Compiler-Based Checkpointing and the Potential for Tolerding
Delinquent Loads

Chuck (Chengyan) Zhao, Greg Steffan, and Cristiana Amza
{czhao, st ef fan, anza}@ecg. t oront 0. edu

Dept of Computer and Electrical Engineering, Universityfofonto
Toronto, Ontario, Canada, M5S 3G

UT EECG Technical Report
Number UT-EECG-TR-2009-0017

April 2009
RO G E RS _ o
F‘ DEFARTMENT oOF] Department of Electrical and Computer Engineering
ILECTRICAL University of Toronto
LCOMPUTER Toronto, Ontario, Canada M5S 3G4

ENGINEERIMNG URL: http://www.ece.toronto.edu
=21k = ¥ ¥ CHEL M 1

Compiler-Based Checkpointing and the Potential for Tdilega
Delinquent Loads

Chuck (Chengyan) Zhao, Greg Steffan, and Cristiana Amza
{czhao, st ef f an, anza}@ecg. t or ont 0. edu

Dept of Computer and Electrical Engineering, Universityfofonto
Toronto, Ontario, Canada, M5S 3G

University of Toronto, Dept. of ECE, UT EECG TR-2009-0017
April 2009

Abstract

With processor vendors pursuing multicore products, aitehe expense of the complexity and aggressiveness of
individual processors, we are motivated to explore waysd@pilers can instead support more aggressive execution.
In this paper we propose support for fine-grained compiseseld checkpointing that operates at the level of individual
variables, potentially providing low-overhead softwardy support for speculative execution. As an initial atpem
to exploit this checkpointing support to improve the pariance of sequential programs, we investigate the potential
for using speculative execution to tolerate the latenayatihquent loadshat frequently miss in the second-level (last
level on-chip) cache. After demonstrating that delinqueatls are persistent across different cache architecames
program inputs for several SpecINT2000 benchmarks, wegsejand evaluate both data and control speculation
methods for hiding delinquent load latency. Through anéhgtudy of the delinquent loads in the MCF benchmark
we find that our ability to improve performance via such spegtoon is limited by (i) the unpredictability of delinquent
load result values, and (ii) the limited amount of compuatatbn which to speculate.

1 Introduction

While today’s computer hardware is characterized by thedance of processor cores in multicore chips, the individ-
ual processors themselves are generally not much moressiyg@ly speculative or out-of-order than previous designs
Instead the primary technique to cope with mounting lateéa@ff-chip memory is multithreading, such as Intel’'s Hy-
perthreading and SUN’s multithreaded Niagara processdahdse designs the long latency of an off-chip load miss
can be tolerated by executing another thread for the duratiche miss. However, there is a dearth of threaded
software—especially for desktop computing—which will lirthe impact of solutions that depend on multithreading
alone.

Prefetching is also a well-studied technique for addrgssiamory latency, via both hardware and compiler tech-
niques. However, prefetching for irregular data accesaasbe difficult, since irregular data accesses are difficult
to predict and since there is a close trade-off betweenatihgr latency and increasing overhead and traffic. This
environment underlines the importance of selective coenpéchniques for tolerating memory latency.

One way to be more selective is to focus @elinquent load¢DLs) [9, 36]. A DL is a particular memory load
in a program that frequently misses in a cache—typicallyl#sé-level cache on-chip. In other words, for many
applications a small number of DLs contribute a large fracbf all last-level cache load misses. Hence DLs, should
they be reasonably persistent across target architectnegsbe a good focal point for compiler optimization.

1.1 Tolerating DLs with Compiler-Based Checkpointing

We propose a software-only method for checkpointing progexecution that is implemented in a compiler. In
particular, our transformations implement checkpointihghe level ofindividual variables as opposed to previous

—c i SUIF } C

convert
back to
C

A

Jice/
{ POWER| | x86

—sannotated—| base | checkpointing
source transformations optimizations

code
SUIF frontend
s

base checkpointing transformations
2

hoisting-based optimizations

I
inlining
I
SUIF backend

|

1

‘ aggregation-based optimizations
: f

1

|

|

|

|

|
redundancy elimination-based optimizations ‘

|

i

Figure 1: Checkpointing system overview

work that checkpoints entire ranges of memory or entireabjerl he intuition is that such fine-grained checkpointing
can (i) provide many opportunities for optimizations theduce redundancy and increase efficiency, and (ii) faiglita
uses of checkpointing that demand minimal overhead, sutbl@sting DL latency. Subsequently we demonstrate
that DLs in several SpecINT2000 benchmarks are indeedgpensiacross a wide range of second-level (L2) cache
sizes and architectures, and that modern compilers anegsors do not alleviate them. Finally, we propose and
evaluate two methods of tolerating DL latency that exploinpiler-based fine-grained checkpointing to implement
software-only control and data speculation.

2 Support for Compiler-based Fine-grained Checkpointing

Checkpointing [13, 20, 21, 40, 48, 49] is the process of tgkansnapshot of program execution so that we can
rewind to that snapshot later if desired. Checkpointing &#agde range of uses and includes both hardware and
software implementations. While proposed hardware-baskdions [3, 30] can perform well, they have yet to be
adopted broadly in commercial systems. Software-only kgpe@ioting solutions [20, 21, 37, 49] are therefore more
immediately practical, although their inherent overheeals be prohibitive. In contrast with past work on coarse-
granularity checkpointing based on copying large memogyores or cloning objects, in this section we propose a
relatively lightweight compiler-based approach to chexkping that operates at the level of individual variables.

Overview Figure 1 presents a high-level overview of our checkpogqsiystem. We take as inputbased program,
with annotations that indicate where a checkpoint regiagirtseeand ends, as well as code that decides whether the
checkpoint should be committed or rewound. Our checkpagritiansformations and optimizations are implemented
as passes in the SUIF [15, 4] compiler, which outputs transfdC code that we can then compile to target a number
of platforms (currently x86 vigcc and POWER via IBMkI ¢ compilers). This source-to-source approach allows us
to capitalize on all of the optimizations of the back-end pdars.

Undo-Log vs Write-Buffer The most important design decision in a checkpointing sehisrthe approach to buffer-
ing: whether it will be based owrite-buffer[17, 26] or alternatively amndo-log[19, 31]. A write-buffer approach
buffers all writes from main memory, and therefore also megguthat the write-buffer be searched on every read.
Should the checkpoint commit, the write-buffer must be cott@a to main memory; should the checkpoint fail, the
write-buffer can simply be discarded. Hence for a writefdudpproach the checkpointed code proceeds more slowly,
but with the benefit that parallel threads of execution caeffetively checkpointed and isolated (e.g., for some ®rm
of optimistic transactional memory [17, 28]). An undo-lqgpaoach maintains a buffer of previous values of modified
memory locations, and allows the checkpointed code to wtiserread or write main memory directly. Should the

UT-EECG-TR-2009-0017 2

foo(X
intx,y, z

init_ckpt();

backup(&x, sizeof(x));
X= ..

for(...{

i)“ackup(&z, sizeof(z));
)1
backup(&y, sizeof(y));
}y =
.
attempt_commit();

}// end of foo()
(a) code with ckpt enabled

foo(X
intx,y, z

init_ckpt();

backup(&x, sizeof(x));
backup(&z, sizeof(z));
X= ..

for(...)}{

Z=...

(.. {

backup(&y, sizeof(y));

Y=
}

}o.
attempt_commit();

(b) hoisting optimization

foo(){
int x, z, y; // reordered
init_ckpt();
io“ackup(&x,
sizeof(x) + sizeof(z));
X= ..
for(...J
z= ..
i(..) {
backup(&y, sizeof(y));
y=..
}

attempt_commit();

(c) aggregation optimization

Figure 2: Fine-grain Checkpointing Optimizations

checkpoint commit, the undo-log is simply discarded; sadlé checkpoint fail, the undo-log must be used to rewind
main memory. Hence for an undo-log approach the checkmbedde can proceed much more quickly than a write-
buffer approach. For this work, since we are considering ardingle thread of execution we focus on an undo-log
approach.

Base Transformation Given that we implement an undo-log based approach, the gmsseof the checkpointing
framework is to precede all writes with code to back-up théenpcation into the undo-log. As illustrated in Fig-
ure 2(a), within the specified checkpoint region the vagakl y, andz are all modified and hence preceded with
abackup() call. Thebackup() call takes as arguments a pointer to the variable to be bagkeshd its size in
bytes. Figure 3 illustrates our initial design of an undg;lavhere we have divided the undo-log into two structures:
(i) a data buffer which is essentially a concatenation obaltked-up data values, which can be of arbitrary size; and
(i) a meta-data buffer which stores the length and stadithdress of each element. As an example, Figure 3(b) shows
the contents of an undo-log after thieackup() calls. When a checkpoint commits, we simply move the data and
meta buffer pointers back to the start of each buffer; whehezkpoint must be rewound, we use the meta buffer to
walk through the data buffer, writing each data element backain memory. In future work we will more thoroughly
investigate possibilities and trade-offs in the implenagiot of the undo-log.

Optimizations Our base transformation for fine-grain checkpointing paesisignificant opportunity for optimiza-
tion. Given the initial code shown in Figure 2(a), we can parf several optimizations. For example, as illustrated in
Figure 2(b) ehoistingpass which will hoist the backup of any variable written umtitionally within a loop outside of
that loop (variable in the example); note that such hoisting would not be peréarivy a normal hoisting pass since
the write to the variable is not necessarily loop invaridNdte also that we do not host varialylén the example since

it is only conditionally modified—whether to hoist such cage actually a trade-off that will be studied. A second
optimization is to aggregateackup() calls for variables which are adjacent in memory, potelytigarranging the
layout of the variables to ensure that they are adjateriggregation reduces the overhead of managing adjacent
variables individually (variables andz in the example). We are also investigating redundancy épditions to re-
move redundant and unnecessbackup() calls, and have implemented an inlining pass sobaatkup() is not
actually implemented as a procedure call but instead c@rmidy of the bare instructions for performing the back-up.

INote that for a source-to-source transformation this isattessarily a safe optimization as the back-end compilgrfarther rearrange the
variable layout—an implementation in a single unified cderpivould not have this problem.

UT-EECG-TR-2009-0017 3

...data buffer ...

"""" ...meta buffer ...

(a) checkpoint data buffer and checkpoint meta buffer

a 127 31 ... data buffer ...
0 i 5 chara="‘a’;
3a 8b 1 ge ...meta buffer ... intb = 127;
short ¢ = 31;

backup(&a, sizeof(a));
backup(&b, sizeof(b));
backup(&c, sizeof(c));

(b) checkpoint buffers at work

Figure 3: Undo-log buffering mechanism.

3 Identifying and Measuring Delinquent Loads

In this section we describe our methodology for identifyamgl measuring DLs, including our benchmark applications
and profiling infrastructure.

DL Identification We identify DLs by profiling second-level (L2) cache missaing a cache simulator based on
PIN [23] that we developed for this work. One compelling teatof this infrastructure is that, when a benchmark is
compiled with debug information, it allows us to directlysasiate load and store instructions with their correspagdi
source code location. Hence we can reliably map each loadiati®n that is responsible for a large fraction of L2
cache misses back to the offending source code locatiohidipaper, we will consider a particular load instruction to
be a delinquent load if it is responsible for greater than A%l L2 cache misses for a program. We will also refer
to the actual percentage of L2 cache misses asifreficanceof that delinquent load (i.e., a load that is responsible
for all of a program’s L2 cache misses would have a signifieanfcl00%).

Benchmark Applications In this study we focus on the Spec2000Int[11] benchmarkepiied using gcet.1.2 with

-O3 optimization. Our initial investigation of alC benchmarks found that only a subset of the applicationsagont
DLs, as listed in Table 1. This table also lists the particukef input that we use for each benchmark, as well as the
significance for each of the DLs in each benchmark (assumi2isp&B L2 cache with 32B cache lines and 2-way
set associativity). As is evident from the table, these fdvg Bre responsible for a very large fraction of all L2 cache
misses for these applications, ranging from 13.6% for VPBA&% for MCF.

UT-EECG-TR-2009-0017 4

| Name| InputData | % L2 misses |

mcf inp.in | DLO: 14.4%
(ref) | DL1:31.1%
DL2: 23.7%

DL3: 9.7%

DL4: 5.4%

DL5: 5.3%
total: 89.6%
bzip2 | input.program| DLO: 16.8%
(ref) | DL1:12.2%
DL2: 18.3%
DL3: 14.9%
total: 62.2%
vortex ref | DLO: 15.7%
DL1: 12.6%
DL2: 11.5%
total: 39.8%
parser ref.in | DLO: 10.4%
DL1: 18.6%
total: 29.0%
vpr ref | DLO: 13.6%
total: 13.6%

Table 1: The most significant DLs

4 Delinquent Load Persistence

To consider optimizing DLs in a compiler, we first want to beafident that the DLs for a program are not sensitive
to a particular size or configuration of the L2 cache. In tleist®on we measure theersistenceof L2 load misses
and DLs in our benchmark applications across a broad ranj2 cache architectures. We also measure persistence
across program inputs and compiler vendors.

4.1 Persistence across L2 Architectures

We measure a wide range of L2 cache architectures, with g&gig from 256KB to 4MB, cache-line size varying
from 32B to 128B, and associativity varying from 2 ways to 1#ya. Table 2 summarizes the combinations that we
study for each cache size—the index is only to indicate tlative order of the combinations, and is the implied x-axis
for each cache size for the remaining result graphs in tipgpa

To start, in Figure 5 we present the average number of L2 claeltemisses per 1000 instructions across our L2
cache configuration space. Note that even a single L2 cacbe mer 1000 instructions is fairly significant, since
an L2 miss can result in a 300-500 cycle miss penalty depgnaolinthe processor. It is evident that there are a
significant number of L2 load misses regardless of configpmatespecially for MCF which suffers more than 20 L2
load misses per 1k instructions for the smaller L2 cachessi@ace the L2 cache size is 2MB or larger, the incidence
of L2 cache misses is greatly reduced. This is partly bectnes8pecINT2000 benchmark suite was not designed to
properly exercise processors with greater than 1MB on-cRipaches, so for designs with 2MB L2 caches or larger
the working set for most applications is resident. MCF is aception, and continues to have a relatively frequent
occurrence of L2 cache misses even for large L2 caches.

Figure 4 demonstrates the persistence of each of the DLg ipemchmarks across L2 cache architectures. Focus-
ing on the experiments using thef inputs, we see that DLs are generally persistent acros#iegtires, with the
significance of the DLs for some applications dropping offlf@ caches that are 2MB or larger. Since MCF has such
a large incidence of DLs we also include DLs that compriseantilban 5% of all L2 cache misses. For MCF, three of
the DLs remain persistent even for a 4MB L2 cache. For VPRirtam DL becomes insignificant for 2MB or larger
L2 caches. For both BZIP2 and PARSER, while some DLs becossesignificant as L2 cache size increases, one of

UT-EECG-TR-2009-0017 5

Index | Line-size | Assoc.
32B
32B
32B
32B
64B
64B
64B
64B

128B

128B
128B
128B

=

=
OO BRANOO©OAEANOO®OEAEADN

RO WOW®O~NOUMWNERO

el
'—\

Table 2: Cache configuration space explored (across a rdihgecache sizes).

the DLs becomes more significant.

4.2 Persistence Across Program Inputs

Figure 4 also demonstrates DL persistence across prograutsirby showing results for both thef andt r ai n
inputs for each benchmark. Most DLs remain persistent acaoshitectures (up to 1IMB L2 caches), although for
VPR its single DL becomes insignificant, as does one of PARSERs. This is likely due to the fact thatr ai n
inputs are generally not as largerasf inputs, reducing the L2 cache capacity required to fit thekimgrset for these
benchmarks.

4.3 MCF: A Deeper Look

In this section and for the remainder of this paper we focud/@¥, since it has the most significant DLs of any
benchmark. Our first question is whether DLs are consistenusa different compilers. In Figure 4(k) we compile
MCF with gcc version4.0.4 and in Figure 4(l) we compile with Intel'scc version10.1 [2], both running on the

r ef input. Four of the DLs remain consistent across the two ctargiwhile two of them change between the two
compilers (DL3 and DL5).

Figure 6 shows the corresponding code for the top six DLs irFM@hich provides insight into DL characteristics
in integer applications. First, all DLs reside within a peinaccess, fetching a field from a structure. Examining
source code shows that all DLs are part of a linked-list treade All link-list nodes are dynamically allocated which
presents little inter-node spatial locality—implying tltmnventional prefetching techniques will not be effeetior
these DLs. Second, the majority of DLs are withitevel pointer access (OLto DL4), while only DL5 is through
multiple levels of pointer indirection. This matches thdesbf single-level link list where most actions happen wvith
the single node that is currently being accessed. Third, &kamore likely to happen within a frequently-accessed
field of a big structure whose size is larger than the caafedize. Knowing the size of arc 2B (DL1 to DL5)
and the size of node i80B (DL0), they are either equal-to or larger-than the smallest&dicke that we simulate
(32B)—loading a different linked-list node of either type is radikely to cause cache misses on such architectures.
Finally, when there are multiple levels of pointer access{this is more likely to be a DL, because such accesses
are very unlikely to remain within a single cache line.

4.4 Summary

For code containing large numbers of tache load misses and exhibiting DL behaviors, we obseetiie DL
source locations and cache behaviors are persistent a@iggs cache architectures provided the working set-origi
nated from these DLs won't entirely fit into the cache. Thissggence motivates us to investigate compiler techniques
to tolerate the latency of DLs.

UT-EECG-TR-2009-0017 6

~ DLOmculic:88 ~ DLObzip2.c:1260
. = DL1:impiicit.c:250 |+ DLO:place.:2002 | |-+ DL1:bzip2.c:2688
° - DL2impicitc:252 i ® ® - DL2:bzip?.c:2688 s
e - DL3:implicit:80 | E 2 DL3:b7ip?.¢:228; I [
S, = DLd:pbeampp.c:191 | S S [\“\J‘ |
e — DL5:pheampp.c:41 [] Ea £ o] ¥ \‘
B Y \
5]) / | /\
@ o I3 »® ey I e
o © T [I A
] LR H et | A
Se = L S0 A |
€ € € ana\ e
§ S0 [e A A v/
2 £ £”
£ = £
a a s,
10 :
5
. o
& o \@ w&»* & & & * & &
L2 Configurations L2 Configurations
0 0
~DLobap2c1260
~ DLOmculic:88 Dlopace200] - DLibzp2c:1866
. ~+-DLtimpicit 0250 o DL2bap2 1067
° - DL2implicit.c:252 i g% 3, (‘1 DL3bzip2 01674
e s DL3impicit:80 | 2 2 - DLabzp2c:1875
S, e DLépbeampp.cii9t | H 3. oLstapro168
e — DL5:pheampp.c:41 [] £, = - DL6bzp2:1883
£ = = \ /A — DL7bzp2c:1890
o s o P A -\ DLzas2c1091
» @ d | —osempcarr
s S, T |, [preey A -
g 3 H I »
2 z z I o |
b € £ Y v I
s R s | \
3 z E | i
E £ £ | \
= s 3 = LA S
: : AT
a
5 \/
o S & & S S S
& & & e & ra & x s

L2 Configurations

(b) MCF:train

L2 Configurations

(d) VPR:train

L2 Configurations

—

(f) BZIP2:train

Delinquent Load Significance
“
<

[DLObmIobjc:831
-+ DL1:mem10.c:752
A |+ DL2:mem10.c:596)

Delinquent Load Significance
™
{
7
£}
g 1
1
<
5
1

g
%
%
.
.
%,

&

~
L2 Cache Configuration Space

(9) PARSER:ref

L2 Configurations

(i) VORTEX:ref

~—DLO:mlullc:88
@ -+ DL1:implict ¢:250

~ DL2implicit.c:252 |
DL3:impiicit c:80 |

—+DL4:pbeampp.c:191

—~ DL5:pbeampp.c:41 |

Delingent Load Significance

L2 Configuration

(k) MCF:ref,gcc4.0.4-02

[~ DLO:xalloc.c:122]

Delinquent Load Significance

e * * & S
& < & © &

(h) PARSER:train

f
/
[l
[{
| \ | | [~pLomemtoc7s2
| \ 1l l - DL1:mem10.c:596
T
|

Delinquent Load Significance

L2 Configurations

(j) VORTEX:train

——DLO:mefuilc:88
250

o Dl

251
plcit.¢:252 i
—— DL3impicit ¢:258 |
- DL4:pbeampp.c:191 1
—=—DL5:pbeampp.c:196 [

—Dl

Delinquent Load Significance

L2 Configuration

() MCF:ref,icc10.1-02

Figure 4: Persistence of DLs across: (a-j) architecturddsmchmark inputs; and (k-I) compiler vendors.

5 Tolerating Delinquent Loads with Speculative Execution

In this section we propose two techniques that leverage tderdgased fine-grained checkpointing to tolerate DLs,
namely data and control speculation. For such single-tle@apeculation, we must make a prediction about the

UT-EECG-TR-2009-0017

45

™ - MCF
40 T ey . N —
‘ [N = Parser
‘ ‘ T Vortex ——————

35

| / \‘/‘. -4 ““ . — Vpr
3 \ / \
ey ¢

25

20

L2 Load Misses per 1K Instructions

L2 Configuration

Figure 5: Number of L2 cache load misses per 1K instructiansypss different cache configurations (described in
Table 2).

resulting value of a DL and execute code that uses that fiedim make progress rather than awaiting the DL result
value from off-chip; this approach exploits the paralleliprovided by a wide-issue superscalar processor that can
execute instructions in parallel with memory referencdsally the latency of the DL is hidden when the prediction is
correct, but execution can be rewound and re-executed tlengprrect DL value should the prediction be incorrect.
We evaluate the proposed techniques using MCF, the benkhmitarthe most prominent DLs according to our study
in the previous section.

5.1 Overview

Figure 7(a) illustrates the challenge presented by a DLLthmiss latency for a DL can be lengthy, and the compu-
tation that follows the DL\or k()) likely depends on the DL’s result value)(Figure 7(b) provides an overview of
how to tolerate a DL by overlapping the DL miss latency witecpative execution of the subsequent code using a
predicted valueW). The DL is scheduled as early as possible, followed by tmeggion of a predicted valug).

The computation proceeds using the predicted vahos k(v)), with that computation being checkpointed to
support computation rewind. When the computation is coteple compare the predicted value with the actual
value, and if they are equal then we can commit the checkgasshown in Figure 7(b)). Ideally such a successful
prediction and speculation will result in a performancengalative to the non-speculative original code. Should
the value be mispredicted, as illustrated in Figure 7(@ntlve must rewind the checkpoint and then perform the
computation with the correct result value of the Dio¢ k(x)). The combined overheads of checkpointing as well
as rewinding and retrying the computation can result in foperance loss relative to the original code.

5.2 Prediction

The effectiveness of speculation depends on the data picedaccuracy, since frequently-inaccurate predictioth wi
result in an overwhelming amount of failed speculation. cAlhe complexity of the predictor itself is a source of
overhead—a cost that must be overcome by the benefits oétivigithe DL latency to produce speedup.

We implement and evaluate two of the simplest previousgppsed value predictors [6, 22, 39, 47]: including a
last value predictor and a stride-based predictor. Theviasie predictor simply predicts that the next value will be
the same as the last value observed, requiring only a siraglable for storage. The stride predictor computes the
difference between each consecutive pair of values andagsetiat the difference will be constant: hence the stride
predictor must store the last value as well either the ctx&ne or the differencstride between them.

UT-EECG-TR-2009-0017 8

while(node != root){
while(node){
if(node->orientation == UP) /I DLO
node->potential = node->basic_arc->cost + node->pred->potential;
elsef{
node->potential = (node->pred)->potential -node->basic_arc->cost;
checksum++;

}

}
(a) DLO: mcfutil.c:86

while(arcin){
tail = arcin->tail, /IDL 1

if(tail->time + arcin->org_cost > latest){ // DL 2
arcin = (arc_t *)tail->mark;
continue;

}
(b). DL1: implicit.c:250, DL2: implicit.c:252
cost_t compute_red_cost(cost_t cost, node_t *tail, cost_t head_potential)

cost_t cost; node_t *tail; cost_t head_potential;

{

return (cost - tail->potential + head_potential); // DL3
}
(c) DL3: mcfutil.c:80

for(; arc < stop_arcs; arc += nr_group)

if(arc->ident > BASIC) { // DL4
red_cost = bea_compute_red_cost(arc);

}
}

(d) DL4: pbeampp.c:191

cost_t bea_compute_red_cost(arc_t *arc
return(arc->cost - arc->tail->potential + arc->head->potential); // DL5
}

(e) DL5: pbeampp.c:41

Figure 6: Significant DL locations in MCF

Figure 8(a) shows the accuracy of last value and stride gi@dion the DLs in MCF. DL, DL2, and DL5 have
close to0% prediction accuracy and hence cannot benefit from the fdrspeculation that we propose. Blhas a
high prediction accuracy ¢f1.3% using the last-value predictor, and hence is our best datelfor speculation. A
closer look at the value distribution for lgiven in Figure 8(b) shows that the valliés extremely common, while
only two other values are observed (for thef input)—obviating while a last-value predictor does well fiois DL.
The stride predictor achiev&s.84% accuracy for this DL, but predicting a stride of zero (iret really capitalizing
on the stride predictor’s ability). DhLand DL5 have only &22.85% and43.7% prediction accuracy respectively and
will likely suffer from too much misprediction to enjoy a gmup from speculation. For these DLs we find that the
last-value predictor out-performs the stride predictoewery case, in addition to the stride predictor being shight
higher overhead. Hence we focus on implementations of $qiBmu based on the last-value predictor.

To try to reduce mispeculation and improve prediction aacurfor the DLs we tried two things. First, we also
measured previously-proposed context-based predidtatscan predict fixed-length sequences of arbitrary values,
but we expect that the storage and computation complexisuol predictors would be prohibitive. However, our
initial studies showed that even aggressive context-basatictors did not significantly improve prediction acayra

UT-EECG-TR-2009-0017 9

load x (DL) f f Tioad x (D)
| v.= predict(); | ¢ dv.=predict();
start ckpt | = start ckpt
,,,,,,,,, o R
work (v) : é work (v)
- 1
i 18|
i | € :
time ; | 3 !
! BB
1
- 1
: ' :
; .
Ny d v
commit_ckpt(); / x ==v rewind_ckpt(); / x I=v
work(x);
N) performance gain
performance loss

(a) normal execution (b) successful speculation (c) failed speculation

Figure 7: Overview of tolerating a DL with speculative exgon.

for MCF, hence we do not discuss them further here. Seconetlaad of reducing the rate of costly misprediction is
through an implementation @bnfidencean n-bit saturating counter which tracks the recent aayuoé prediction,
such that future predictions are only actually made whetidence is above a certain threshold. However, we found
that a variety of confidence counters (ranging frbiit to 3-bit) did not improve the misprediction rate significantly.

5.3 Data Speculation

The first method of tolerating DL latency that we evaluatdasa speculatiofDS) where we predict the result data
value of the DL and use it to continue execution speculatiad illustrated in Figure 9. After issuing the DL as early
as possibleX), predicting the DL's data value), starting the checkpoinB], and speculatively executing based on
that predicted valuedj, we then attempt to commit the speculation. The commit ggedirst checks whether the
prediction was correctj: if so then the checkpointis committe@)(otherwise the checkpoint is rewour®j &nd the
computation is re-executed using the correct DL resulte/é8)

5.4 Control Speculation

Whenever a the result value of a DL is ussdelywithin a conditional control statement, as shown in Figuiéa}, we
have an interesting opportunity: rather than predictiregakact result value of the DL we can instead merely predict
the boolean result of the conditional—which ideally will reaeasily be an accurate prediction than predicting the
exact result value. We call this form of speculation con8pkculationCS) which is essentially a special-case of
data speculation.

Modern processors perform branch prediction and speeealgxecute instructions beyond the branch—however
this speculation is limited to the size and aggressivenigbg@rocessor’s issue window. With compiler-based cdntro
speculation we can ideally speculate more deeply, allowigter opportunity for tolerating all of the latency of a
DL.

UT-EECG-TR-2009-0017 10

Type | Last Value Strider
Predictor (%)
(%)
DLO | CS 22.85 18.56
DL1 | DS 0.0 0.0 Value Distribution
bz | cs Y Y Percentage
. . 1 94.66
DL3 | DS 1.75 1.72
0 3.65
DL4 | CS 91.3 81.84
DL5 | DS 4367 30.84 2 1.69
(a) MCF DLs’ Value Prediction Accuracy (b) MCF DL4’ Value Distribution

Figure 8: MCF DL (a) prediction accuracy and the type of sfamn each DL is amenable to, data speculation (DS)
or control speculation (CS), and (b) value distribution®dhr4.

6 Performance Modeling and Evaluation

In this section, we give both theoretical performance miodednd practical evaluation of the proposed speculative
technigues on real machines. We 1st present mathematadgisésof the implicit DL memory overlapping model and
give theoretical upper-bound predictions of potentiafgenance gains. We show that the theoretical model predicts
50%-+ relative speedup. We then apply this model on syntbetichmarks running on real machines and demonstrate
that the relative performance gain of the micro benchmaokadyy matches the theoretical prediction. We finally
conduct a detailed study for applying the model on a realdvDi-intensive application with software speculation
enabled.

6.1 Theoretical Performance Modeling

Figure 11 illustrates the ideal timing model for overlagpéxecution with DLs. Figure 11(a). is the normal sequential
model where the total execution time is the sum of both DL eyelnd the overlapped work cycles. This represents
the condition where the DL value is immediately needed tainoe execution. While under the overlapped model
(Figure 11(b)), the total execution time is thr@ximumof the two. This models the cases of either the DL value is
not immediately needed or the DL is used to make a predictain&ol-flow decision thus its precise value is less
important.

Let CL denote to the cycles of a cache miss andleenote to the cycles of overlapped work, we have

Teequential =CL + C

Tspeculate = maX(CL7 C)

Let Sdenote to relative speedup of overlapping execution with ¢ give the definition o8

S = T@equential - T@pecula,te _ CL+C— maX(C’L, C)
B Tsequential N CL + C

)

Thus the ideal theoretical speedup for only overlapping Wit cache is

UT-EECG-TR-2009-0017 11

: t=P->a; /l issue DL
: v = predict(); // value prediction
: start_ckpt(); // start ckpt

A w N =

: work(v); /Ispeculative execution

[3)]

work(P->a); // DL cif(t==v){ // check prediction
6: commit_ckpt();
}
elsef
7: rewind_ckpt();
8: work(t); /I normal re-execute

}

(a) original code (b) with data speculation

Figure 9: Tolerating a DL via data speculation.

. CL; + C —max(CL4,C)

S
CLi+C
_JEESERE 0<oL
CLtc-C, if C>CL

C .
m, |fC<CL1
s, fC>CL

And the ideal theoretical speedup for only overlapping withcache is

_ CLy+ C —max(CLy,C)

S
ClLy +C
_ {7%25;5“, i C < CLa
CLo+C-C i
CEHtEE, ifC>CLy

C .
{mmﬁ,nc<ch

CcL ;
m, |f C 2 CLQ

In addition, we obtain the theoretical speedup for overilagith combined Ll and L2 cache by aggregating the
individual speedups:

C C .
cioc tcrgo: H0<SC<CLy

— CL C .
S=95cohac torae FCLi<C<CL

cL CL -
oric T oo, fC=>CL2

UT-EECG-TR-2009-0017 12

1. t=P->a; /l issue DL
2: start_ckpt(); // start ckpt

3: work1(); /] speculative execution
if(P->a){

/I DL, commonly true 4: if(t == predict()){ //check prediction

work1(); //“no use of P->a” 5. commit_ckpt();

! }
elsef else(
work2(); // “no use of P->a”

}

6: rewind_ckpt();
7: work2(); /I normal execution

}

(a) original code (b) with control speculation

Figure 10: Tolerating a DL via control speculation.

Figure 12 presents three theoretical speedup curves folappéng with L1 cache only, with 2 cache only, and
overlapping with combined1-and-L2 cache. It shows both the overall similarity and individuiffledences. For ease
of comparison, we fix the Lcache miss cycles 0 (CL1) and L2 cache miss cycles ta00 (CL2).

The curve that overlaps with L1-only workload goes sharplys peak fron0 to CL1 (20) cycles in the beginning.
Since the L1-miss-and-L2-hit cycles are relatively shibtias only limited room to stretch before reaching its theo-
retical maximum, which is predicted to be 50% when the oypgrdal cyclesC) equals to L1-miss-and-L2-hit cycles.
The curve that overlaps with L2-only work can be treated agbotally scaling the L1 curve to match with L2-miss-
and-memory-hit cycles (CL2) and its theoretical perforsenpperbound is also 50%. Given ideal workloads, the
two theoretical speedups can further combine and genemaaggregrated effect that can cross the 50% threshold,
presented as the CL2-centered triangle-like area in FigRire

6.2 Benchmarks

With theoretical speedup predictions, it comes to implernties predicted speculative techniques and realize the per-
formance premium in real workloads. We propose two set oliegdpn suites for evaluation. The 1st set is a group of
synthetic micro benchmarks, including linklist, binaryaseh tree, B-tree, red-black tree, avl tree, etc. They beav

a similar way that accessing to dynamically allocated datecgires results frequent cache misses (DLs). The 2nd set
contains real-world applications that expose data strastand memory access patterns more complex than synthetic
benchmarks. At the same time, they need to exhibit extemdivbehaviors that are suitable for our DL study. For
performance evaluation, we use linklist as the represgatainong the group of synthetic benchmarks and we select
MCF from Spec2000int suite due to its frequent and intenBivdoehaviors.

6.3 Micro Benchmark Performance

We construct the linklist benchmark such that the size ohewade is larger than the size of the cache line on the
machine it evaluates. To exacerbate the DL situation, wdaize the starting address of each node in the linkist.
This helps to cripple the hardware prefetcher as it beconffsudt to predict the starting address of the next node
in the linklist with randomization enabled. By adjustingethumber of nodes in the linklist, we achieve the effect
of either polluting only L1 cache (L1-DL), or polluting bothl-and-L2 cache (L1L2-DL) through a single linklist
traversal. The empirical list size we use is 4K nodes for U1dhd 2M nodes for L1L2-DL, respectively. We use
RDTSC[1, 50] for fine-grain time measurement.

The real-machine used for evaluating the benchmarks hagybesiore 3.0GHz Pentium-1V CPU, with 16KB 4-
way set-associative L1 data cache, 12KB 8-way set-ass@xiat instruction cache, and 1MB 8-way set-associative

UT-EECG-TR-2009-0017 13

L3 Y X x x x
é : % | 5

s | o S| 8

i i &

o : = : C <

i ! . . H ' i —

; i time time M i)
T =

® 3

(] v __ v

IS

&

< C

o

=

2 v
(a). sequential model (b). speculative (overlapped) model

Figure 11: Ideal Timing Model

L2 cache. The cacheline size is consistent at 64B. Each mezasat data point is the arithmetic averagé afide-
pendent runs.

Figure 13 shows the relative speedup of overlapping with IL1uBing linklist. The workload to overlap with
DL is a loop performing accumulation of integer adds (showrxeaxis), while y-axis gives the relative speedup.
Figure 13 represents close similarity of the theoreticatimtion of L1 speedup curve given in Figure 12. It reaches
its maximum of 45% with overlapping roughly 70 INT-ADDs.

When performing testing on real machines, a workload thidifes L2 cache must already have L1 cache polluted.
It is difficult to obtain the performance figure with worklotiwat overlaps with only L2 cache (L2 DL). We thus focus
on the real workload that overlaps with L1-and-L2 (L1-L2 DL)

Figure 14 shows the relative performance result when oppiteg with both L1 and L2 cache DLs on a real
machine. In stage 1, the curve reaches around 35% speedapgily 70 INTADDs. This agrees with our own
measurement given in Figure 13 and it is the effect of mostrlapping L1 DL. In stage 2, the curve maintains
stableness over 35% with top gain reaching very close to@k& theoretical peak. This closely matches the L1-and-
L2 prediction given in Figure 12 where a wide cap of 35%+ redgperformance is expected after Stage 1.

We give theoretical predictions on performance gain whietriaps with various level of cache. We verify this
claim with macro benchmarks that can reach very close tduberetical peak. These results are obtained under ideal
conditions that i). there is no need to do checkpointing beeahe workload has no global side effect (similar to
a purefunction), and ii). there is no failed speculation becatneitvolved predictor can produce 100% prediction
accuracy. However, such ideal situations may not hold undefsynthetic benchmarks on real machines.

6.4 Initial Results for MCF

In this section we investigate the potential for compilaséd data and control speculation to tolerate DL latency,
focusing on the DLs in MCF. Any beneficial data speculatios toesatisfy a critical condition: the data value must be
highly predictable. Any low data value prediction accuraffectively renders data speculation unattractive dubéo t
overwhelming expense of failed speculation. Of the thres Bést-suited to data speculation in MCF (DDL3, and
DL5), unfortunately all three have prediction accuracies #nattoo low to exploit. For control speculation, MCF’s
DLO and DL2 are also too unpredictable to exploit; howevedpresents an interesting case. This DL has only 3
different result values, where both the numerical valuabsthrir distributions are given in Figure 8(b). It is easy to
see that a static branch predictor that always predictstékee) will yield 96.35% accuracy.

The 100% accuracy case (pred+ckpt+nousepred) represenextreme where prediction and checkpointing are
both enabled and aggressively optimized, but the predictle is not actually used—hence this case measures our
overheads without allowing any speculative overlap. Thseaesults in only a tiny slowdown of 0.14%, emphasizing

UT-EECG-TR-2009-0017 14

Speedup of Overlapping DLs

50

.
8

—— Overlap L1 only
— Overlap L2 only
— Overlap L1and L2

5
=]

Speedup (%)

mmmmmmmmmmmmmmmm

cL1 #0of CPU Cycles cL2

Figure 12: Relative Speedup of Ideally Overlapping Exesutvith DLs on Various Levels of Cache

Predictor | Accuracy | Speculative Perf
pred+ckpt+nousepred 100% -0.14%
branch always taken 96.35% -0.51%
constvalue(1l) 94.66% -1.33%

last value 91.3% -1.36%

const value(0) 3.65% -1.49%

const value(2) 1.69% -2.43%
always predict wrong 0.0% -2.45%

Table 3: Prediction accuracy and performance for MCF:Dl&veral predictors—the negative speedup percentages
are all slowdowns.

the efficiency of our checkpointing framework. Various potars yield different accuracies, ranging from 96.35% for
a static taken branch predictor (always predicts true)@98%. of a const value predictor (always predicts the value 0).
These are fully functional speculation executions witltoeaohecking and failure recovery in place. Their respective
performance shows steady degradations with the ever daiggearediction accuracy. This matches our expectation
that low prediction accuracy triggers failed speculatithag are overwhelmingly expensive.

A small overall slowdown of 2.43% (with 1.69% prediction acacy) is derived from a much larger slowdown
factor on regional granularity. The row with 0.0% prediatiaccuracy is achieved by constantly predicting a data
value of -1, which is neither in the distribution of availaialues (Figure 8(b)) for value prediction, nor contrilsute
any success in branch prediction (Figure 6, DL4 case). Thaiglbbal slowdown of 2.45% represent the performance
lower bound in the worst case that a forever failing speautatansformation can cause.

A few critical conditions need to be satisfied simultanepirsbrder for control speculation to work. This includes
(1) highly-biased branch prediction toward selected spegeleggion;(2) overlapping code region that is coarse-grain
enough to closely match the DL latency and compensate cbéatkm overhead(3) no control-flow terminating
instructions within the overlapping code region which caenpaturely terminate speculative executift),no reuse
of DL's value within the speculative region, arfsl) no hidden DLs in the speculative region that are covered by
a leading DL. Among the three control-speculation casesO(ML 2 and DL4), DL4 is the only one that yields
prediction accuracy high enough to proceed further. Unfaately, DI4 has only a small computation to potentially
overlap with (see Figure 6): this code region is too finesgtaicompletely hide the long-latency DL while tolerating
the software checkpointing overhead. In addition4D& aleadingDL, which means that it covers other memory
loads whose code distances toDare within the cache line size. Speculative execution od Brieaks its delinquent

UT-EECG-TR-2009-0017 15

Speedup Overlapping with DL1

509

40%

—— 4K Nodes

30%

Relative Speedup

=)
2

0 =

~ T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

#of INT-ADDs

Figure 13: Relative Speedup Overlapping with L1-only DL cgaRMachine

nature, but exposes DLs that used to be hidden and coverée llgading DL. As a result, control speculation ondDL
gives no positive performance despite its high predictipusaacy.

6.5 Summary

We present theoretical analysis of speculative fine-graerlapping with DLs and predict that the relative speedup
will reach 50%+ given combined L1-and-L2 DL cache effect®e Measure the performance gains of representative
synthetic benchmarks on real machine and verify that theortaenchmark delivers performance close to theoretical
peak under ideal conditions. We continue our detailed stafdgpeculative execution using MCF and demonstrates
that MCF has balanced DL cases in control speculation aradsgetculation. We find that the DL data values are not
always predictable; however, a simple last-value predmtstatic branch predictor offers the best overall acoufac
those that are predictable. We find that MCF’s data speculatises are generally unsuitable for software speculation
due to their low prediction accuracy. We identify a contpsulation case in MCF that has highly attractive predictio
accuracies. We implement compiler transformations torbgye on this DL and overlap with sequential execution. We
believe that further success of speculative techniqudsalsib heavily depend on the nature of the overlapping code
region which needs to be coarser in granularity.

UT-EECG-TR-2009-0017 16

Speedup of Overlapping with DL2

60%

——2M-Nodes

509

4094

30 N

2094

Relative Speedup

1094

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

of INT-ADDs

Figure 14: Relative Speedup Overlapping with L1-and-L2 DLReal Machine

7 Related Work

Our techniques are based on a wide spectrum of existing wakdated areas, including prefetching, multithreading,
prediction, checkpointing, speculation and identifyinigsD

Prefetching Prefetching alleviates an application suffering from freqt cache misses [9, 24, 25, 32, 33]. Memory
prefetching copies data from memory to cache in anticipationear-future uses. Prefetching helps to hide memory
access latency because execution needs no stall when tiaguista that used to reside off chip. Prefetch non-DL
locations provide little benefit, but with the guaranteegdense of wasted CPU cycles, increased usage of memory
bandwidth and potential cache pollution. The effectiverefsprefetching depends on precisely identified DL loca-
tions.

Multithreading Long-latency memory access can be handled by multithrgddizy 38, 45, 46]. On a system with
multiple threads in ready state, any running thread withachkihg memory access will be context switched out
immediately. The processor keeps busy by executing thneaidseing blocked. It hides the long memory latency
as the blocking thread will never execute before its memocgss request has been satisfied. Multithreading greatly
improves CPU utilization rate and throughput of a multigmam system, but has little benefit for the thread that
frequently blocks on DLs.

Prediction Prediction is a mechanism to identify the outcome of a fuaicteon. This includes predict the branch taken
or non-taker(branch prediction)8, 43, 51, 52], predict a target address that a branch wifigfer control tdtarget
address prediction])7, 47], and predict the value from a load instruction or action call return(value prediction]6,

22, 39, 42, 47]. Majority of existing prediction researcltdses on obtaining high prediction accuracy, while the
expense and complexity of building predictors that aclmig\such accuracy is often considered less important. In
our software-only speculative scheme prediction conteibto overhead, hence we aim to achieve the same level of
prediction accuracy while employing the simplest solutiwat has the lowest overhead.

Speculation Speculation is a form of optimistic program execution whiesilt might not be needed [10, 14, 16, 29].
Speculation handles control or data uncertainties that banstatically proved. Steffan at al. [14, 44, 53] studied
a speculative multi-core architecture that extends cacherence protocol to include speculative states and lsuffer
speculative change in cache. Most existing work is basedpenutative hardware support with limited buffering
capacity, which limits the granularity of the program ragtbat can be speculated. In contrast we explore a software-
only speculative approach that has no hardware dependéleagly on both accurate and efficient software prediction

UT-EECG-TR-2009-0017 17

as well as lightweight software checkpointing to enablecgfion. We further leverage on aggressive compiler
optimizations for speculative overhead reduction.

Checkpointing A checkpointing [13, 20, 21, 34, 40, 48, 49] enabled prograpies data to its backup storage under
designated request, in preparation for unexpected progreors and facilitate recovery by restoring the backup.data
While hardware-based checkpointing solutions [3, 30deldesired performance, they come with a price premium
and suffer from lack of availability and support in commatadystems. Software-only checkpointing solutions [20,
21, 37, 49] don't have inherited hardware dependency, ehafarry prohibitive overhead through copying of coarse-
grain memory blocks. This often prevents them from boarcptidn. In contrast with existing checkpointing work
on coarse-granularity, we develop a lightweight softwainé solution that works on a per-variable granularityslai
compiler-based scheme that leverages on static prograysanand targets aggressive overhead reduction.

Identifying DLs Panait at el. [36] investigated techniques to identify Diagisally. They examine code on assembler
level, categorize memory load instructions into variousugs, and calculate a final weight based on profiling info
obtained through training. They single 0% of data loads that generai@% of all cache misses. However, their
approach is based on short-distance predictable memogyioeh. Thus their scheme is applicable only in isolating
level-1 DLs. In addition, the identified DLs are memory locations gsembly format, non-trivial to recognize on
source level. We identify DLs through an efficient softwaeete simulator based on PIN [5, 23, 35]. It can be
configured to deal with artificially many levels of cache amdapable of identifying DLs at any designated cache level.
It provides service to map loadPCs back to source prograati@ots, which is particularly useful to enable compiler
optimizations. Zhao at el. [54] introduced a lightweighdamline runtime methodology to identify DLs. They observe
that bursty online profiling and mini simulation of short memtraces can largely represent the underlying memory
behaviors. Their simulation provides 61% overall accuraitly only 14% extra runtime overhead. However,they also
introduces a 57% false positive ratio, a prohibitive nunfbeany speculative compiler adopting their technique.

8 Conclusion

In this paper we present our discovery that le¥&\4_s from cache-miss intensive applications are persisterdss a
wide variety of cache architectures and input data setsivisted by this persistence, we present compiler transforma
tions dealing with both control speculation and data sgimn. Our in-depth study of the DLs in MCF finds that the
DL result values are not always predictable; for those thatasimple last-value predictor or static branch predicto
is sufficient to give the best overall experience. We showspaculative overhead can be aggressively optimized to
have only negligible impact on overall application perfamoe and further success of software speculation alsoyhighl
depends on the nature of the application and the avaikbilisufficient computation to overlap with the DL.

8.1 Future Work

In this work we found that the overheads of compiler-basegtkpointing relative to the potential for speculative
overlap for DLs (at least in MCF) were too prohibitive. Howevwith the appearance of hardware support for
transactional memory [27] we may be able to capitalize ornréskeiced overhead to use it to implement fine-grain
speculative optimizations such as tolerating DL latency a¢o plan to pursue alternative client optimizations for
compiler-based fine-grained checkpointing such as dehgggipport, and possibly as part of an optimized software
transactional memonSTM [18, 41].

UT-EECG-TR-2009-0017 18

References

[1] Using the rdtsc instruction for performance monitoririg Pentium Il Processor Application Notes, Intel Corporatid®97.
[2] Intel c++ compiler user’s guide. 2008.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint gsging and recovery: An efficient, scalable alternativeetvder
buffers. InlIEEE Computer Society003.

[4] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. §sefihe suif compiler for scalable parallel machines. In
Proceedings of the Seventh SIAM Conference on Paralleld®ging for Scientific Computingebruary 1995.

[5] P. P.Bungale and C.-K. Luk. Pinos: A programmable framdufor whole-system dynamic instrumentation.Aroceedings
of the 3rd ACM/USENIX International Conference on VirtuakEution Environments (VEE 2002007.

[6] B. Calder, G. Reinman, and D. M. Tullsen. Selective vgitediction. Ininternational Symposium on Computer Architecture
archive 1999.

[7] P.-Y. Chang, E. Hao, and Y. N. Patt. Target predictionifalirect jumps. InProceedings of the 24th annual international
symposium on Computer architecture (ISCA ;Mpy 1997.

[8] I. cheng K. Chen, J. T. Coffey, and T. N. Mudge. Analysidbadinch prediction via data compression.Pioceedings of the
7th International Conference on Architectural SupportfRsogramming Languages and Operating Systems (ASPLOS%.

[9] J. Collins, H. Wang, D. Tullsen, C. Huges, Y.-F. Lee, Dvksy, and J. Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. &A&CM SIGARCH Computer Architecture Newtay 2001.

[10] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowriplerating dependences between large speculative threéad
sub-threads. Iinternational Symposium on Computer Architecture (ISQAhe 2006.

[11] S. P. E. Corporation. Spec2000 integer benchmarksu@00.

[12] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tollssimultaneous multithreading: A platform for next-gextem
processors. IHEEE/ACM International Symposium on Microarchitectut897.

[13] W. Elnozahy, D. Johnson, and W. Zwaenepoel. The perdoca of consistent checkpointing. 1th Symposium on Reliable
Distributed Systems, pp. 39-4@ctober 1992.

[14] S. Fung and J. G. Steffan. Improving cache locality foetd-level speculation. IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPA&pril 2006.

[15] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mups.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the suif compilerlEEE ComputerDecember 1996.

[16] L. Hammond, M. Willey, and K. Olukotun. Data speculatisupport for a chip multiprocessor. ACM SIGOPS Operating
SystemsDecember 1998.

[17] L.Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, Rrttberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotu
Transactional memory coherence and consistenc&MriSIGARCH Computer Architecture New&arch 2004.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. 8sére transactional memory for dynamic-sized data strastun
The Twenty-Second Annual Symposium On Principles Of Bigéd Computing2003.

[19] H.V.Jagadish, A. Silberschatz, and S. Sudarshan. \Reity from main-memory lapses. Rrocs. of the International Conf.
on Very Large Databases (VLDR)993.

[20] G. Kingsley, M. Beck, and J. Plank. Compiler-assisteeakpoint optimization using suif. IRirst SUIF Compiler Workshap
1995.

[21] C. Li, E. Stewart, and W. Fuchs. Compiler-assisted ¢tkckpointing. InSoftware-practice and Experience, Vol 24(10),
871-886 October 1994.

[22] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value ligaand load value prediction. IACM SIGOPS Operating Systems
Review December 1996.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumigéon. In PLDI 05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implemenigtages 190-200, New York, NY, USA, 2005. ACM.

[24] C.-K. Luk and T. C. Mowry. Compiler-based prefetchirgy fecursive data structures. froceedings of the Seventh Inter-

national Conference on Architectural Support for Prograimgn_anguages and Operating Systems, pages 222Q8®ber
1996.

[25] C.-K.Lukand T. C. Mowry. Automatic compiler-insertpdefetching for pointer-based applicationsItEEE Transactions
on Computers, Vol. 48, No, Eeburary 1999.

UT-EECG-TR-2009-0017 19

[26] A. Mcdonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. @h&. Kozyrakis, and K. Olukotun. Architectural semantios f
practical transactional memory. ACM SIGARCH Computer Architecture Ne®606.

[27] S. Microsystems. A third-generation 65nm 16-core 32ad plus 32-scout-thread cmt sparc(r) processor. Fgh2088.

[28] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. Logt Log-based transactional memory. Hiigh-Performance
Computer Architecture (HPCA2006.

[29] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.iSBlynamic speculation and synchronization of data depecee
In International Symposium on Computer Architecture (ISQAP7.

[30] A. Moshovos and A. Kostopoulos. Cost-effective, higgrformance giga-scale checkpoint/restoreCémputer Engineering
Group Technical ReparfNovember 2004.

[31] J. E. B. Moss. Log-based recovery for nested transastimProceedings of the 13th International Conference on Vergéa
Data Bases1987.

[32] T.C. Mowry. Tolerating latency through software-cailed data prefetching. March 1994.

[33] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluatad a compiler algorithm for prefetching. Wrchitectural
Support for Programming Languages and Operating Syst2882.

[34] W. Ng and P. Chen. The symmetric improvement of fauletahce in the rio file cache. IRroceedings of 1999 Fault
Tolerance Computing (FTC)999.

[35] H. Pan, K. Asanovic, R.Cohn, and C.Luk. Controlling gram execution through binary instrumentation. SIGARCH
Computer Architecture News 33, Z005.

[36] V. Panait, A. Sasturkar, and W.-F. Wong. Static idecdifion of delinquent loads. Imternational Symposium on Code
Generation and OptimizatigiMarch 2004.

[37] J.Plank, M. Beck, and G. Kingsley. Compiler-assistesimory exclusion for fast checkpointing. IBEE Technical Commit-
tee on Operating System and Application Environments,i&ldesue on Fault-Tolerangel 995.

[38] A.Roth and G. S. Sohi. Speculative data-driven mukititling. InSeventh International Symposium on High-Performance
Computer Architecture (HPCA2001.

[39] B. Rychlik, J. Faistl, B. Krug, and J. Shen. Efficacy arafprmance impact of value prediction. Rarallel Architectures
and Compilation Techniques (PACGTP98.

[40] C.S. An evaluation of recovery related properties dfvgare faults. InPh.D. thesis2004.

[41] B. Saha, A.-R. AdI-Tabatabai, R. L. Hudson, and C. C. Mi.aMcrt-stm: A high performance software transactionaimuoey
system for a multi-core runtime. Rrinciples and Practice of Parallel Programming(PPORRPO6E.

[42] Y. Sazeides and J. E. Smith. The predictability of datlues. In30th International Symposium on Microarchitectut®97.

[43] J. E. Smith. A study of branch prediction strategiesSIGARCH: ACM Special Interest Group on Computer Architegtu
25 years of the international symposia on Computer architec(selected papers1998.

[44] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Aakble approach to thread-level speculation.International
Symposium on Computer Architecture (ISCAne 2000.

[45] D. M. Tullsen and J. A. Brown. Handling long-latency ésain a simultaneous multithreading processor.34th Annual
IEEE/ACM International Symposium on Microarchitectu2801.

[46] D. M. Tullsen, S.J. Eggers, and H. M. Levy. Simultanepustithreading: maximizing on-chip parallelism. Imternational
Symposium on Computer Architectut®95.

[47] K. Wang and M. Franklin. Highly accurate data value fc&dn using hybrid predictors. IRroceedings of the 30th annual
ACM/IEEE international symposium on Microarchitectut®97.

[48] Y. Wang, Y. Huang, K. Vo, P. Chung, and C. Kintala. Cheaikping and its applications. [85th Int. Symp. On Fault-Tol.
Comp., pp. 22-31June 1995.

[49] J. Whaley. System checkpointing using reflection armypam analysis.

[50] P. Work and K. Nguyen. Measure code sections using tharezed timer. Iintel(R) Software Networi2008.

[51] T.-Y. Yeh and Y. N. Patt. Two-level adaptive trainingabch prediction. Irthe 24th annual international symposium on
Microarchitecture (MICRQO)1991.

[52] P.yung Chang, E. Hao, and Y. N. Patt. Alternative impemations of hybrid branch predictors. Rmoceedings of the 28th
Annual International Symposium on Microarchitecture (NRIQ), 1995.

[53] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Guoler optimization of scalar value communication betwepecs
ulative threads. Iinternational Conference on Architectural Support for framming Languages and Operating Systems
(ASPLOS)October 2002.

[54] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and WVEng. Ubiquitous memory introspection. Rroceedings of
the International Symposium on Code Generation and Opditioiz (CGO) 2007.

UT-EECG-TR-2009-0017 20

