw ~ 2vk as suggested,
diagonal is added to all of the data blocks associated With expected decoder complexity igk ~ 2k3/2.
in the last row. Then, the second to last row is processed inFigure 3 shows that fok between 100 and 10,000 we
a similar manner. At the completion of back filling, the datachieve a decoder complexity af3k3/2 while maintaining
blocks will be the original input blocks. an overhead of abotextra blocks. For an idea of real world

Theorem 4 Worst case decoder complexity i data block performance we performed two tests involying a 32 MiByte
additions, wherd is the mean column length. Column length{'€ ©n an AMD Athlon XP 1800+. Decoding 8192 blocks

¢, as mentioned earlier in this section, is the number of rov& kiB.each) requires about 10 seconds of CPU tir_ne, while
between the first and the lastl, inclusive. ecoding 65536 blocks (512 bytes each) takes 2 minutes.

Proof: During the column collection phase, one data Finally, we note that allowing columns to wrap from bottom
block addition is required each time there is a hash tagfp (P Increases decoder complexﬂy byafac'toﬁ..df\/e have
collision. If two columns, one of lengtlk and the other of qleveloped a st.rate.gy to' avoid suc.h. wrapping; however, we
lengthy, < y, collide, their sum will be a column whosefmd that to maintain a high probability of_ full ranky must
length is no greater thap — 1. Since/k is the sum of the be as Iarge adv/k _fo_r some cqlumns. This negates most of
length’s of the columns and each collision reduces thisl tol?e bgbneﬂrt] of avoiding wrapping, and therefore, we do not
length by at least, there can be at mogt collisions. escribe the strategy here.

During the back filling phase, the number of data block VI. CONCLUSIONS

additions needed is exactly the weight of the matrix (after An efficiently encodable and decodable class of erasure

column collection) lesg. Also, the weight of the matrix is no correcting codes, with decoding complexiyx3/2), based on
greate_r than the total length, and the total length afteuroal the rank properties of windowed binary random matrices, has
collection no greater than the total length before colu en formulated. They have the advantages, over otheeslass
collection less the number of collisions. Therefore, then SUof erasure correcting codes, of a low and fixed overhead and
of the weight Qf, the matrix after golumn collection gnd th‘Jeffectiveness at much lower block lengths. The necessity of
number of collisions resolved during column collection is 3he rank properties required for the windowed matrices are
established here, and while simulation and intuitive arguts
show the conditions needed are clearly sufficient, it is kope
to establish these properties analytically in future work.
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