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1 Introduction

The discrete logarithm is the inverse of discrete exponentiation in a finite
cyclic group. Given a cyclic group G with group operation x and a generator
g, exponentiation in G is defined by

z terms
GCF=gxgx--Xg.

Suppose y = g%, then the discrete logarithm of y is z and is written as

log,y = =.

Actually, the discrete logarithm of y is not unique as it can only be found
modulo the order of g in G. If g is a generator as specified above, then the
logarithm is found modulo the order of the group. If n = |g|, then

log,y =z (mod n).



Discrete exponentiation within a group can be performed quickly, doing
only O (logx) group operations, by using the method of fast exponentiation;
however, discrete logarithms appear to be much harder to compute. All
methods for computing discrete logarithms designed to work in all cyclic
groups require exponential time, with the fastest requiring O (y/n) time. It
has been proven in [17] that if the group operation and the calculation of
inverses are the only computations that can be performed on group elements,
then the so called “square root methods” are the best that can be expected.
However, if more structure in known about the group, then it may be possible
to do better. In particular, if a concept of smoothness and smooth elements
exists for the group in question, then sub-exponential methods for computing
discrete logarithms in that group can be used. The most notable of these
groups is the multiplicitive group of units in a finite field. The most notable
of the groups for which a concept of smoothness is not known to exist is the
additive group of points on an eliptic curve.

The purpose of this paper is to discuss the various methods for computing
discrete logarithms. Both the square root methods and the subexponential
methods based on the index calculus approach and including the number
field sieve will be described and analyzed. The discrete logarithm problem is
important because of its wide spread use in the field of cryptography. The
first such use of discrete logarithms in cryptography and perhaps the most
common use today is the Diffie-Hellman key exchange protocol.

The problem of computing discrete logarithms was just a mathematical
curiosity until, in 1976, Diffie and Hellman discribed a method of exchanging
cryptographic keys [5] which relies on the hardness of the discrete logarithm
problem for its security. The key exchange between two parties, A and B,
works as follows:

1. A and B agree on group G and generator g. These choices can be
public.

2. A chooses an exponent a at random, computes g%, and sends this value
to B. The exponent a must be kept private.

3. B chooses an exponent b at random, computes ¢°, and sends this value

to A. The exponent b must be kept private. B then computes, using

the value g received from A, Kj = (¢%)°.

4. When A receives g° from B, A computes K, = (¢°)°.
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If all goes well, it should be the case that K, = K, and that this key is
only known by A and B. These two parties can now use this private key to
communicate using some cryptographically secure communication protocol.

During this key exchange protocol, the values ¢® and g° are publically vis-
ible. The Diffie-Hellman conjecture states that it is computationally difficult
to compute g% from the known values ¢* and ¢°. Clearly, if discrete loga-
rithms were easy to compute, then one could simply compute b = logg(g”)
and then compute g% = (¢%)°. It is not known if there is an easy way to
compute ¢?° from knowledge of ¢% and ¢° without computing the discrete
logarithms a and b.

Since Diffie and Hellman’s novel new key exchange protocol was intro-
duced, many new key exchange, public key encryption, and digital signature
protocols have been introduced which reply on the hardness of the discrete
logarithm problem for their security. Also, since an easy way to compute
discrete logarithms would immediately lead to an easy way to factor large
integers, all of the public key cryptography that depends on the hardness
of factoring integers for their security (for example, the RSA public key en-
cryption algorithm) also depend on the hardness of the discrete logarithm
problem.

The remainder of this paper is organized as follows. First the square root
methods for computing discrete logarithms are outlined. Then the original
index calculus idea is described. This method can be extended to arbitrary
groups possessing a smoothness property. Various methods for solving large
sparse linear systems are outlined as they are needed by all of the subexpo-
nential methods for computing discrete logarithms (and those for factoring
integers too). Then, a detailed analysis of the complexity of the index cal-
culus method is presented. The number field sieve extention to the index
calculus method is described next and an analysis of its complexity is also
presented. Finally, a description of the implementation of these various al-
gorithms along and some empirical results are given. The paper concludes
by noting some possible directions for future research.

2 Square-Root Attacks

There exists several alogorithms for computing discrete logarithms in an
arbitrary cyclic group that run in exponential time. The best of these requires
O (1 /ng) group operations, where n, is the order of the base of the logarithm,
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g, in the group. Note that if g generates G, n, = n, the order of the group.

The most naive method one can use to solve the discrete logarithm prob-
lem is to start with the exponent zero and try each successive positive ex-
ponent until the correct one is found. This method will require (on average)
ng/2 group operations; however, it may be useful when n, is very small
(say, less than 100). This situation is most likely to occur when using the
Pohlig-Hellman reduction.

In 1978, Pohlig and Hellman [12] observed that if the order of the group is
known, along with its complete factorization, and if all of the prime factors of
the group order are relatively small, then discrete logarithms can be quickly
computed.

More generally, they observed that to compute a discrete logarithm, it
suffices to compute the discrete logarithm modulo each of the prime powers
dividing the group order, and then to combine these results using the Chinese
Remainder theorem to find the discrete logarithm being sought.

Their method makes use the property of the generator, g, that says that
if p¥ is a prime power dividing the order of the group, n, then the order of the
group element g"/pk is p*. Furthermore, if y is an arbitrary group element,
then y”/plc has order at most p*. As long as p is small enough, the discrete
logarithm

n/pk
108 1/t (Y /7°Y " (mod p*)

can be quickly computed. If the prime, p, is very small, then the naive
method described above can be used to find the discrete logarithm. If the
the prime is not quite small enough to use the naive method, one of the square
root methods described below can be used. Note also that large £ is not a
concern. The discrete logarithm modulo p* is found using k£ applications of
the algorithm used find the logarithm modulo p (see [12] for details). Using
this approach, the discrete logarithm, log, y mod n, can be computed in time
O (k\/f)) where p is the largest prime dividing n and £ is it multiplicity.

Because of this Pohlig-Hellman reduction, groups that are to be used for
cryptographic purposes are chosen such that either their order is difficult to
compute and is likely to have at least one large prime factor, or the order of
the group is known to have at least one large prime factor. In the case where
the multiplicitive group of a finite field is used, the group is typically chosen
such that either the order of the group is a prime (in the case of Fi, k > 1),
or the order is twice a prime (in the case of IF)).
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2.1 Shanks’ Baby-Step-Giant-Step

In 1973, Shanks [16] described an algorithm for computing discrete loga-
rithms that runs in time O (y/n) and requires space O (y/n). This deter-
ministic algorithm requires the construction of two arrays of group elements.
The first (giant-steps) is described by

S={(,¢Vy|i=0,...,[Vn]}

and the second (baby-steps) by

T={(yxg)j=0,...,[vnl},

where y is the group element who’s discrete logarithm is sought. To compute
the discrete logarithm, find a group element that appears in both lists. The
logarithm is then

log,y =i[v/n] —j (mod n).

To use this method in practice, one would typically only store the giant-
steps array in some sort of hash table, and then lookup each successive group
element from the baby-steps array until a match is found. Because of the
enormous space required by this algorithm, it is rarely used in practice. In-
stead, when an exponential algorithm must be used, most people use the
Pollard Rho method described below as it has the same time complexity as
Shanks’ method but requires negligable space.

2.2 Pollard Rho Method

Pollard’s Rho method [13] for computing discrete logarithms was first intro-
duced in 1978. This method makes use of the so-called “birthday problem”
from statistics. The birthday problem asks how many people need to be
assembled together to have a 50% chance that two of them share the same
birthday. If the people are chosen at random from a uniform distribution,
the answer is 23, which is approximately v/366. More generally, anytime
elements are selected at random from a set, say of size n, one only needs to
select O (y/n) of them to have a 50% chance of selecting the same element
twice.

The Pollard Rho method works by first defining a pseudo-random se-
quence of elements from a group, and then looking for a cycle to appear in
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the sequence. Since the sequence is defined deterministically and each suc-
cessive element is a function of only the previous element, once a single group
element appears a second time, every element of the sequence after that will
be a repeat of elements earlier in the sequence. The birthday problem dic-
tates that a cycle should appear after O (y/n) elements of the sequence have
been computed.
For the standard Pollard Rho algorithm, a sequence of group elements is
defined by
y X a; for a; € Sy
Qip1 = a? for a; € Sy
g X a; fora; € S3
where S7, S2, and S3 are an arbitrary partition of the group into roughly
equal sized sets (not subgroups). Observing a group element repeat in this
sequence will lead to the discrete logarithm of y with a very high probability.
Furthermore, it is not necessary to store and search this sequence to find
a repeated group element. Instead, one simply computes elements of the
sequences a; and ag; until it is found that a; = ao;.
Improvements to this method can be made by optimizing the choice of
iterator function, the size of the sets S;, or changing the cycle detection
criteria. For a discussion of these optimizations, see [18].

2.3 Lambda (Kangaroo) Method

Pollard, in the same paper where he introduced his rho method [13], also in-
troduced a lambda method. The lambda method is useful when the unknown
logarithm is known to lie within a relatively small interval. This method is
also referred to as a kangaroo method since it can be visualized as following
the paths of two kangaroos, one tame and one wild.

The method works by first defining a hash function H : G — Z such that
the group is divided into subsets Si,.55,...,5,, where each subset is given
by

S; =191 H(g) =j}-
Then, a distance and a corresponding jump is associated with each of these
subsets. Let di,ds,...,d, be the distances and eq,e,,...,e, be the jumps.
The jumps are defined by e; = g%. Finally, the path of a “kangaroo” is given
as a sequence defined by

Ci+1 = G X €H(c;)-
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The lambda method makes use of two such sequences. One, the path of
the tame kangaroo, starts off at a known position. If the unknown logarithm
is thought to lie in the interval [a,b], then this tame kangaroo should be
started at a some distance within this interval, say the group element ¢, =
gaTer. The tame kangaroo follows a path defined by #;11 = #; X eg(,) and this
path can be tracked by keeping a tally of the distances, d;, that the kangaroo
has jumped.

On the other hand, the wild kangaroo starts off at the group element
who’s logarithm is sought; namely wy = y. The kangaroo then follows the
path defined by w;;; = w; X eg(w,). Although the starting position of the
kangaroo is not known, the total distance it travels can be tracked by keeping
a tally of the distances, d;, just as with the tame kangaroo.

To find the unknown logarithm, one simply needs to observe a crossing of
the kangaroos’ paths. If the tame kangaroo started at the position “T“’ and
travelled a distance of d; to get to the point where their paths crossed, and
the wild kangaroo started at the position x and travelled a distance of d,, to
get to the crossing, then the logarithm x =log,y = “T’Lb + dy — doy.

Detecting a crossing of the kangaroos’ paths is made easy by the fact that
once their paths intersect, the kangaroos will forever follow the same path.
It is, therefore, not necessary to observe the moment when their paths first
intersect. Instead, any observation of a common group element is sufficient
and there are guaranteed to be many such group elements once the paths
have intersected. One method that can be used to detect group elements
common to each path is to store the group elements and their associated
distances for each power of two in either a sorted array or a hash table. The
stored group elements are tq, %9, t4,tg,... and wy, wy, Wy, wg, . ... After each
update to the kangaroos’ sequences, their positions are compared against the
opposite array to find a match. As soon as a match as found, the logarithm
can be computed.

The lambda method can find logarithms in an average case running time
of O (v/b — a) and requires space O (log(b — a)logn), where n is the order of
the group. Several important details have been omitted here (such as how
to choose the distances, d;). These details can either be found in Pollard’s
original paper, or, for more recent work, a paper by Teske [19].

The Teske paper just mentioned also has a nice description of how the
rho and lambda methods were named. To summarize here, their names were
chosen because of the shape of the greek letters, p and A, respectively. The
rho method involves a sequence of group elements that evenually enter a
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cycle. This sequence will have an initial segment of elements that do not
repeat; followed by a sequence that does. The sequence can be described
pictorially by a curve in the shape of p. In the lambda method, there are
two sequences of group elements defined with a goal of eventually seeing
these two sequences have an element in common. The sequences are defined
such that once they have an element in common, all subsequent elements
in each sequence will be common to both. Pictorially, the two sequences
eventually meeting, and then following the same path, is represented by the
shape of A\. This etymology was complicated, however, by the introduction of
a parallelized rho method, in which several sequences, each following a path
depicted by p, are defined with the hope of two of these paths intesecting to
form a path that looks like A\. This complication has lead to the parallelized
rho method sometimes being called a lambda method.

3 The Index Calculus Method

Discrete logarithms can be computed in sub-exponential time if there is more
structure to the group beyond just the set of elements and the group oper-
ation. Specifically, if certain group elements can be labeled as smooth and
factored into a product of group elements from some relatively small fac-
tor base, then techniques from linear algebra can be employed to help solve
the discrete logarithm problem. Although these sub-exponential time algo-
rithms were first discovered before 1986 (Pollard mentions the posibility of
sub-exponential time algorithms in his 1978 paper [13]), for this work the
methods of Coppersmith, et. al. [3] were implemented.

There are two well known properties of all logarithms that are exploited
by the index calculus method:

log,(a x b) = log,a+log,b and
log,(a®) = e-log,a.
These equivalences are used to express the logarithm of a smooth group
element as a linear combination of the logarithms of its factors. For example,
suppose it is known that log, 7 = u (perhaps r = g* was assigned explicit)

and that the factorization of r is known, say r = p;®* X --- X pi®, then the
linear relation

u =log,(r) = e -log,p1 + - -~ + e - log, px
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can be written. From linear algebra it is known that with enough relations
like this one, the linear system of equations can be solved for the unknown
logarithms log, p;.

The index calculus method for computing discrete logarithms consists of
three phases. The first phase is to find linear relations relating the logarithms
of the primes in the factor base. The second phase is to solve for these
logarithms using techniques from linear algebra. The final phase is to find the
individual logarithm that is being sought by making use of the logarithms of
the primes in the factor base. Before describing these three phases in greater
detail, the concepts of smoothness, a factor base, and testing integers for
smoothness will be explained.

3.1 Smooth Integers, Factor Bases, and Sieving

A concept of smoothness is easily defined in the ring of integers. Since the
integers form a unique factorization domain, all non-zero integers r can be
uniquely factored (except for order) into a product of primes. Suppose

e e
r=ptepg

and then, if each of the p; with a non-zero e; are less than some smoothness
bound, say B, the integer, r, is said to be B-smooth.

To make use of this smoothness property when calculating discrete loga-
rithms, a factor base needs to be defined. Assuming that the group elements
can be ordered based on some definition of size (or norm), the factor base is
simply the set of all group elements (factors) that are less than the smooth-
ness bound. For the integers, the factor base consists of the all prime numbers
less than B, and they can be quickly found using the sieve of Eratosthenes.

Once a smoothness bound, B, has been chosen and a factor base has been
created, it will be necessary to be able to efficiently test a large number of
integers for smoothness. There are several methods available for doing these
tests.

3.1.1 Trial Division

Trial division is a very simple method for testing a single integer for smooth-
ness to a bound B. Simply attempt to divide the integer by each of the
factors in the factor base, one at a time, and in each case where a divisor
is found, keep the quotient. If a quotient of 1 is eventually found, then the
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number is smooth and the exponents of the factorization are known. This
method has complexity O (7(B)), where w(B) is the number of primes less
than B. Trial division is too slow to be useful as a smoothness test for the
index calculus method; however, it is a good method for determining the fac-
torization of an integer that has been determined to be smooth by the sieve
method described below. It should be noticed that when factoring an inte-
ger that is known to be smooth, the trial division method always terminates
early and is therefore reasonably efficient.

3.1.2 Pollard Rho Factoring Method

The Pollard rho factoring method can determine whether a single integer is
smooth and find its complete factorization in time O (\/E) This method

works in a manner similar to the Pollard rho method for computing discrete
logarithms described earlier in this paper. The idea is to define a sequence
of integers

aiy1 =a?+1 (mod n),

where n is the composite to be factored. This sequence is assumed to be
pseudo-random and because of the “birthday problem” from statistics it is
expected to repeat after O (1/n) elements have been computed. Furthermore,
the sequence a; mod ¢, for some (unknown) prime factor, ¢, of n, is expected
to repeat after only O (,/q) elements have been computed. This implies that
a non-trivial factor of n can be found in time O (\/ﬁ), where ¢ is the smallest
prime factor of n.

As a smoothness test, the rho method only needs to be run for time
@) (\/E) before giving up and assuming that the integer is not smooth. Al-

though the rho method is asymptotically factor than the trial division method
as a smoothness test, in practice it is found to be slower for small B. As
a method for finding the factorization of an integer that is known to be
smooth, the rho method does not appear to offer any advantage over trial
division. Despite this, it can be useful as a smoothness test in the “finding an
individual logarithm” phase of the index calculus method; although, ECM
(described next) is faster.
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3.1.3 Elliptic Curve Method

The elliptic curve method (ECM) for factoring integers is expected to find a
non-trivial factor near B in time

0 (e\/(2+0(1)) log Bloglog B (] p)2> ’

where p is an upper bound on the integer being factored. A description of
this factoring method is beyond the scope of this paper and can be found in
the paper by Lenstra where the method was first was introduced [10].

As a smoothness test for individual integers, the ECM method is the
fastest known and is therefore useful during the “finding an individual loga-
rithm” phase of the index calculus method; however, when a large number of
integers (say, the image of a polynomial) need to be tested for smoothness,
a sieve method is far more efficient.

3.1.4 Polynomial Sieve

A sieve is a method of testing a large number of integers for smoothness very
efficiently. The most famous sieve is the sieve of Eratosthenes, mentioned
above, which is useful for finding the primes in an interval of integers. The
sieve that will be described here is capable of testing the set of values assumed
by polynomial (the image of the polynomial) with arguments chosen from a
particular domain (an interval). For the index calculus algorithm, it is only
necessary to test integers that are the image of single variable degree one
polynomials. When the number field sieve is discussed in a later section,
it will be necessary there to sieve the image of a two variable homogeneous
polynomial. In this section, an algorithm for sieving the image of a single
variable polynomial of arbitrary degree will be discussed.

Let f(X)=an-X"4+...a1- X + ao and suppose that the values assumed
by this polynomial are to be tested for all x in the domain ¢ < x < d. The
key observation to be made here is that if f(b), for some b, is divisible by
some prime, say p, then f(b+p) is also divisible by p. To find all b such that
f(b) is divisible by a particular p, f(X) can be factored in the field F,[X] to
find its zeros. There will be at most n such zeros, and from each, all z in the
domain such that f(z) is divisible by p can be found.

To determine which of the values assumed by the polynomial are smooth,
it is necessary to keep track of which primes divide each image. One efficient
way to do this is to tally up the logarithms of each of the primes dividing the
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image. In addition to finding the primes dividing an image, divisibility by
each of the powers of the primes dividing the image also needs to be checked.
In pseudo-code, the algorithm is:
for allc <z <ddo
lz] <0
end for
for all p € factor base do
// reduce the coefficients of f(x) modulo p and factor
£(X)  F(X) mod p
zp {2 ]0< 2z <pand zis a zero of f,(X)}
if f, = 0 mod p then
// f(X) is divisible by p
for allc <z <ddo
l[z] < l[z] + logp
end for
else
for all z € 2z, do
Z, < least non-negative residue of —c + z mod p
T c+tumy
while © < d do
l[z] « l[z] + logp
T—T+p
end while
end for
end if
for all z, € 2, do
// check higher powers of p
// this is a recursive algorithm, of which, only one step is described
// suppose f(zy) is divisible by p¢~! fore > 1
Foe (W) = f(z0+ Wp*)/p 1 (mod p)
wWpe — {w | 0 < w < p and w is a zero of fpe(W)}
Zpe — {2 ]0<z<pand z =z +wp® ' (mod p) for w € wye}
for all z € 2z, do
Z, < least non-negative residue of —c + z mod p
T ctumy
while x < d do
// note that lower powers of p have already been added
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l[x] < l[z] + logp
x4 T+ p°
end while
recurse: check for divisibility by p¢**
end for
end for
end for
for all c< zx < ddo
if [[z] ~ log f(x) then
output: f(z) is smooth
end if
end for

The logarithms of the primes in the factor base are used because addition
is generally faster than multiplication or division. Also, instead of using
floating point approximations of these logarithms, fixed point approximations
of the logarithms can be used to make the algorithm more efficient. The
maximum value of the image of f(X) can be found by finding the extrema
of f(X), of which there are at most n + 1, so the base of the logarithm can
be chosen such that the logarithms make maximum use of a 32-bit or 64-bit
integer, as desired for the particular implementation. Since approximations
are being used, the algorithm isn’t guaranteed to output all the smooth
images and only the smooth images; however, if the logarithms of the primes
in the factor base, log p, are all rounded up, and the logarithms of the image
of f(X) are all rounded down (and the test for smoothness is {[z] > log f(z)),
the algorithm is guaranteed not to miss any smooth images (but some non-
smooth images may be erroneously output). Non-smooth images that are
output should be very rare and will be discovered when the exponents of
their factorizations are found using the trial division method (or some other
factoring method), so they need not be a concern.

Finally, if it is found that computing the logarithms of the image of
f(X) is taking too much time, one can avoid many of these calculations by
partitioning the domain at the extrema and working within each partition
from the lowest value of the image to the largest. Suppose that f(cy) and
f(c1) are two extrema, and that ¢y < ¢; and f(cp) < f(c1), then log f(z —
1) can be used as a lower bound for log f(x). If l[z] fails to exceed this
lower bound, then f(z) is not smooth and log f(x — 1) can be used as a
lower bound for log f(z + 1). If I[z] does exceed the lower bound, then the
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real logarithm, log f(z), will need to be computed and can be used as a
lower bound for log f(z + 1). Each approximation can be used several times
as the array elements are checked from smallest image to largest, and the
approximation only needs to be updated each time a logarithm is found to
exceed the approximation. In practice, this use of approximations has a
significant effect on the performance of the code.

Schirokauer, in [14], gives the time complexity of this sieve as

7(B)(n +log B)°Y + 0 ((d — ¢)loglog B).

3.2 Random Relations

The index calculus method relies on being able to find linear relations involv-
ing the (unknown) logarithms of the primes in the factor base. For instance,
when computing discrete logarithms in the field of integers modulo some
prime, say p, relations of the form

u=e -log,p1 +---+e-log,pr (modp—1),

where py, ..., p are the primes in the factor base, might be used. The easiest
way to find such relations is to choose an integer u at random satisfying
1 < u < p—1, compute the least non-negative residue r = g* mod p, and
then test r for smoothness. If r factors as

61.

e
r=p Pk ka

then a linear relation involving the logarithms of the elements in the factor
base has been found. Unfortunately, this method is a little bit too simplistic
and does not yield an efficient algorithm. The problem here is that the
smoothness test is too costly for two reasons: r is O (p) and a sieve cannot
be easily employed.

A more efficient way to find random relations is to set H = |—\/1_9-|, and
then for ¢; and co, small and non-negative, compute the least non-negative
residue of (H + ¢1)(H + ¢2). If H> = p+ J, where J is O (\/p), then

(H + Cl)(H + CQ) = H2 + (01 + CQ)H + c1Co
= p+J+(cl+02)H+clcg
= J+(c1 +c)H+cico (mod p).
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This residue is O (\/f)) and for fixed ¢;, many values of ¢y can be tested for
smoothness using the polynomial sieve described above. If, for a given ¢;
and ¢y, the residue is smooth, it can be factored as

(H+c))(H+c) =p® - -p®™  (mod p),
and the linear relation
log,(H + ¢1) + log,(H + co) = e1 - log,p1 + -+ - + e - log, px

will have been found.

3.3 The Three Phases

The index calculus method for computing discrete logarithms has three phases.
The first two phases are a precomputation (or initialization) stage that does
not depend on any particular logarithm that is to be computed. Once these
first two phases are complete for a particular group and generator, many dis-
crete logarithms can be quickly computed (relative to the precomputation).
This happens in the last phase: computation of an individual logarithm.

The first phase of the algorithm is to find many random relations as
described above. The second phase is to consider these random relations as
a linear system and solve the system using linear algebra techniques. The
final phase involves finding random relations in a manner similar to the first,
except that only one relation needs to be found for each individual logarithm
to compute.

The precomputation stage consumes the vast majority of the time and
space required to compute a logarithm, and once it is complete, the loga-
rithms of a large number of group elements can be efficiently computed.

3.3.1 Precomputation

The purpose of the precomputation stage (the first two phases) is to find the
logarithms of all of the primes in the factor base. To simplify this description
of the algorithm, assume that discrete logarithms in the field of integers
modulo some prime, say p, are to be computed. The following steps are
required:

1. choose a smoothness bound, B, and find all of the primes less than B
(the factor base);
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2. for each ¢; > 0, use the polynomial sieve to sieve f(cz) = (¢1 + H)eo +
(c1H + J) over the domain ¢y > ¢5;

3. using the pairs ¢; and ¢y which yield smooth residues, create a linear
system for the unknown logarithms;

4. when enough relations have been found to allow a solution to the linear
system to be found (that is, more relations than unknowns) the solution
to the linear system will yield the logarithms of the primes in the factor
base.

It is important to notice here that the linear system that needs to be
solved does not only have the logarithms of the primes in the factor base
as unknowns. The logarithms of the H + ¢; and H + ¢ factors are also
unknowns in the linear system. As more random relations are found, the
number of unknowns increases, and thus the number of relations required
also increases. Luckily, for each value of ¢;, many values of ¢y are found which
lead to a relation, and thus, in practice, the number of relations increases
faster than the number of unknowns. Provided that the length of the sieve
used when sieving over ¢y is chosen appropriately, at most four times as
many relations as there are primes in the factor base are required to solve
the system (tested for moduli up to 10%°). The length of the sieve is a tuning
parameter that is known to lie on a particular curve and will be discussed
later.

Another important tuning parameter is the size of the factor base. In
practice, B is chosen such that each of these first two phases (finding the
relations and solving the linear system) take roughly the same amount of
time. The exact choice of B is implementation dependent as these two phases
are quite different problems from a computational point of view. Finding
the necessary relations is trivially parallizable and requires a relatively small
amount of storage. This stage can be completed easily using a large number
of personal computers attached to a local area network or the Internet. On
the other hand, solving the linear system that is created is much more difficult
to parallelize and typically requires a single fast machine or a tight cluster
of machines with enough memory to hold the entire linear system. Despite
these implementation issues, the optimal choice of B is also known to lie on a
particular curve and will be discussed later in the section on the complexity
of the index calculus method.
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3.3.2 Computation of an Individual Logarithm

Once the logarithms of all of the primes in the factor base are known, the
computation of an arbitrary logarithm is relatively easy. Note that loga-
rithms with a base that differs from g can also be computed with almost as
much ease using the standard change of base formula

log, a

log, a = (mod p —1).

log,

To compute an individual discrete logarithm, say log, y, first choose an
upper smoothness bound (larger than B), say U, and then random exponents,
say w, until one is found such that y - ¢* mod p is U-smooth. For this step,
it is not feasible to use a sieve to detect U-smooth residues, so either the
Pollard rho factoring method or the elliptic curve factoring method needs
to be used instead. Both of these methods is sufficiently fast for this step.
The optimal choice of U will be discussed later, but for now, suffice it to say,
U </

Once a suitable w has been found, the problem becomes one of finding
the discrete logarithms of several “medium-sized” primes (that is, primes no
larger than U). For the primes that are less than B, their discrete logarithms
are known from the precomputation stage. To find the discrete logarithm of
a medium-sized prime, say m, the following steps are required:

1. starting at u = [\/ﬁ/mw and checking increasing values of u, find a
u that is B-smooth; the discrete logarithm of u is known from its
factorization;

2. then, starting at v = H = [\/;Tﬂ and checking increasing values of v,
find a B-smooth residue n = uvm mod p; the logarithm of n is known
from its factorization and the logarithm of v is also known from the
precomputation;

3. clearly, log, m = log,n — log, u —log,v (mod p —1).

Note that appropriate v and v can both be found using the polynomial sieve
method.

This discrete logarithm algorithm illustrates the fact that no discrete
logarithm is significantly easier or harder to compute than any other. If a
particular logarithm, say log,y, were relatively hard to compute, all that
would have to be done to make it easier is to choose integers w at random
until one is found such that the logarithm log,(y - g*) is easy to compute.
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4 Matrix Reduction Techniques

All of the current low complexity methods for factoring and the solving of
discrete logarithms require solutions to large sparse linear systems of equa-
tions to be found. These linear systems can be as large as 100,000 equations
with 100,000 variables (or larger); however, they tend to be very sparse,
which makes finding solutions to them considerably easier. At the time the
quadratic sieve was first conceived for factoring integers, the only known
method for doing the linear algebra was the gaussian elimination method.
This method requires O (n?®) time and O (n?) space to find a solution and
was considered to be the bottleneck for factoring. Now, however, there are
several methods known for solving large sparse systems, all of which are
considerably faster than gaussian elimination (O (n?) time) and require very
little space beyond what is required to represent the non-zero coefficients of
the system.

There are a couple of different ways in which these linear systems are
“solved”. In the quadratic sieve method for factoring, linear relations over
the field 5 are generated and a linear dependency needs to be found. On
the other hand, the index calculus method results in a system of equations
with many unknowns being generated. The goal of the linear algebra in this
case is to find values for the unknowns. The number field sieve method for
factoring and the discrete logarithm problem results in a system of relations
from which a linear dependency needs to be generated; however, in contrast
to the quadratic sieve method, the relations are over the field I, for some
prime p.

For the purposes of this paper, only linear algebra techniques for working
over fields IF,, p > 2 prime, will be discussed. These techniques can also
be used when working over [Fy; however, greater efficiency can be obtained
using special purpose methods that will not be discussed here.

In both the index calculus method and the number field sieve, the linear
algebra may need to be done over the ring Z/nZ for some composite n. The
methods described here for doing the linear algebra only work over fields
IFp; however, this need not be a concern. If the prime factorization of n is
known, then the linear algebra can be done for each prime and prime power
in the factorization, and then the results can be combined using the Chinese
Remainder Theorem. If the prime factorization of n is not known, then, in
most cases, the algebra can be done assuming that n is prime and the method
will either succeed, or it will discover a factor of n.
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For a nice survey of these linear algebra techniques, see [11]. The imple-
mentations that were done as a part of this work make use of the Lanczos
method and a variant of the structured gaussian elimination method. Two
other methods are also described briefly.

4.1 Structured Gaussian Elimination

The linear systems that need to be solved as part of modern integer factoring
and discrete logarithm algorithms are very sparse, but they are not uniformly
sparse. The columns of the matrix that are associated with the smallest
primes in the factor base tend to be very dense while the columns associated
with the largest primes are extremely sparse (perhaps having no non-zero
coefficients). If standard gaussian elimination is attempted and the dense
columns are eliminated first, one finds that the matrix immediately becomes
non-sparse; however, if the sparse columns are eliminated first, many more
columns can be eliminated before fill-in causes the matrix to become non-
sparse. It is this observation that structured gaussian elimination is based
on.

It is difficult to give an exact algorithm for structured gaussian elimination
as it depends on factors such as the distribution of non-zero coefficients in the
matrix and the desired output. Structured gaussian elimination is not nor-
mally used to completely solve a linear system. Instead, it is used to reduce a
matrix to a significantly smaller matrix that is still considered sparse. Then,
one of the other techniques for solving sparse systems (described below) is
used to solve the system. Deciding when to cease the gaussian elimination
and proceed with one of the other solution techniques is an implementation
dependent parameter.

LaMacchia and Odlyzko [11] describe the important steps involved in
structured gaussian elimination:

1. Delete all columns that have one or fewer non-zero coefficients and the
rows in which those columns have non-zero coefficients.

2. Label each column either light or heavy, depending on the number of
non-zero coefficients in each.

3. Delete some excess rows, selecting those which have the largest number
of non-zero coefficients in the light columns.
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4. For any row which has only a single non-zero coefficient equal to £1
in a light column, subtract appropriate multiples of that row from all
other rows that have non-zero coefficients on that column so as to make
those coefficients zero.

These steps are typically repeated until the matrix has been reduced by the
desired amount. It can be seen that these steps will never result in an increase
in the number of non-zero coefficients in the “light” part of the matrix.
Also, as implied by step 3, the system should be overstated. LaMacchia and
Odlyzko state that having more extra rows can lead to a smaller final matrix.
Of course, those extra rows take time to generate so there is a trade-off here.

The implementation created as a part of this work does not make use
of all of the steps described above. It was found that a relatively large
reduction in matrix size can be achieved just by implementing steps 1 to 3.
The number field sieve implementation created as a part of this work has the
additional requirement that some columns must contain non-zero coefficients
(preferably, more than one) to ensure that an appropriate linear dependency
can be found. The gaussian elimination algorithm used there takes this into
account by only deleting rows (step 3) that do not have non-zero coefficients
in these critical columns.

4.2 Lanczos

The Lanczos algorithm was originally developed for solving systems over the
real numbers, but it has since been found that it can be used over a finite
field [11]. The algorithm for solving systems over a finite field is exactly
the same as the algorithm used over R. The only difficulty is that over a
finite field, it is possible for a non-zero vector to be conjugate to itself. This
difficulty, however, does not appear to be much of a problem in practice (it
rarely happens).

In its standard form, the Lanczos algorithm is deterministic and can solve
symmetric systems; however, it may be the case that a non-symmetric system
needs to be solved. This case can be handled by a probabilistic transform.
Suppose the system to be solved is

Br=u

where B is m X n,m > n, x is the unknown n-vector, and u is a given
m-vector. This system can be transformed by selecting a random m x m
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diagonal matrix, D, where the diagonal elements are chosen from among the
non-zero field elements. The transformed system is

Ax =w

where
A=B"D?’B and w = BT D?.

All of the details and assumptions can be found in [11].

A nice feature of the Lanczos algorithm is that very little storage space
beyond that which is required to represent the matrix is required. Further-
more, the representation of the matrix itself need not be changed at all by
the Lanczos method (in contrast to gaussian elimination).

The algorithm usually terminates within n iterations when used to solve
a system of dimension n (in practice, it appears to always terminate within
n iterations). The heuristic time bound for Lanczos is O (n?).

4.3 Conjugate Gradient

The conjugate gradient algorithm is almost identical to the Lanczos algo-
rithm; only the iterations are slightly different. The conjugate gradient
method is useful for finding several linear dependencies among a set of vec-
tors. This is typically what needs to be done when factoring integers. In
particular, the quadratic sieve requires several dependencies among a set of
vectors to be found over the field . For this work, the conjugate gradient
method was not implemented. The details of the algorithm can be found in
[11], including the heuristic time bound, which is the same as that for the
Lanczos algorithm, O (n?).

4.4 Wiedemann

The Wiedemann algorithm is an alternative to using the Lanczos algorithm.
It is a Krylov subspace method, like Lanczos, but its main innovation is
the use of the Berlekamp-Massey algorithm, which allows one to determine
linear recurrence coefficients over finite fields very quickly. From a theory
point of view, the advantage of the Wiedemann algorithm is that is comes
with a rigorously proven time bound of O (n?); however, in practice, it does
not appear to offer any improvement over the Lanczos algorithm. On the
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contrary, unless additional storage space, O (n?), is used, the Wiedemann
algorithm is significantly slower than the Lanczos algorithm.

For the purposes of this work, the Wiedemann algorithm was not imple-
mented. Complete details can be found in [21].

5 Analysis of the Index Calculus Method

The time required to compute a logarithm using the index calculus method
is highly dependent on the choice of the smoothness bound B. On the one
hand, if B is small then the test for smoothness of a single integer is fast
and the time required to solve the linear system generated will be small. On
the other hand, a small value for B makes smooth integers difficult (perhaps
nearly impossible) to find. Therefore, B must be chosen to balance these
opposing factors.

Furthermore, the choice of B also influences the ratio of the time required
to find the relations (the sieving phase) verses the time required to solve the
linear system. As already mentioned, these two problems are very different
from a complexity point of view. Because of this dichotomy between these
two phases, in practice, the choice of B may depend on what hardware is
available. When attempting to compute discrete logarithms in a very large
group, it is often necessary to choose B smaller than the theoretically optimal
value because it is easier to obtain the hardware necessary to complete the
sieving phase than it is to find sufficient hardware to solve the linear system.

5.1 Smooth Number Estimate

To find an optimal choice for B, it is necessary to have an estimate of the
probability that a particular integer, r, is B-smooth. Define

U(x,B) =#{r |1 <r <z and ris B-smooth}

as the number of B-smooth integers less than z.

This function, describing the number of smooth integers in a particular
interval, has been extensively studied for at least the past 70 years. In
addition to having an application in the study of discrete logarithm and
factoring algorithms, the function has many other applications in number
theory, and it is interesting in its own right. There have been many estimates
given for ¥(x, B) over the years, each applicable in some subset of the choices
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of B. For a recent estimate that claims to apply uniformly over the domain
2 < B < z, see [8]; however, for this analysis, it suffices to use an estimate
by Dickman [4], first introduced in 1930. This estimate is

U(z, /™) ~ zp(u),
where u = logz/log B and p(u) is the solution to the differential equation
up'(u) + plu—1)=0
with the initial condition
pluy=1 (0<u<1).

The solution to this differential equation is estimated as

p(u) ~ u—u—f—a(u).

For analyzing the index calculus method, it is convenient to choose B to
be of the form B = e¢V!°8Ploglogp: however, when analyzing the number field
sieve method (later in this paper), is will be necessary to choose all of the
algorithm parameters to be of the form

8

L, [s¢] = ecCosp*Gogtogpi

Therefore, to be able to apply the same techniques to analyzing each algo-
rithm, the index calculus parameters will be put in this form as well.
Suppose that  is of the form = = L, [s; ¢| and that B = L, [sp; cg], then
the probability that a random integer chosen from the domain 1 < r < z is
B-smooth is given by
\IJ("I‘" B) —u+o(u)

= u
T

c(log p)® (loglog p)* ~* +o(u)

( c(logp)*(loglogp)!—* )cB(Iogp)ﬂBaoglogp)l‘sB

cg(logp)i(loglogp)l—s»
—(s—sB) 55 (log p)*~*B (loglog p) ~*** (log log p+O(log log log p))

e
o~ (s78) 55 +o(1))(log p)*~*5 (loglog p) ' ~* 5

= I, [s ~sp—(s — sB)é + o(1)]

24



This equation gives the probability that a random integer, chosen from the
domain, is smooth. The following analysis for the index calculus method (and
the later analysis of the number field sieve) is going to assume that integers
that were not chosen randomly from the domain have this same probability
of being smooth. It is this assumption that makes the results of this analysis
a heuristic complexity estimate and not a proven complexity bound. Stated
formally, the conjecture is:

Conjecture: Let f be a polynomial in n variables over Z and assume
that | f(z1,...,%,)| < A whenever all z; lie in the interval [—3C, C]. Then
the probability that f(ai,...,a,) is B-smooth for a; chosen randomly from
[—1C,1C]is U(A, B)/A. If B is chosen as above, and A = L, [s4; ca + o(1)],
then this probability is

V(A,B
M:Lp sA—sB;—(sA—sB)C—A—i—o(l) :
A CB

5.2 The L,[s;c] Function

The function L, [s; ¢] is a very useful function for studying an algorithm that
has a time or space complexity that is somewhere between polynomial and
exponential. It should be noted that if s = 0, then L, [s;¢] = (logp)® is a
polynomial (in the size of p), and that if s = 1, then L,[s;c] = e°°8? is
exponential in the size of p. In this section, a derivation will be presented
describing where this function comes from and hinting to the fact that sp =
1/2 for the index calculus method. In the next section it will be shown that
sp = 1/2 is the optimal solution for the index calculus method.

Suppose that the number of relations that need to be found is bounded
by some constant multiple of the size of the factor base. The factor base
consists of approximately B/log B primes. If the probability that an arbi-
trary integer, say r, is B-smooth is 47", then the expected number of random
integers that need to be tested to find a smooth one is u*. Thus, if we need
DB/ log B relations, the expected number of smoothness tests needed to find
these relations is

DBu*

logB '

The time required to test an integer for smoothness is dependent on how
the integer is tested:
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Trial Division requires O (7(B)) = O (B/log B) divisions, each requiring
O ((log z)?) time, thus the total time is O (B(logz)?/log B);

Pollard-Rho Method requires O (\/§> multiplications, each of which re-
quires O ((logz)?) time, thus the total time is O (\/E(log x)Q);

Elliptic Curve Method requires time O (e\/(2+°(1)) log Bloglog B (] I)Q); and

Linear Sieve requires time O (m(B)(1 + log B)°"Y) 4+ Lloglog B) for a sieve
of length L, thus the time per integer is loglog B.

In the above equations z is an upper bound on the size of the integers being
tested.

All of these methods will result in a sub-exponential time discrete log-
arithm algorithm; however, clearly, the linear sieve method will yield the
lowest complexity. Assuming the linear sieve is being used, the time required
to generate the linear system is given by

DBu*
T(B) = logz? log log B.

Set
S(B) =logT(B) =log D +log B + ulogu — loglog B + logloglog B,

and dispose of the loglog B and logloglog B terms as they are dominated by
the log B term. Differentiating yields
s 1 du du

B - BTaB'°®“ "B

1 logzlogu  logz
B B(logB)? B(logB)?

1 log x
= ——————(1+1
B~ BllogBy - T8
1 log x
= ——————(1+1logl — loglog B
B B(]OgB)Q( + loglogx 0glog )a

and setting this derivative to zero to find the optimal choice of B gives

(log B)? =logz(1 + loglog x — loglog B).
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Now, 1 < loglog B < loglogx, so the inequalities
logz < logz(1 + loglog xz — loglog B) < log zloglog z

imply that the optimal choice of B satisfies
e\/logz < B < e\/logzloglogz.

With z of the from z = p?, the optimal choice of B is of the form

1
B=1L, [5;03 + 0(1)},

for some constant cg.

5.3 The Precomputation

Let B = L,[sg;cg + o(1)] for some constants sg and cg. Evidence was
presented above suggesting that sp = 1/2; however, in this section, sp will be
derived again and the value of 1/2 will be shown to be the optimal choice for
sg. During the sieving stage of the algorithm, pairs of non-negative integers
¢; and ¢y are found such that the residue (H+c¢;)(H +¢3) is smooth. Let these
integers be chosen such that 0 < ¢; < ¢y < C, where C = L, [s¢; cc + o(1)].
The total number of residues that will be tested for smoothness is

1
502 = L, [sc;2cc + o(1)].

Note that this is actually O (L,|...]) as the factor of 1/2 has been dropped.
In this section, all assertions of equality will involve an unspecified scalar
multiple. Since the final complexity estimate will be specified as O (...),
this need not be a concern.

The number of smooth residues that need to be found is

B+C = L,[sg;cg+0(1)]+ L,[sc;co+ o(1)]
= L, [max{sg, sc};max{cg, cc} + o(1)].

Note here that the use of max{cg, cc} assumes that sp = s¢ (which, it will
be shown, is the case), but in the case where this assumption does not hold,
the above equation is an upper bound on the size of the factor base.
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Let Pg be the probability that a random residue is smooth and assume
that it is of the form Py = L, [sq; cq + 0(1)]. To be able to solve the linear
system that is produced, it must be the case that

1
5C*Po 2 B+C.

Let z be the least non-negative residue such that z = (H + ¢;)(H +
¢2) mod p. If H = [L, [1;1]] and J = H? — p < 2H, then =z is bounded by
z = J+ (a1 +e)H+cic
< 24+ a+ce)HA+cac

1
< 2L, [sc;cc+o(1)] - Ly [1; 5] + L, [sc; 2¢cc + o(1)]

%[h%+dn}

Assuming that the conjecture stated above holds, the probability of a random
residue being smooth is thus
V(z, B)

. 1—83
PQ_T_LP[l_SB’_ QCB +0(1):|

The condition that enough smooth residues be found then becomes
L,[sc;2cc+0(1)] > L,[max{sg, sc};max{cp,cc} + o(1)]

1—83
- L, [1—33; s —|—o(1)],

which implies that at the very least
s¢ > max{sg, sc,1 — sp}.
The sieving phase takes time

C - (m(B)(1 +log B)°"Y + Cloglog B)
= Ly[scicc] - (Ly[sp;cs] + Ly [sc; cc))

= L, [max{sg, sc};cc + max{cg, cc} + o(1)],
and the linear algebra phase takes time

(B+ C)? = L, [max{sp, s¢}; max{2cg, 2cc} + o(1)].
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Thus the total time required for the precomputation is
L, [max{sg, sc}; max{2cg, 2cc} + o(1)].

To minimize the running time of the algorithm, it is necessary to choose
sp and s¢ such that max{sg, sc} is a minimum, and yet

sc > max{sg,1 — s}

is satisfied. This minimum occurs when sg = s¢ = %
This choice gives

1
B =1, 5; cg + 0(1)] ,
:1
C =1, §;cc+0(1)], and
:1 -1
Pob = L, |—;— 1)].
Q D _2’ 4CB +O( ):|

The condition that enough smooth residues are found then becomes

1 1 1 1
L, [5, 2cc + 0(1)] > L, [5, max{cg, cc} + 0(1)} - L, {5, i, + 0(1)]
or )
2cc > max{cp, cc} + —,
4CB

and the total running time of the algorithm becomes
1
L, [5; max{2cg,2cc} + 0(1)} :

Minimizing max{2cg, 2cc} subject to the sufficient smooth residue condition
yields cg = ¢c = % Thus the optimal choices for B and C' are

B =1, B, % + 0(1)} and C =L, [%, ! + 0(1)].

The total time required to complete the precomputation is

0 (Lp B;Hou)D.
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5.4 Time to find an Individual Logarithm

Up to this point it has been assumed that the final phase of the index calculus
method, finding an individual logarithm, is much faster than the first two
phases and could therefore be ignored when doing the complexity analysis.
This assumption now has to be validated, and actually, it only holds provided
that the elliptic curve factoring method is used for a smoothness test in the
one place where a sieve is not suitable.

The first step in finding an individual logarithm is selecting an upper
smoothness bound, U > B, and finding a random integer w such that the
least non-negative residue of y-¢* mod pis U-smooth. Let U = L, [sy; cy + o(1)]
and the probability of finding a suitable w be P, = L, [sy; ¢y + 0(1)]. Since
the residue is bounded by p = L, [1;1], the smooth number estimate gives
this probability as

¥(p,U)

P, = =L, |1l —sy;—
p p[ v

1—SU

#oy)

Cu

Using the elliptic curve factoring method as a smoothness test, the time
)logUloglogU(lng)Z7

required to check each residue for smoothness is eV (@to(l
which, using the L,|...]| notation, is

Ly |5 v2sues + o(1)] - Ly [0:2] = L [ %3 /250w + (1)

Since it is expected that 1/P, smoothness tests will be required to find a
suitable w, the total time to find w is

+o(1>] o[22 Vs + of1)].

1—8(]

L, |1 — sy;
p[ SU; cr

Minimizing max{1 — sy, sy/2} gives sy = 2. Minimizing 1/(3cy) + 2v/cv /3
gives cy = (%)1/ 3. Therefore, U should be chosen as

o=, |%(3) o).

and the total time required for this step is

1 1
I |53 +o0)]
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which is much faster than L, [1;1+4 o(1)]. This step is only faster than
the first two phases if the elliptic curve factoring method is used as the
smoothness test. If the Pollard Rho factoring method is used as a smoothness
test, then U should be chosen as U = L, [1;1 4 o(1)], and this choice makes
the time required to complete this step L, [3;1+ o(1)], which is the same
as the first two phases. If the trial division method is used as a smoothness

test, then U should be chosen as L, [%, \/g + 0(1)}, and the time required

to complete this step is longer, at L, [%, V2 + 0(1)], than the time required
to complete the precomputation.

Coppersmith suggests that U should be chosen as U = L, [%, 2} for what
he describes as a non-optimal solution. With this choice of U, the number
of smoothness tests required to find w is L, [;, }l] Coppersmith gives the
generous upper bound of L, [2, Z] for the time needed to test for smoothness,
where a time of L, [ \/ﬂ would be more accurate. This is the reason why
he then states that the time to find w is L, [2, 2]

The next step in finding an individual logarlthm is, for each medium prime
m, finding a u > \/f)/m that is B-smooth. Since m may be as small as B, u
is of order L, [1 } and the probability of random choice of u being smooth
is Ly, [ ——] To find one, it is necessary to test L, IZ, 5t 0(1)] possibilities
using the polynomial sieve. This takes time L, [5, 7+ (1)], which is much
faster than the precomputation.

The final step is finding a v > ,/p such that the least non-negative residue
of wvm mod p is B-smooth. Such a v is also expected to be of order L, [1, 2]'
thus the probability of a random choice being smooth is L, [3; —1] and the
time needed to find one using a linear sieve is L, [1; 1 + 0(1)]. Again this
is much faster than the precomputation. These last two steps for finding
an individual logarithm need to be done once for each medium sized prime

found in the first step; however, there will be at most logz U = iggg of these.
g

If sy = % then this is O ((logp)%> and if sy = % then this number is a
constant, so either way, it is of no concern.

31



6 The Number Field Sieve

The general discrete logarithm problem in I, is to find an integer = such
that

=y (mod p)

where b and y are given. This general problem can be reduced to the special
case where b is a “small” prime primitive element (a generator) of the field,
say g, and the power y is a “medium sized” prime, say v, such that v < p/*
for some integer £ > 1. This reduction is described by Weber in [20]. To
summarize, the reduction involves making use of the standard change of base
formula for logarithms and the finding of a w for which y - ¢% mod p is p'/*-
smooth. Given a small prime generator, g, and a medium sized prime, v, the
logarithm is denoted

r=log,v (modp—1).

Also, it will be assumed that p is a Germain prime. Such a choice for p
is generally considered to make the discrete logarithm problem as difficult
as possible. Let ¢ = (p — 1)/2, a prime. Solving the problem using the
number field sieve in cases where p is not of this form involves only a slight
complication in the linear algebra phase which will not be described here.

Unlike the index calculus method, the version of the number field sieve
that is presented here does not first calculate the discrete logarithm of all
of the primes in the factor base, and then find the discrete logarithm of an
individual logarithm. Instead, the discrete logarithm of medium sized primes
are found one at a time. There are still two phases, however, which are similar
to the first two phases of the index calculus method. The first phase is to
sieve the image of a polynomial to find a number of relations, and the second
phase is to use linear algebra techniques to find a dependency among the
relations. These two phases are repeated to find the discrete logarithm of
each of the medium sized prime factors of y - g% mod p.

The algorithm presented here is almost identical to the algorithm de-
scribed by Schirokauer in [14], but it was also inspired by [7] and [20].

6.1 Choosing a Number Field

To choose a number field over which to work, first choose its degree, &, no less
than 2. The choice of k is dependent on the size of p and will be discussed
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further in the analysis section below. In the empirical results section, data
for choices of k in the range 2 < k < 4 are presented.

Next, it is necessary to find an appropriate minimal polynomial for the
number field. First, find the unique integer h such that m = 2" - v is in the
range p'/* < m < 2p/*. Next, find the least integer ¢ such that cp > m* and
write cp in base m as

cp=m" + -+ bym? + bym + b).

Clearly, this polynomial in m is monic and of degree k.

This polynomial, however, may not be sufficient as it is required that the
norm |N ()|, for some root «, be B-smooth, for some rational smoothness
bound B. The general equation for calculating the norm of a principal ideal
in the number field will be given below, but for now,

|N(«)| = |constant term in minimal polynomiall.

Therefore, to ensure that this norm is B-smooth, it is necessary to find a
minimal polynomial with a constant term that is B-smooth. The polynomial
described above can be modified to meet this requirement by subtracting
multiples of m from b while incrementing ; until the constant term is B-
smooth. To be more precise, find the least non-negative D such that |bj—Dm)|
is B-smooth, and then write f(X) as

f(X) = XF4 o 40 X%+ (V) + D)X + (b, — Dm)
X* o 4 b X2+ 5, X + by

This f(X) is suitable if

1. f is irreducible,

2. f is monic,

3. the degree of f is k,

4. the coefficients of f have absolute value less than (D + 1)m,
5. f(m) =0 (mod p),

6. the constant term, by, is B-smooth, and

7. q does not divide the discriminant Af.
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Using common polynomial factoring methods, requirement 1 can be checked,
requirements 2 to 6 are obviously satisfied given the construction of f(X),
and requirement 7 can be checked by computing the discriminant of the
polynomial. Polynomials generated in this manner are very unlikely to fail
to meet these requirements.

Finally, use f(X) to define a number field. Let a be a root of f(X). Then
K = Q(«) is a number field, and let Ok be its ring of integers.

6.2 Norms and Smooth Integers

As mentioned above, B is a smoothness bound. It must be chosen such
that ¢ < B. This smoothness bound is used to test the smoothness of both
rational integers and principal ideals. To test the smoothness of a principal
ideal, compute its norm and then check the absolute value of the norm for
smoothness as a rational integer.

The norm of a principal ideal, say (¢ + da), is computed as

N(c+da) = (=d)*f(—=c/d)
= Ck — bk,lck_ld +---+ blc(—d)k_l + bo(—d)k

where the coefficients b 1, ..., by are the same as they appear in the minimal
polynomial of o, f(X). Also mentioned above was the norm of («). From
this equation, it is clear that

[N (a)| = |bol-

To completely factor a principal ideal, an algebraic factor base needs to
be generated. This factor base will consist of all first degree prime ideals
with norm less than B. All such prime ideals will have as their norm a
rational prime; therefore, to find these prime ideals, it is necessary to factor
the principal ideals, (r), for each rational prime, r, less than B.

Let r be a rational prime less than B. One of the following will be the
case:

1. (r) does not split (it remains prime),
2. (r) splits, but none of its factors have degree 1,

3. (r) is the k™ power of a single prime ideal (this prime ideal is said to
be totally ramified),
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4. (r) splits into more than 1 but fewer than k distinct factors, some with
degree 1, maybe some with higher degree, or

5. (r) splits into exactly & distinct degree 1 factors (it splits completely).

Note that the degree of a prime factor determines (or is determined by) its
norm. If v | (r) and has degree [, then Nt = r!. To determine which of the
above possibilities is the case for a particular r, first reduce the coefficients
of f modulo r. This gives

X)) =X+ 4 aX? + a1 X + a9 (mod )

where each a; = b; mod r. Then attempt to factor f, in the field F,[X] using
standard polynomial factoring techniques. Factoring will result in one of the
following:

1. f, is irreducible,

2. f, factors, but all of its factors are irreducible and have degree larger
than 1,

3. f, consists of a single degree 1 factor raised to the k' power,
4. f, has more than 1 but fewer than £ factors, some of degree 1, or
5. f, has exactly k distinct degree 1 factors.

These possibilities correspond one-for-one with the possible ways in which
(r) may split (or not) described in the previous list. If 1 or 2 is the case, then
no prime ideals are added to the algebraic factor base. In case 1, leaving
the prime ideal, (r), out of the factor base is not a concern since the ideal
(¢ + da) will only have (r) as a factor if both ¢ and d are divisible by 7.
During the sieving stage of the algorithm (see below), ¢ and d will be chosen
such that they are coprime so this cannot happen. In case 2, (r)’s prime
factors cannot be added to the factor base either. In case 3, the single prime
ideal is added to the factor base. In cases 4 and 5, each distinct degree 1
factor corresponds to a prime ideal with r as its norm and needs to be added
to the factor base.

It will also be necessary to determine the exact factorization of an ar-
bitrary ideal (¢ + da). As mentioned above, first determine if the norm
|N(c+ da)| is B-smooth. Assuming that it is, go through each of the norm’s
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prime factors, and for each, determine which prime ideal they correspond to.
In the cases where the prime ideal corresponding to a prime factor of the
norm is totally ramified, case 3 above, there is only the single prime ideal
that could be a factor and thus, nothing more to do; however, in the cases
where the ideal generated by the prime dividing the norm splits in to two or
more distinct degree 1 prime factors, it will be necessary to determine which
of these prime factors divides the ideal (¢ + da). First, recall the definition
of the norm
N(c+da) = (—d)f f(—c/d).

Then, since r divides N(c + da), the equation for the norm reduces to
(=d)*f(=c/d) =0 (mod r).
Also, recall the reduction of f modulo r

(X)) = XF 4+ + X+ a1 X +a (modr)
(X —w) (X —w)®? - (X —wp) - Gp(X) (mod r)

where h is the number of distinct degree 1 factors of f., the w;’s are the
roots of f,, and G, (X) is the product of any irreducible factors with degree
greater than 1. Now, combining the equation for the norm with this reduced
equation for f gives

(e/d —wy)*(e/d — we)®® - - (¢/d —wp)*» =0 (mod r).
Clearly, the value ¢/d mod r must equal one of the roots. This value also

uniquely determines which prime ideal divides (¢ + da).

6.3 Sieving

The sieving phase for the number field sieve involves finding pairs of integers,
c and d, such that both ¢+ dm and (c+ da) are B-smooth. The former is
tested for smoothness as a rational integer while the later is tested as a
principal ideal. Formally, suitable pairs of integers must satisfy:

1. d>1,
2. —.m < c<m,

3. c¢ and d are coprime,
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4. the rational integer ¢ 4+ dm is B-smooth, and

5. the principal ideal (¢ + da) is also B-smooth.

These pairs of integers can be efficiently found using a sieve over a homo-
geneous polynomial in two variables, and such a sieve is very similar to the
polynomial sieve described in the index calculus section earlier in this paper;
just extended to two variables.

Assume f(X,Y) is a homogeneous polynomial of degree k and write

~ X, Y
jizy= 150

where Z = X/Y. Clearly, f(Z) is a one-variable polynomial, and the smooth
values it assumes can be found using the sieve technique described earlier.
Then, the values of X and Y for which f(X,Y) is smooth are found using
the equivalence Z = X/Y mod p.

The total running time of this sieve algorithm is given in [14] as

7(B)(k 4 log B)°Y + C?loglog B,
where X and Y are both assumed to be restricted to the domain

1 1
—C <X, Y < _C
2~ T2

6.4 Character Maps

The goal of the linear algebra phase of the number field sieve is to construct
a ¢'* power in the ring of integers, Og. To ensure that a linear dependency
found during the algebra phase leads to a ¢** power, a set of maps

A: Ok — qOk/*Ox

are used. These maps are referred to as character maps, and they have the
property that if v is a ¢ power in O, then \(y) = 0.

For a given principal ideal (¢ + da), the character maps produce a k-tuple,
(A1, ..., Ag), of integers, each from 7Z/q7Z. To compute the character map, it
is necessary to calculate a power in the ring of polynomials with coefficients
from 7/q*7Z represented by polynomials in (Z/¢*7Z)[X] mod f(X). In this
ring, let ¢ + dX represent (¢ + da) and then compute the power

r(X)=(c+dX)* -1
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Provided the exponent here has been chosen appropriately, all of the coeffi-
cients of this polynomial will be multiples of q. Therefore, let the character
maps, (A1,..., ), be the k coefficients of r(X), each divided by ¢. More
precisely,

r(X) = Mg+ AgX + -+ gX* (mod ¢?).

The necessary exponent, e, is calculated by factoring the ideal (g). This
is done in exactly the same manner described for generating the algebraic
factor base. If any of the prime factors of (¢) have a multiplicity greater than
1 then the character map calculation fails and a new number field must be
chosen (this rarely happens in practice). Otherwise, for each prime factor
of (q), if the factor has degree d, then e must be divisible by ¢¢ — 1. The
optimal choice for e is the least common multiple of these factors. See [14]
for all the details regarding this calculation.

6.5 Linear System

It is necessary to collect at least 7(B) + u(B) + k — 1 pairs ¢;, d; to create
a linear system. Each pair consists of 7(B) exponents corresponding to
the primes in the rational factor base, u(B) exponents corresponding to the
primes in the algebraic factor base, and & values associated with the character
maps for (¢; + d;a). One additional relation corresponding to the rational
integer g and the principal ideal (1) will also be added. This additional
relation will consist of a 1 as the exponent of g in the rational factor base,
and 0 for all other exponents and the character maps.
With all of these pairs (relations), the following matrix is created:

— lg] — — [(1)] — 0 ... 0
A= — [(/'1 + d1m] — — [(Cl + dloz)] — /\1 I )‘k
— [¢ +'dlm] — +— (g —|-' dia)] — );1 )\k

where < [n] — denotes the exponents of the factorization of 1 within the
appropriate factor base. This matrix has m(B) + u(B) + k columns, and
therefore, should have at least that many rows.

The final step in creating the linear system is to construct a row, say
y, which consists of the value of A (found when the minimal polynomial
was chosen) in the column that corresponds to the rational integer 2, the
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exponents of the factorization of («) (recall that care was taken to ensure that
|N ()| is B-smooth), and the character maps associated with the principal
ideal (). This row is

y=(—[2"— (@] — M\ ... A ).

Now, using standard linear algebra techniques, express —y as a linear
combination of the rows of A. That is, find a row x such that

r-A=—y (mod q).

6.6 The Solution

The element of z corresponding to the row that just has the exponent for
the rational integer g (the row of the matrix with a single 1 in it), say o,
will be, with high probability, the desired logarithm, log, v mod gq.

To see this, consider that the solution to the matrix equation yields two
relations:

o I—IJ:Z(CZ +dm) = 27".(¢" power) and
— -1 th
Hmi(ci +dia) = (o) - (¢" power).
In other words,

2h Hmzcz—i-dm and (o) Hmzcz-l-da

are both ¢** powers.
There exists a homomorphism ¢ : K — Z such that

o(a) =m.

Applying this homomorphism to the second ¢'* power above gives

© ((a) . 1_[90,(0Z + dm)) = m- 1_[96,(0Z + d;m)

= p-2". sz(cz + d;m),
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since m = 2"v. Now, multiply both sides of this equation by g*° to get

g7° - ((04) . H%(CZ + dm)) =yp-2". g%. 1_[961(0Z + d;m),

which leads to
9" - (¢ power) = v - (¢" power) (mod p),
and then,
log,v =2y (mod q).

Finally, finding the logarithm modulo p—1 is simply a matter of testing both
o and xg + q.

7 Analysis of the Number Field Sieve

The time required to compute a discrete logarithm using the number field
sieve is divided between its two phases, the sieving phase and the linear
algebra phase. As was the case with the index calculus method, these two
phases each require roughly the same time to complete and the division
between them can be varied to suit the available hardware.

This analysis of the number field sieve will proceed in very much the same
manner as the analysis of the index calculus method given earlier. To begin,
the various algorithm parameters that need to be chosen will be expressed
as functions of the form

L, [s; ] = ectiogr)*(loglogp)'™2

In particular, let the smoothness bound, B, and the degree of the number
field, k, be given by

B =1L,[sg;cg+0(1)] and p'/* = L, [sy; cx + 0(1)],

or to express k directly,

1 logp \'™*
k= .
¢k +0(1) \loglogp
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During the sieving phase, pairs of integers, ¢ and d are found such that
¢+ dm and (c+ do) are both B-smooth. Let ¢ and d be such that —3C <
c < %Cand0<d<0, and define C' by

C=L,[sc;cc+o(1)].

With these restrictions on the domain of the sieve, the sieving phase is ex-
pected to take time

7(B)(k + log B)°M + C?loglog B,
which, after substituting for B and C), is
k- Ly[sg;ce +o0(1)] + Ly [sc; 2¢cc + o(1)].
The linear algebra phase, using the Lanczos method, takes time
O (kB?),
which, after substituting for B, is
k- Ly,[sg;2cp + o(1)].

Let the total time required to complete the sieving and linear algebra
phases be Ly, [s7; cr + o(1)], where

sy = max{sg,sc} and

cr = max{2cg,2cc}.

At the completion of the sieving phase, it is necessary to have found
sufficient smooth numbers to have a reasonable chance of success in the linear
algebra phase. The number of smooth numbers required is 7(B)+pu(B)+k—1,
which is bounded by kB =k - L, [sp; cg + o(1)].

Suppose that Pg is the probability that an integer c+dm in the domain of
the sieve is B-smooth, and that Py is the probability that an ideal (¢ + da),
also in the domain of the sieve, is B-smooth. Let Py = L, [sg; cg + o(1)] and
Pyx = L, [sk;ck + o(1)]. For the sieving phase to be successful, the following
inequality must hold

C?-Py-Px>k- B,
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which is to say
L,[sc;2cc+o0(1)]- P - Pk > k- Ly,[sg;cg + o(1)].

During the analysis of the index calculus method above, an estimate
for the probability that a value assumed by a polynomial is B-smooth was
given. The conjecture stated that if |f(zy,...,z,)| < A for z; in some
bounded domain and A = L, [sa;ca + o(1)], then the probability that the
value assumed by the polynomial, given randomly chosen z;, is smooth is
given by
Ca

V(A B
M:Lp sa—sp;—(sa—sp)— +o0(1)].
A CB

The integers ¢ + dm all satisfy
c+dm < Ly[sg;ck+o0(1)]- Ly [sc;co + o(1)]
< L, [max{sg, sc};cx + cc + o(1)],

1/k

since m ~ p'/®. Furthermore, the norm of the ideal (¢ + da) satisfies

N(c+da) = (=d)*f(—=c/d)
< (k+1)-D-Ly[sg;ck +0(1)] - Ly[sc;co+ 0(1)]k

= (k+1)-D-Ly[sg;cp +o(1)] - L |:SC+1_5k;cc_j+0(1)]

c
< (k+1)-D-L, |max{sg,sc+1—sg};crp+ C—C+0(1)].
k
By making use of the smooth number estimate, the required probabilities
for finding smooth rational and algebraic integers are

cr + co

CB

Py > L, [max{sk, sc} — sp; —(max{sg, sc} — sp) + 0(1)} and

¢+ cc

Py > L, [max{sk, sc+1—sg}— sp;—(max{sk,s¢c+1— sx} — sB) —
k- CB

respectively, and these imply that

sg > max{s,Sc} — sp and

Sk > max{sg,Sc+1— sk} — $g.
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The requirement that enough smooth numbers are found to successfully
solve the linear system implies that

Sc max{sg, Se Sk}

>
> max{sg, Sk — SB,Sc + 1 — S, — SB,Sc — SB}
>

max{?sB, Sk, Sc + 1 — sy, Sc} — SB;

and minimizing s; = max{sg, s¢} subject to this last inequality yields sp =

_1 _ 2
sc =3 and s, = 3.

This analysis has ignored the value of D. Suppose D = L, [sp;cp + o(1)].
For the above analysis to be correct, it must be the case that sp < %; however,
to get the overall time complexity desired, it is necessary that sp < % To
ensure that this bound is satisfied, first note that the smooth number estimate
gives

1 _ 9(DmB)
D - Dm
= L, |max{sp, sy} — sp; —(max{sp, sg} — sB)CDC+ L o(1)],
B

which implies that

sp > max{sp, sk} — sp

2 1
= max{sp, g} — 3

and which, in turn, gives the minimum value sp = %

Given the values of the s’s found above, the following are known

[2
c+dm < L, g;ck-l-o(l)],
:2 Cc
N(c+da) < Ly|z;ee+—+0(1)],

_3 Cr
(1 1

Py = L, —;——C—k(l—i—o(l))], and
_3 CB
(1 1¢2 +co

Pr = L,|=;—=-= 1+0(1))].

= L |55 o)
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Again, the requirement that enough smooth numbers be found to successfully
solve the linear system implies that

1(c c4+c
2cc > cg+ = <—k+k70> .
3 CB CrCp

Minimizing ey = max{2cg, 2cc} subject to this inequality yields cg = c¢c =
(8)!/3 and ¢, = (3)'/%. The key parameters are thus

1 ] 1/3
B =L [5; (5) +o
1/3
b o (B
loglogp

c = I, E <§)1/3+0(1) .

Finally, the total running time of the number field sieve algorithm is expected
to be s
1 (64
L,|=; | — 1.
p [3, (3) +o

8 Implementation and Empirical Results

Y

To directly test the theory presented in this paper, implementations of both
the index calculus method and the number field sieve were written. Both
implementations were written in C'++ and make use of the NTL big integer
library published by Shoup. The implementations were used to find optimal
choices for the various algorithm parameters, and then the running time
of each algorithm was compared to the asymptotic estimates given above.
Finally, a comparison to Weber’s implementation of the number field sieve
[20] is given.

The NTL big integer library is an excellent base upon which to write
implementations of algorithms such as these; however, it did need to be
extended in various ways. The extensions that were implemented include:
classes for sparse vectors and matrices, linear algebra techniques for solving
sparse systems of equations, general purpose factoring methods including
the elliptic curve factoring method, and classes for creating factor bases and
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sieving over them. Some of these extensions will be submitted to Shoup for
possible inclusion in the NTL library.

The index calculus method requires that at least two parameters be cho-
sen, namely, the smoothness bound, B, and the length of the sieve, C'. The
number field sieve requires that at least three parameters be chosen, B, C,
and the degree of the number field, k. To find optimal values for these pa-
rameters empirically, the simplex method described in [1] was used. Many
people know the simplex method as a “curve fitting” algorithm; however, it
is actually a general purpose optimization algorithm. To find B and C for
one of the discrete logarithm algorithms, a three vertex simplex is created
using values of B and C that are thought to be optimal (from theory or
guessing). The simplex method is then run to find values of B and C that
result in the smallest running time. During each run of the discrete loga-
rithm algorithm, the discrete logarithm of 2 is computed in cases where the
generator is not 2 and the discrete logarithm of 3 is computed in the case that
the generator is 2. For the index calculus method, the computation of an
individual logarithm simply verifies that the precomputation was successful
(the computation itself takes no time); however, for the number field sieve,
computing the logarithm of smaller primes (especially 2) appears to require
more time in practice, and therefore, these smaller primes for chosen for this
analysis.

By using the simplex method to find optimal choices for B and C (k is
chosen manually) for each of several problems of varying sizes, plots of B and
C as a function of problem size can be produced. Since the theory implies
that these parameters are described by functions of the form d - L, [s; c],
the simplex method can then be used again to fit a curve to the acquired
data points. Although the simplex method can be used to find values for all
three of the curve parameters (s, ¢, and d), theory predicts that s will be
exactly % for the index calculus method and % for the number field sieve, and
therefore, the curve fitting stage was done twice for each algorithm: once with
s fixed and once with s as a parameter. With the limited domain over which
the optimizations were done, only the curves fit with s fixed are considered
meaningful.

All of the running time measurements presented in this section were per-
formed on an Athlon XP 1700+ PC with 256MB of PC2100 DDR RAM and
running the Debian GNU/Linux operating system. The time measurements
should include only the CPU time used by the algorithm itself; however, to
ensure the accuracy of the measurements, steps were taken to avoid other
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tasks running on the machine at the same time the measurements were being
performed.

8.1 Index Calculus

The index calculus method has two algorithm parameters that need to be
chosen appropriately to get a reasonable running time. The parameters are
the smoothness bound, B, and the sieve length, C'. Optimal values for these
parameters were found using the simplex method on randomly chosen prob-
lems in the range of 30 bits to 100 bits (size of the modulus), and then the
curve d - L, [s; ¢] was fit to these data points. The curve was fit twice, once
allowing s to vary and once with s fixed at 0.5. The results of this curve
fitting are given in table 1. Note that the curves fit with s varying match the
theoretic estimates reasonably well (with the curve for B being the largest
discrepancy).

Table 1: Optimal parameters for the index calculus method.

Parameter s varying s fixed at 0.5
B 13.8- L, [0.779;0.183] 3.33- L, [0.5;0.476]
C 2.72 - L, [0.499;0.420] 2.78 - L, [0.5;0.417]
run time | 53.7-107%- L, [0.449;1.10] | 109 - 107 - L, [0.5; 0.916]

Figures 1 and 2 present the data points and the curves for the optimal
choices of the smoothness bound and the sieve length, respectively. Figure
3 displays the running time required for each problem along with the fitted
curve. All of these figures display curves computed for s fixed at 0.5.

From this empirical run-time data, it is possible to predict what problems
can be solved given enough time (and sufficient storage). These predictions
are given in table 2.

8.2 Number Field Sieve

With the number field sieve, there is the added complication of the choice
of the degree of the number field, k. Since this number is a small integer
(typically between 2 and 5), it could not be fit for using the simplex method.
Instead, a range of problems were optimized for each of several choices of &,
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Figure 1: Optimal smoothness bound for the index calculus method as a function
of problem size.
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Figure 2: Optimal sieve length for the index calculus method as a function of
problem size.
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Table 2: Predicted size of problems that can be solved using the index calculus
method given sufficient time.

Time Available | Problem Size

1 hour 117 bits (35 digits)
1 day 154 bits (46 digits)
1 week 179 bits (53 digits)
1 month 198 bits (59 digits)
1 year 234 bits (70 digits)

1000

100 ¢

10 ¢

Time (seconds)

0.000109 * Lp[1/2; 0.916]
0.1 i 1 ! 1 ! ! ! |

30 40 50 60 70 80 90 100 110
Bits

Figure 3: Running time of the index calculus method as a function of problem
size.
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and each of these ranges were chosen to overlap. In this work, value of 2, 3,
and 4 where used for k.

For each choice of problem size and k, two parameters were optimized
using the simplex method: the smoothness bound, B, and the sieve width,
C. The sieve width is the range of values of ¢ that were checked in the
sieving phase of the algorithm. That is —3C < ¢ < 3C. The variable d
is started at 1 and increases until a sufficient number of relations has been
found. The total number of integers sieved is simply the maximum value d
attained multiplied by C. This value was noted as part of each data point
and is presented below.

Once optimal choices for the algorithm parameters have been found, the
curve d - L, [s; ¢] can be fit to the data. The results of this curve fitting can
be found in table 3. The results for s varying do not match the estimates
from theory very well (which is probably do to the limited range of problem
sizes tested); however, the results for s fixed at 1/3 fit reasonable well. Note
that theory predicts that the optimal choice for B is O (L, [1/3;0.961]), that
the total number of integers that need to be sieved is O (L, [1/3;1.92]), and
that the running time will be O (L, [1/3;1.92]). The sieve width parameter,
C, was not predicted in the theory presented above.

Table 3: Optimal parameters for the number field sieve.

Parameter s varying s fixed at 1/3

B 2.05 - L, [0.492;0.585] 0.401- L, [1/3;1.06]

C (k=2) 12.8- L, [0.438; 1.14] 2.37- L, [1/3;1.67]

C (k=3) 0.253 - L, [0.189;2.21] 3.74- L, [1/3;1.24]

C (k=4) 0.278 - L, [0.360;1.31] 0.158 - L, [1/3;1.46]

total sieve 8.99 - L, [0.503;1.04] 0.332- L, [1/3;1.97]
]

run time | 5.41-107%- L, [0.369;1.65] | 0.779-107°- L, [1/3;2.03]

Figure 4 gives the optimal smoothness bound as a function of the size of
the modulus. Notice that the optimal choice for the smoothness bound is not
dependent on the choice of the degree of the number field; however, in figure
5, it is seen that the optimal choice for the width of the sieve (domain of ¢)
varies significantly as a function of the degree of the number field. The total
number of pairs of integers, ¢ and d, involved in the sieve is given in figure 6
and is strongly correlated with the total running time, given in figure 7.
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As was the case with the index calculus data, this empirical run-time data
for the number field sieve can also be used to predict what problems can be

solved given enough time and storage. These predictions are presented in
table 4.

Table 4: Predicted size of problems that can be solved using the number
field sieve given sufficient time.

Time Available | Problem Size

1 hour 104 bits (31 digits)
1 day 137 bits (41 digits)
1 week 160 bits (48 digits)
1 month 178 bits (53 digits)
1 year 213 bits (64 digits)

8.3 Results from the Literature

In [20], Weber gave two examples: a 25-digit example and a 40-digit example.
Those two problems have been solved using the implementation developed
for this work.

The 25-digit problem to solve is

7" =17 (mod 1234567890123456789000421).

Weber’s solution to the problem involved the use of a degree 3 number field,
a smoothness bound of 2400, and required that a 728 x 703 linear system be
solved. Using hardware he had available at the time (in 1995), the sieving
took 12 hours and the linear algebra required 8 hours. Using the more modern
hardware described above, a number field of degree 3, a smoothness bound
of 9000, and having to solve a 1706 x 1706 linear system took a mere 2.5
minutes (70 seconds to sieve and 75 seconds for the algebra). Of course, the
answer was correct but is irrelevant here. For all the details regarding this
problem, including the answer, see [20].
The 40-digit problem is

23" =29 (mod 3108193812051968080419611909199224122909).

For this problem Weber also chose a degree 3 number field, but he chose to
use two different smoothness bounds, one for the rational integers, 12503,
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and a different bound for the algebraic integers, 17321. He claims that the
sieving required only 21 hours on the same hardware used for the 25-digit
problem. This claim is hard to believe when one notes that he sieved through
more than 10 times the numbers in the latter problem but required less than
twice the time compared with the former problem. The linear system that
needed to be solved was 3500 x 3477 and was completed in 40 minutes on a
massively parallel Paragon system.

To solve this problem using the hardware described above, a degree 3
number field was used, the smoothness bound was 112000, and a 17018 x
17018 linear system had to be solved. The sieving phase took 2.5 hours and
the linear algebra took 3.2 hours for a total time of 5.7 hours to find the
discrete logarithm

z = l0g329 = 1761149741453474132304575201715643940920.

The current “world record” for discrete logarithm computations of this
type is held by Joux and Lercier. In early 2001 they succeeded at computing
a discrete logarithm in a field with a 120-digit prime modulus. The problem
required 10 weeks of computer time and made use of the methods described in
[9]. The implementation developed for this work is not yet ready to challenge
this record, but it may be soon.

9 Research Directions

It has been shown that the ability to solve the discrete logarithm problem
depends greatly on the structure of the group in which the problem has been
defined. If the group elements are opaque and no structure beyond the group
operation and inverse elements is known, then Shoup has proven in [17] that

the discrete logarithm problem requires time that is at least O (\/ N ) , Where

N is the order of the group. In this paper, several methods for achieving
this bound were presented. This is great news for people hoping the make
use of the discrete logarithm problem in cryptographic applications; however,
a cryptographically useful group lacking additional structure has yet to be
found. The group of points on an elliptic curve appears to come close, but
no proof that these groups possess no additional structure is known. It
remains possible that some researcher might discover a new way of looking
at these groups that will greatly help the discrete logarithm problem, and
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therefore, researchers continue to caution against the use of these groups for
cryptographic applications.

On the other hand, Enge and Gaudry [6] have shown that if a concept
of smoothness exists within the group, then a sub-exponential discrete log-
arithm algorithm can always be constructed. More specifically, they have
shown that algorithms with an estimated running time of L,[1/2;¢|, for
some constant ¢, are possible. Their approach is very similar to the index
calculus method described above; however, they have generalized the method
to arbitrary groups possessing a smoothness property.

For many of the groups possessing a smoothness property, it is possible
to compute discrete logarithms in time L, [1/3; ¢], for some constant c. The
number field sieve method for computing discrete logarithms in the field IF,
was presented above. This method is a non-trivial extension of the index
calculus method and required extensive use of algebraic number theory to
design and implement. For other groups, such as the multiplicative group of
the field Fyn, an algorithm to compute discrete logarithms in time L, [1/3; ¢|
was much easier to create. Coppersmith [2] presented an algorithm which
achieves this smaller time bound by using a clever method for finding rela-
tions that results is smaller polynomials to test for smoothness.

Since many of the groups to which the Enge and Gaudry method apply
now have specialized algorithms to compute discrete logarithms in the smaller
time of L, [1/3; ¢], it is thought that it should be possible to improve the Enge
and Gaudry result to this smaller time bound. Such an improvement would
be a significant breakthrough as it would likely require finding an algorithm
to compute discrete logarithms in I, which not only achieves this lower time
bound, but does not require the use of algebraic number theory.

A completely different method for computing discrete logarithms is seen
in an interesting method by Schnorr [15]. His method claims to factor integers
as well as compute discrete logarithms by computing Diophantine approx-
imations and making use of the LLL method to reduce lattices. Although
the method is currently not practical, studying the approach may lead to an
alternate algorithm for computing discrete logarithms in IF),.

The problems of factoring large integers and computing discrete loga-
rithms in finite fields (and F, in particular) have always appeared to go
hand in hand. Indeed, if one can compute discrete logarithms in the ring
Z/NZ, then one can easily compute the order of elements within that ring,
and from those computations, one can easily factor N. Therefore, the dis-
crete logarithm problem is certainly no easier than the problem of factoring

o4



integers. Furthermore, each time an advance is made in the state of the
art for factoring (for instance, the number field sieve for factoring), someone
always seems to find a way to adapt that advance to the computation of
discrete logarithms (as happened with the number field sieve). There is no
known formal proof that the discrete logarithm problem in the ring Z/NZ,
or the field IF,, must be as easy as the problem of factoring; however, it
appears as though it might be.

It has already been mentioned that the discrete logarithm problem has
many applications in cryptography. To assess the security of cryptographic
protocols which make use of the discrete logarithm problem, it is important
to understand the difficulties associated with computing these logarithms.
As part of the proof of security of such protocols, it is often desirable to
“reduce” the security of the protocol to the problem of computing discrete
logarithms. Doing this ensures that breaking the protocol is at least as dif-
ficult as finding an efficient algorithm for computing discrete logarithms. In
some cases such a reduction is not possible, however. One example is the
Diffie-Hellman conjecture described at the beginning of this paper. In this
case it is not known if breaking the Diffie-Hellman protocol is as hard as com-
puting discrete logarithms. Clearly, a strong understanding of the difficulties
associated with computing discrete logarithms will aid in the development of
protocols that make use of this problem for their security.
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