Tolerating Delinquent Loads with Speculative
Execution

Chuck (Chengyan) Zhao, J. Gregory Steffan, Cristiana Amza, and Allan
Kielstraf

Dept. of Electrical and Computer Engineering
University of Toronto
{czhao,steffan,amza}@eecg.toronto.edu
fIBM Toronto Laboratory
IBM Corporation
kielstra@ca.ibm.com

ABSTRACT

With processor vendors pursuing multicore products,
often at the expense of the complexity and aggres-
siveness of individual processors, we are motivated
to explore ways that compilers can instead support
more aggressive execution. In this paper we propose
support for fine-grain compiler-based checkpointing
that operates at the level of individual variables, po-
tentially providing low-overhead software-only sup-
port for speculative execution. By exploiting this
checkpointing support to improve the performance
of sequential programs, we investigate the potential
for using speculative execution to tolerate the la-
tency of delinquent loads that frequently miss in the
second-level (last level on-chip) cache. We propose
both data and control speculation methods for hid-
ing delinquent load latency. We develop a theoretical
timing model for speculative execution that can yield
up to 50% relative speedup. Our initial testing using
synthetic benchmarks strongly supports this model.

1. INTRODUCTION

While today’s computer hardware is characterized
by the abundance of processor cores in multicore
chips, the individual processors themselves are gen-
erally not much more aggressively speculative or out-
of-order than previous designs. Instead the primary
technique to cope with mounting latency to off-chip
memory is multithreading, such as Intel’s Hyper-
threading and SUN’s multithreaded Niagara proces-
sor: in these designs the long latency of an off-chip
load miss can be tolerated by executing another thread
for the duration of the miss. However, there is a
dearth of threaded software—especially for desktop
computing—which will limit the impact of solutions
that depend on multithreading alone.

Prefetching is also a well-studied technique for ad-
dressing memory latency, via both hardware and com-
piler techniques. However, prefetching for irregular
data accesses can be difficult, since irregular data ac-
cesses are difficult to predict and since there is a close
trade-off between tolerating latency and increasing
overhead and traffic. This environment underlines
the importance of selective compiler techniques for
tolerating memory latency.

One way to be more selective is to focus on delin-
quent loads (DLs) [8, 36]. A DL is a particular
memory load in a program that frequently misses
in a cache—typically the last-level cache on-chip. In
other words, for many applications a small number of
DLs contribute a large fraction of all last-level cache
load misses. Hence DLs, should they be reasonably
persistent across target architectures, may be a good
focal point for compiler optimization.

1.1 Tolerating DLswith Compiler-Based
Checkpointing

‘We propose a software-only method for checkpoint-
ing program execution that is implemented in a com-
piler. In particular, our transformations implement
checkpointing at the level of individual variables, as
opposed to previous work that checkpoints entire
ranges of memory or entire objects. The intuition
is that such fine-grain checkpointing can (i) provide
many opportunities for optimizations that reduce re-
dundancy and increase efficiency, and (ii) facilitate
uses of checkpointing that demand minimal over-
head, such as tolerating DL latency. We propose
two methods of tolerating DL latency that exploit
compiler-based fine-grain checkpointing to implement
software-only control and data speculation. We eval-
uate the performance potential through both theo-
retical analysis and synthetic benchmark testing on

real machines.

1.2 Contributions

We make the following contributions in this paper:

e we implement a software-only checkpointing frame-

work that leverages on compiler analysis and
targets aggressive overhead reduction;

e we propose control and data speculative com-
piler transformations that will overlap with DLs;

e we propose a theoretical performance model
of relative speedups and implement synthetic
benchmarks whose evaluation results strongly
support the modeling.

2. RELATED WORK

Our techniques are based on a wide spectrum of
existing work in related areas, including prefetch-
ing [8, 24], multithreading [11, 38], checkpointing [12,
19], speculation [9, 13] and identifying DLs.

Panait at el. [36] investigated techniques to iden-
tify DLs statically. They examine code at the assem-
bler level, categorize memory load instructions into
various groups, and calculate a final weight based
on profiling information obtained through training.
They single out 10% of data loads that generate
90% of all cache misses. However, their approach is
based on short-distance predictable memory behav-
iors. Thus their scheme is applicable only in isolat-
ing level-1 DLs. In addition, the identified DLs are
memory locations in assembly format, which is non-
trivial to map to source locations. Zhao at el. [55]
introduced a lightweight and online runtime method-
ology to identify DLs. They observe that bursty on-
line profiling and mini simulation of short memory
traces can largely represent the underlying memory
behaviors. Their simulation provides 61% overall ac-
curacy with only 14% extra runtime overhead. How-
ever,they also introduces a 57% false positive ratio,
a prohibitive number for any speculative compiler
adopting their technique. We identify DLs through
an efficient software cache simulator based on PIN [4,
23, 35]. It can be configured to deal with artificially
many levels of cache and is capable of identifying
DLs at any designated cache level. It provides ser-
vice to map loadPCs back to source program loca-
tions, which is particularly useful to enable compiler
optimizations.

3. COMPILER-BASED FINE-GRAIN
CHECKPOINTING

Checkpointing [12, 19, 21, 40, 48, 49] is the pro-
cess of taking a snapshot of program execution so

—c i SUIF } c——
. convert
—fannotated base | checkpointing —Iback to
source transformations| optimizations c
code ’ilj/ %\

Jice/
{ POWER | x86

r
base checkpointing transformations ‘
3

| ‘ hoisting-based optimizations

aggregation-based optimizations
f

dund T o

!

inlining

‘ SUIF frontend [‘g'v
|

|
|
|
?4

SUIF backend }

Figure 1: Checkpointing system overview

that execution can rewind to that snapshot later if
desired. Checkpointing has a wide range of uses and
includes both hardware and software implementa-
tions. While proposed hardware-based solutions [2,
30] can perform well, they have yet to be adopted
broadly in commercial systems. Software-only check-
pointing solutions [19, 21, 37, 49] are therefore more
immediately practical, although their inherent over-
heads can be prohibitive. In contrast with past work
on coarse-granularity checkpointing based on copy-
ing large memory regions or cloning objects, in this
section we propose a relatively lightweight compiler-
based approach to checkpointing that operates at the
level of individual variables.

Overview Figure 1 presents a high-level overview
of our checkpointing system. The system takes as
input a C-based program, with annotations that in-
dicate where a checkpoint region begins and ends,
as well as code that decides whether the checkpoint
should be committed or rewound. Our checkpointing
transformations and optimizations are implemented
as passes in the SUIF [3, 14] compiler, which out-
puts transformed C code that can then be compiled
to target a number of platforms (currently x86 via
gcc and POWER via IBM’s xlc compilers). This
source-to-source approach allows us to capitalize on
all of the optimizations of the back-end compilers.

Undo-Log vs Write-Buffer The most important
design decision in a checkpointing scheme is the ap-
proach to buffering: whether it will be based on
write-buffer [16, 26] or alternatively an undo-log [18,
31]. A write-buffer approach buffers all writes from
main memory, and therefore requires that the write-
buffer be searched on every read. Should the check-

foo(){ foo(){ foo(){

intx,vy, z intx,vy, z intx, z, y; // reordered
init_ckpt(); init_ckpt(); init_ckpt();
backup(&x, sizeof(x)); backup(&x, sizeof(x)); backup(&x,

X= .. backup(&z, sizeof(z));
X=.

for(...{ ot X=..
or(...

sizeof(x) + sizeof(z));

B“ackup(&z, sizeof(z));
z=... z=..;
if(...) { if(...) { z=..;
backup(&y, sizeof(y)); backup(&y, sizeof(y)); if(...){
Y= Y= backup(&y, sizeof(y));
} } Y=
}
b b
}

attempt_commit();

for(...){

attempt_ it();

)// end of foo()))

(a) code with ckpt enabled ! (b) hoisting optimization (c) aggregation optimization

Figure 2:
mizations

Fine-grain Checkpointing Opti-

point commit, the write-buffer must be committed to
main memory; should the checkpoint fail, the write-
buffer can simply be discarded. Hence for a write-
buffer approach the checkpointed code proceeds more
slowly, but with the benefit that parallel threads of
execution can be effectively checkpointed and iso-
lated (e.g., for some forms of optimistic transactional
memory [16, 28]). An undo-log approach maintains
a buffer of previous values of modified memory lo-
cations, and allows the checkpointed code to other-
wise read or write main memory directly. Should the
checkpoint commit, the undo-log is simply discarded;
should the checkpoint fail, the undo-log must be used
to rewind main memory. Hence for an undo-log
approach the checkpointed code can proceed much
more quickly than a write-buffer approach. For this
work, since we are considering only a single thread
of execution with focus on performance, we proceed
with an undo-log approach.

Base Transformation Given that we implement
an undo-log based approach, the base pass of the
checkpointing framework is to precede all writes with
code to backup the write location into the undo-log.
As illustrated in Figure 2(a), within the specified
checkpoint region the variables x, y, and z are all
modified and preceded with a backup() call. The
backup() call takes as arguments a pointer to the
variable to be backed up and its size in bytes. Fig-
ure 3 illustrates our initial design of an undo-log,
where we have divided the undo-log into two struc-
tures: (i) a data buffer which is essentially a concate-
nation of all backed-up data values of arbitrary sizes;
and (ii) a meta-data buffer which stores the length

...data buffer ...

a 127 ‘ 31 ‘ ... data buffer ...
X 7
0 i 5 chara=‘a’;
PP BT S ...meta buffer ... intb =127;
shortc = 31;

backup(&a, sizeof(a));
backup(&b, sizeof(b)).
backup(&c, sizeof(c));

(b) checkpoint buffers at work

Figure 3: Undo-log buffering mechanism.

and starting address of each element. As an example,
Figure 3(b) shows the contents of an undo-log after
three backup() calls. When a checkpoint commits,
we simply move the data and meta buffer pointers
back to the start of each buffer; when a checkpoint
must be rewound, we use the meta buffer to walk
through the data buffer, writing each data element
back to main memory. In future work we will more
thoroughly investigate possibilities and trade-offs in
the implementation of the undo-log.

Optimizations Our base transformation for fine-
grain checkpointing provides significant opportuni-
ties for optimizations. Given the initial code shown
in Figure 2(a), we can perform several optimizations.
For example, as illustrated in Figure 2(b) a hoisting
pass which will hoist the backup of any variable writ-
ten unconditionally within a loop to the outside of
that loop (variable z in the example); note that such
hoisting would not be performed by a normal hoist-
ing pass since the write to the variable is not neces-
sarily loop invariant. Note also that we do not hoist
variable y in the example since it is only conditionally
modified—whether to hoist such cases is a trade-off
that will be studied in future work. A second opti-
mization is to aggregate backup() calls for variables
which are adjacent in memory, potentially rearrang-
ing the layout of the variables to ensure that they
are adjacent.! Aggregation reduces the overhead of
managing adjacent variables individually (variables x
and z in the example). We have implemented an in-

Note that for a source-to-source transformation this
isn’t necessarily a safe optimization as the back-end
compiler may further rearrange the variable layout—
an implementation in a single unified compiler would
not have this problem.

lining pass so that a backup() is not actually imple-
mented as a procedure call but instead consists only
of the bare instructions for performing the backup.
In future work, we will also investigate redundancy
optimizations to remove redundant and unnecessary
backup () calls.

4. DELINQUENT LOADS IDENTIFI-
CATION AND PERSISTENCE

DL Identification We identify DLs by profiling
second-level (L2) cache misses using a cache simu-
lator based on PIN [23] that we developed for this
work. The PIN framework identifies each memory-
access instruction from the application and directs
them to a software cache model. Within each mem-
ory access, the software model captures necessary
access signatures (read vs. write, effective memory
address, length of data, etc.) and performs efficient
cache simulation. The software cache model is easily
configurable when dealing with various cache config-
urations, including the total levels of cache, cache
size, cache-line size, degree of associativity, replace-
ment policy, etc.

One compelling feature of this infrastructure is
that, when a benchmark is compiled with debug in-
formation, it allows us to directly associate load and
store instructions with their corresponding source
code location. Hence the simulator can reliably map
each load instruction that is responsible for a large
fraction of L2 cache misses back to the offending
source code location. In this paper, we will con-
sider a particular load instruction to be a delinquent
load if it is responsible for greater than 10% of all
1.2 cache misses for a program. We will also refer
to the actual percentage of L2 cache misses as the
significance of that delinquent load (i.e., a load that
is responsible for all of a program’s L2 cache misses
would have a significance of 100%).

DL Persistence We use SPEC2000INT [10] bench-
marks, compiled with compilers of various vendors
(gee and icc), versions (gec 3.4.4, 4.0.4, 4.1.2, 4.2.4,
4.3.2, and icc 9.1), and optimization levels (00, 02
and O3) to study DL locations and properties. We
configure the cache simulator with 2-level cache that
covers a large variations of cache size, cache line size
and degree of associativity.

Our initial investigation of all SPEC2000INT C
benchmarks found that only a subset of the appli-
cations contain DLs. Within that subset, the DLs
have the following persistent properties:

e the DLs are persistent across various L2 cache
configurations (size, line size, ways of associa-

foad x (L) 1 1 Jioad x (DL) f 1 Jioad x (L)
! | i dv.=predict(); | i xv=predict();
: | 5. |start ckot | < |start kot
H o o
! | € T | € T
! 2 | work (v) 2 | work (v)
; | & . v) | & ! v)
i | 8 i 18|
i 2 2 i
. ; L&l I
time| i R : 3 i
] Lo N
: L Lol
i | ; | i
S S BAEE E ,Y,,i,l"”;””
work (x)
: commit_ckpt(); // x ==v rewind_ckpt(); // x I=v
i work(x);
i
; performance gain
7 0
i performance loss
J K2

(a) normal execution (b) successful speculation (c) failed speculation

Figure 4: Overview of tolerating a DL with
speculative execution.

tivity), as long as the working set doesn’t en-
tirely fit into the L2 cache;

e the DLs are persistent across different compil-
ers, including vendors, versions and optimiza-
tion levels;

e the DLs are persistent across inputs (training
or reference).

Interested readers should refer to [54] for further
detail.

5. TOLERATING DELINQUENT LOADS

WITH SPECULATIVE EXECUTION

In this section we propose two techniques that
leverage compiler-based fine-grain checkpointing to
tolerate DLs, namely data and control speculation.
For a single-threaded speculation, we must make a
prediction about the resulting value of a DL and exe-
cute code that uses that prediction to make progress
rather than waiting for the DL result value from
off-chip. This approach exploits the parallelism pro-
vided by a wide-issue superscalar processor that can
execute instructions with memory access in paral-
lel. Ideally the latency of the DL is hidden when
the prediction is correct, but execution can rewind
and re-execute using the correct DL value should the
prediction be incorrect.

5.1 Overview

Figure 4(a) illustrates the challenge presented by
a DL: the L2 miss latency for a DL can be lengthy,
and the computation that follows the DL (work())

1: t=P->a; /l issue DL

2: v = predict(); // value prediction

3: start_ckpt(); // start ckpt

4: work(v); I/speculative execution

5. if(t==v)

6: commit_ckpt();
}

else{

work(P->a); // DL /I check prediction

7: rewind_ckpt();
8: work(t);
}

/I normal re-execute

(a) original code (b) with data speculation

-

: t=P->a; /l issue DL
: start_ckpt(); // start ckpt

. work1();

w N

1/ speculative execution
if(P->a){

/I DL, commonly true 4: if(t == predict()){ //check prediction

: commit_ckpt();

} }

work1(); //“no use of P->a”

(3

elsef else{
work2(); // “no use of P->a 6: rewind_ckpt():
} 7: work2(); /I normal execution

}

(a) original code (b) with control speculation

Figure 5: Tolerating a DL via data specula-
tion.

likely depends on the DL’s result value (x). Fig-
ure 4(b) provides an overview of how to tolerate a DL
by overlapping the DL miss latency with speculative
execution of the subsequent code using a predicted
value (v). The DL is scheduled as early as possible,
followed by the generation of a predicted value (v).
The computation proceeds using the predicted value

(work(v)), with that computation being checkpointed
to support execution rewind. When the computa-
tion is complete, we compare the predicted value
with the actual value, and if they are equal then
we can commit the checkpoint (as shown in Fig-
ure 4(b)). Ideally such a successful prediction and
speculation will result in a performance gain rela-
tive to the non-speculative original code. Should the
value be mispredicted, as illustrated in Figure 4(c),
then we must rewind the checkpoint and re-perform
the computation with the correct result value of the
DL (work(x)). The combined overheads of check-
pointing as well as rewinding and retrying the com-
putation can result in a performance loss relative to
the original code.

5.2 Data Speculation

The first method of tolerating DL latency that we
evaluate is data speculation (DS) where we predict
the result value of the DL and use it to continue exe-
cution speculatively, as illustrated in Figure 5. After
issuing the DL as early as possible (1), predicting
the DL’s data value (2), starting the checkpoint (3),
and speculatively executing based on that predicted
value (4), we then attempt to commit the specula-
tion. The commit process first checks whether the
prediction was correct (5): if so then the checkpoint

Figure 6: Tolerating a DL via control specu-
lation.

is committed (6), otherwise the checkpoint is re-
wound (7) and the computation is re-executed using
the correct DL result value (8).

5.3 Control Speculation

Whenever the result value of a DL is used solely
within a conditional control statement, as shown in
Figure 6, we have an interesting opportunity: rather
than predicting the exact result value of the DL we
can instead merely predict the boolean result of the
conditional—which ideally will more easily be an ac-
curate prediction than predicting the exact result
value. We call this form of speculation control spec-
ulation (CS), which is essentially a special-case of
data speculation. The speculative compiler transfor-
mations of tolerating control speculation are given in
Figure 6.

Modern processors perform branch prediction and
speculatively execute instructions beyond the branch—
however this speculation is limited to the size and
aggressiveness of the processor’s issue window. With
compiler-based control speculation we can ideally spec-
ulate more deeply, allowing greater opportunity for
tolerating all of the latency of a DL.

6. PERFORMANCE

In this section, we give both a theoretical per-
formance model and a practical evaluation of the
proposed speculative techniques on real machines.
We first present a mathematical analysis of the im-
plicit DL memory overlapping model and give the-
oretical predictions of potential performance bene-
fits. We show that the theoretical model predicts
approximately 50% relative speedup. We then ap-

¥ ¥ ¥ ¥ ¥ ¥
g | g | ‘
)) (%]
s |oL s |oL 8
o i O ; S
| : p i
a | a : c 9
; i time time H v : é
+ * :
» 3 3
[0} :)
© i
5 :
£ | ©
5 :
=
v

(a). sequential model (b). speculative (overlapped) model

Speedup of Overlapping DLs

t
405
\ — Overlap L1 only
— Overlap L2 only
— Overlap L1 and L2

Speedup (%)

mmmmmmmmmmmmmmmmmmmmmmmmmmmm

cL1 #0f CPU Cycles cL2

Figure 7: Ideal timing model

ply this model on synthetic benchmarks running on
real machines and demonstrate that the relative per-
formance gain of the synthetic benchmarks closely
matches the theoretical prediction.

6.1 Theoretical Performance Modeling

Figure 7 illustrates the ideal timing model for over-
lapping execution with DLs. Figure 7(a) is the nor-
mal sequential model where the total execution time
is the sum of both DL cycles and the work cycles
whose continuation relies on the DL. This represents
the conditions where the DL’s value is immediately
needed to allow execution to proceed, thus the pro-
gram stalls until the DL value returns. Under the
overlapped model (Figure 7(b)), the program con-
tinues with the predicted value while the memory
system is serving the DL. This resembles a level of
memory-level parallelism though there is no explicit
parallel thread needed to fetch the DL. Thus the to-
tal execution time is the mazimum of the two. This
models the cases when either the DL’s value not be-
ing immediately needed or the DL being used to
make a predictable control-flow decision and there-
fore its precise value is less important.

Let CL denote the cycles of a cache miss (DL) and
let C denote the cycles of work that overlaps with
the DL, we have

Tsequential =CL+C

Tspeculate = maX(CL, O)

Figure 8: Relative speedup of ideally over-
lapped execution with DLs on various levels
of cache

Let S denote the relative speedup of overlapping
execution with DL, we give the definition of S

Tsequential - Tspeculate _ CL+C - maX(CL, C)
B CL+C
(1)

Thus the ideal theoretical relative speedup for only
overlapping with only a L1 cache is

S =

Tsequential

. CL, +C — max(C’Ll,C)

s
CL,+C
cras, fC>CL

Similarly the ideal theoretical relative speedup for
only overlapping with only a L2 cache is

_ CLy+C — max(CLg,C’)

S

CLy +C
iitg, i C>CLy

In addition, we obtain the theoretical relative speedup
for overlapping with combined L1 and L2 cache by
aggregating individual speedups:

C C :
W+m7 lfO§C<CL1
— C :
S— T_"l_c-‘rm7 1fCL1§C<CL2
Sl She if C > CLs

CL1+C CLy+C?

Figure 8 presents three theoretical relative speedup
curves for overlapping with L1 cache only, with L2
cache only, and overlapping with combined L1-and-
L2 cache respectively. It shows both the overall sim-
ilarity and individual differences. For ease of com-
parison, we fix the L1 cache miss latency to 20 cycles
(CLy) and L2 cache miss latency to 500 cycles (C'Ly).

The curve that overlaps with Ll-only workload
goes sharply to its peak from 0 to C'L; (20) cycles in
the beginning. Since the L1l-miss-and-L2-hit cycles
are relatively short, the curve has only limited room
to stretch before reaching its theoretical peak, which
is predicted to be 50% when the overlapped cycles
(C) equal to L1-miss-and-L2-hit cycles (C'Li). The
curve that overlaps with L2-only work can be treated
as horizontally scaling the L1 curve to match with
L2-miss-and-memory-hit cycles (C'L2) and its theo-
retical performance upper-bound is also 50%. Given
ideal workloads, the two theoretical speedups can
further combine and generate an aggregated effect
that can cross the 50% threshold, presented as the
C'La-centered triangle-like area in Figure 8.

6.2 MicroBenchmarks

We developped a set of synthetic benchmarks for
real-machine evaluation. This includes linked list
(linklist), binary search tree, B-tree, red-black tree,
AVL tree, and hashtable, etc. They behave similarly
in that accesses to dynamically allocated data struc-
tures result in frequent cache misses (DLs). We use
linklist as the representative for this initial study. We
make each node in the linklist larger than the cache
line size on the machine it evaluates. To exacer-
bate the situation, we randomize the starting address
of each node, which helps undermine the hardware
prefetcher. By adjusting the number of nodes in the
linklist, we achieve the effect of either polluting only
the L1 cache (L1-DL), or polluting both Ll-and-L2
caches (L1L2-DL) through a single linklist traversal.
The empirical list size we use is 4K nodes for L1-DL
and 2M nodes for L1L2-DL, respectively. We use
RDTSC [1, 50] for fine-grain time measurement.

The machine used for evaluating the benchmarks
has a single-core 3.0GHz Pentium-IV CPU, with a
16KB 4-way set-associative L1 data cache, a 12KB 8-
way set-associative L1 instruction cache, and a 512KB
8-way set-associative shared L2 cache. The cache-
line size is consistent at 64B. Each measurement data
point is the arithmetic average of at least 5 indepen-
dent runs.

Speedup Overlapping with DL1

501

~—

[—#— 4K Nodes

Relative Speedup

o0 L=

~
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

#of INT-ADDs

Figure 9: Relative speedup overlapping with
Ll-only DL on real machine

6.3 Micro Benchmark Performance

Figure 9 shows the relative speedup of overlapping
L1 DL using linklist. The workload to overlap with
DL is a loop performing accumulation of integer adds
(INTADDs, shown on the x-axis), while the y-axis
gives the relative speedup. Figure 9 is very similar to
the theoretical prediction of L1 speedup curve given
in Figure 8. It reaches its maximum of 45% while
overlapping roughly 70 INTADDs.

When performing testing on real machines, a work-
load that pollutes the L2 cache must already have the
L1 cache polluted. It is difficult to obtain the perfor-
mance figure with a workload that overlaps with only
the L2 cache (L2 DL). We thus focus on workloads
that overlaps with L1l-and-L2 (L1-L2) DL.

Figure 10 shows the relative performance result
when overlapping with L1-L2 DLs. In stage 1, the
curve reaches around 35% speedup at roughly 70
INTADDs. This agrees with our own measurement
given in Figure 9 and it is the effect of mostly over-
lapping L1 DL. In stage 2, the curve maintains sta-
bleness over 35% with maximum reaching very close
to the 50% theoretical peak. This closely matches
the L1-and-L2 prediction given in Figure 8 where a
wide range of 35%+ relative performance is expected
after stage 1.

6.4 Challengewith Real-World Applica-
tions

We give theoretical predictions on performance anal-
ysis which overlaps with various levels of cache. We
verify this claim with micro benchmarks that can
reach very close to the theoretical peak. These re-
sults are obtained under ideal conditions that (i)

Speedup of Overlapping with DL2

——2M-Nodes

Relative Speedup

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

of INT-ADDs

Figure 10: Relative speedup overlapping with
Ll-and-L2 DL on real machine

there is no need to do checkpointing because the
workload has no global side effect (similar to a pure
function), and (ii) there is no failed speculation be-
cause the involved predictor can yield 100% predic-
tion accuracy. However, such ideal situations may
not hold under non-synthetic benchmarks on real
machines.

In the future, we plan to investigate the feasibility
of applying the control and data speculation trans-
formations we introduced in this paper to real-world
applications (e.g., the DL-intensive applications in
the SPEC2000INT suite). We expect some major
challenges. First, even with all checkpointing op-
timizations enabled, checkpointing overhead is non
trivial and can’t be ignored. Second, the branch or
value prediction’s success rate plays an important
role because failed predictions will directly translate
into failed speculation and triggers the recovery and
retry overhead. Third, the compiler needs to find
enough work that can potentially overlap with the
identified DL. Finally, the compiler needs to rec-
ognize an ideal sweet spot to terminate speculative
overlapping.

6.5 Summary

We present theoretical performance analysis that
models speculative execution overlapping with vari-
ous levels of DLs. We predict the relative speedup
will be around 50% through the model and verify it
with real synthetic benchmarks that can reach very
close to the theoretical peak. The results are ob-
tained on real machines under ideal speculative con-
ditions. The encouraging results motivate us to do
further exploration using real-world applications.

7. CONCLUSIONSAND FUTURE WORK

In this paper we present our discovery that level-2
DLs from cache-miss intensive applications are per-
sistent across a wide variety of cache architectures
and input data sets. Motivated by this persistence,
we present compiler transformations dealing with both
control speculation and data speculation. We con-
duct theoretical performance modeling that predicts
around 50% relative speedup. Our study using syn-
thetic benchmarks strongly supports this claim.

We plan to investigate speculative execution that
overlaps with DLs on real-world benchmark appli-
cations (e.g., the SPEC2000INT suite). The DL-
persistent nature that exists in these applications
provides an ideal granularity to further explore spec-
ulative execution that can be enabled through com-
piler transformations.

The emergence of hardware transactional mem-
ory [27] provides ideal hardware acceleration for fine-
grain checkpointing. We plan to capitalize on the
reduced overhead to use it to implement fine-grain
speculative optimizations such as tolerating DL la-
tency. We also plan to pursue alternative client op-
timizations for compiler-based fine-grain checkpoint-
ing such as debugging support, and possibly as part

of an optimized software transactional memory (STM) [17,

41).

8. ACKNOWLEDGEMENTS

This work is funded by support from both IBM
and NSERC. Chuck is supported by an IBM CAS
Ph.D. fellowship since 2007.09. The authors would
like to thank the anonymous reviewers for their feed-
back and insightful comments. The authors would
also like to thank Mihai Burcea for the resourceful
discussions during development.

9. REFERENCES

[1] Using the rdtsc instruction for performance
monitoring. In Pentium II Processor Application
Notes, Intel Corporation, 1997.

[2] H. Akkary, R. Rajwar, and S. Srinivasan.
Checkpoint processing and recovery: An efficient,
scalable alternative to reorder buffers. In IEEE
Computer Society, 2003.

[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam,
and C. W. Tseng. The suif compiler for scalable
parallel machines. In Proceedings of the Seventh
SIAM Conference on Parallel Processing for
Scientific Computing, February 1995.

[4] P. P. Bungale and C.-K. Luk. Pinos: A
programmable framework for whole-system
dynamic instrumentation. In Proceedings of the 3rd
ACM/USENIX International Conference on
Virtual Ezecution Environments (VEE 2007),
2007.

[5]

[6]

7

B

[9]

[15]

[16]

18]

B. Calder, G. Reinman, and D. M. Tullsen.
Selective value prediction. In International
Symposium on Computer Architecture archive,
1999.

P.-Y. Chang, E. Hao, and Y. N. Patt. Target
prediction for indirect jumps. In Proceedings of the
24th annual international symposium on Computer
architecture (ISCA ’97), May 1997.

I. cheng K. Chen, J. T. Coffey, and T. N. Mudge.
Analysis of branch prediction via data compression.
In Proceedings of the 7Tth International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS),
1996.

J. Collins, H. Wang, D. Tullsen, C. Huges, Y.-F.
Lee, D. Lavery, and J. Shen. Speculative
precomputation: Long-range prefetching of
delinquent loads. In ACM SIGARCH Computer
Architecture News, May 2001.

C. B. Colohan, A. Ailamaki, J. G. Steffan, and

T. C. Mowry. Tolerating dependences between
large speculative threads via sub-threads. In
International Symposium on Computer
Architecture (ISCA), June 2006.

S. P. E. Corporation. Spec2000 integer benchmark
suites. 2000.

S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and
D. Tullsen. Simultaneous multithreading: A
platform for next-generation processors. In
IEEE/ACM International Symposium on
Microarchitecture, 1997.

W. Elnozahy, D. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In 11th
Symposium on Reliable Distributed Systems, pp.
39-47, October 1992.

S. Fung and J. G. Steffan. Improving cache locality
for thread-level speculation. In IEEE International
Parallel and Distributed Processing Symposium
(IPDPS), April 2006.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe,
B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S.
Lam. Maximizing multiprocessor performance with
the suif compiler. In IEEE Computer, December
1996.

L. Hammond, M. Willey, and K. Olukotun. Data
speculation support for a chip multiprocessor. In
ACM SIGOPS Operating Systems, December 1998.
L. Hammond, V. Wong, M. Chen, B. Carlstrom,

J. Davis, B. Hertzberg, M. Prabhu, H. Wijaya,

C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In CM
SIGARCH Computer Architecture News, March
2004.

M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer. Software transactional memory for
dynamic-sized data structures. In The
Twenty-Second Annual Symposium On Principles
Of Distributed Computing, 2003.

H. V. Jagadish, A. Silberschatz, and S. Sudarshan.
Recovering from main-memory lapses. In Procs. of
the International Conf. on Very Large Databases
(VLDB), 1993.

(19]

20]

(21]

(22]

(23]

[24]

25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

G. Kingsley, M. Beck, and J. Plank.
Compiler-assisted checkpoint optimization using
suif. In First SUIF Compiler Workshop, 1995.

N. Kirman, M. Kirman, M. Chaudhuri, and

J. Martinez. Checkpointed early load retirement. In
High-Performance Computer Architecture
(HPCA), 2005.

C. Li, E. Stewart, and W. Fuchs. Compiler-assisted
full checkpointing. In Software-practice and
Experience, Vol 24(10), 871-886, October 1994.
M. H. Lipasti, C. B. Wilkerson, and J. P. Shen.
Value locality and load value prediction. In ACM
SIGOPS Operating Systems Review, December
1996.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
PLDI 05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190-200, New York, NY,
USA, 2005. ACM.

C.-K. Luk and T. C. Mowry. Compiler-based
prefetching for recursive data structures. In
Proceedings of the Seventh International
Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 222-233, October 1996.

C.-K. Luk and T. C. Mowry. Automatic
compiler-inserted prefetching for pointer-based
applications. In In IEEE Transactions on
Computers, Vol. 48, No. 2, Feburary 1999.

A. Mcdonald, J. Chung, B. D. Carlstrom, C. C.
Minh, H. Chafi, C. Kozyrakis, and K. Olukotun.
Architectural semantics for practical transactional
memory. In ACM SIGARCH Computer
Architecture News, 2006.

S. Microsystems. A third-generation 65nm 16-core
32-thread plus 32-scout-thread cmt sparc(r)
processor. Feburary 2008.

K. Moore, J. Bobba, M. Moravan, M. Hill, and

D. Wood. Logtm: Log-based transactional memory.
In High-Performance Computer Architecture
(HPCA), 2006.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and
G. S. Sohi. Dynamic speculation and
synchronization of data dependences. In
International Symposium on Computer
Architecture (ISCA), 1997.

A. Moshovos and A. Kostopoulos. Cost-effective,
high-performance giga-scale checkpoint/restore. In
Computer Engineering Group Technical Report,
November 2004.

J. E. B. Moss. Log-based recovery for nested
transactions. In Proceedings of the 13th
International Conference on Very Large Data
Bases, 1987.

T. C. Mowry. Tolerating latency through
software-controlled data prefetching. March 1994.
T. C. Mowry, M. S. Lam, and A. Gupta. Design
and evaluation of a compiler algorithm for
prefetching. In Architectural Support for

[34]

[35]

[44]

[45]

[46]

[47]

[48]

Programming Languages and Operating Systems,
1992.

W. Ng and P. Chen. The symmetric improvement
of fault tolerance in the rio file cache. In
Proceedings of 1999 Fault Tolerance Computing
(FTC), 1999.

H. Pan, K. Asanovic, R.Cohn, and C.Luk.
Controlling program execution through binary
instrumentation. In SIGARCH Computer
Architecture News 33, 5, 2005.

V. Panait, A. Sasturkar, and W.-F. Wong. Static
identification of delinquent loads. In International
Symposium on Code Generation and Optimization,
March 2004.

J. Plank, M. Beck, and G. Kingsley.
Compiler-assisted memory exclusion for fast
checkpointing. In IEEE Technical Committee on
Operating System and Application Environments,
Special Issue on Fault-Tolerance, 1995.

A. Roth and G. S. Sohi. Speculative data-driven
multithreading. In Seventh International
Symposium on High-Performance Computer
Architecture (HPCA), 2001.

B. Rychlik, J. Faistl, B. Krug, and J. Shen. Efficacy
and performance impact of value prediction. In
Parallel Architectures and Compilation Techniques
(PACT), 1998.

C. S. An evaluation of recovery related properties
of software faults. In Ph.D. thesis, 2004.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, and
C. C. M. and. Mcrt-stm: A high performance
software transactional memory system for a
multi-core runtime. In Principles and Practice of
Parallel Programming(PPOPP), 2006.

Y. Sazeides and J. E. Smith. The predictability of
data values. In 30th International Symposium on
Microarchitecture, 1997.

J. E. Smith. A study of branch prediction
strategies. In SIGARCH: ACM Special Interest
Group on Computer Architecture, 25 years of the
international symposia on Computer architecture
(selected papers), 1998.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C.
Mowry. A scalable approach to thread-level
speculation. In International Symposium on
Computer Architecture (ISCA), June 2000.

D. M. Tullsen and J. A. Brown. Handling
long-latency loads in a simultaneous multithreading
processor. In 34th Annual IEEE/ACM
International Symposium on Microarchitecture,
2001.

D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: maximizing on-chip
parallelism. In International Symposium on
Computer Architecture, 1995.

K. Wang and M. Franklin. Highly accurate data
value prediction using hybrid predictors. In
Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture,
1997.

Y. Wang, Y. Huang, K. Vo, P. Chung, and

C. Kintala. Checkpointing and its applications. In

(49]

[50]

(51]

[52]

(53]

[54]

[55]

25th Int. Symp. On Fault-Tol. Comp., pp. 22-31,
June 1995.

J. Whaley. System checkpointing using reflection
and program analysis.

P. Work and K. Nguyen. Measure code sections
using the enhanced timer. In Intel(R) Software
Network, 2008.

T.-Y. Yeh and Y. N. Patt. Two-level adaptive
training branch prediction. In the 24th annual
international symposium on Microarchitecture
(MICRO), 1991.

P. yung Chang, E. Hao, and Y. N. Patt. Alternative
implementations of hybrid branch predictors. In
Proceedings of the 28th Annual International
Symposium on Microarchitecture (MICRO), 1995.
A. Zhai, C. B. Colohan, J. G. Steffan, and T. C.
Mowry. Compiler optimization of scalar value
communication between speculative threads. In
International Conference on Architectural Support
for Programming Languages and Operating
Systems (ASPLOS), October 2002.

C. C. Zhao, G. Steffan, and C. Amza.
Compiler-based checkpointing and the potential for
tolerating delinquent loads. In Technical Report,
Department of Electrical and Computer
Engineering, University of Toronto, 2009.

Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph,
and W. fai Wong. Ubiquitous memory
introspection. In Proceedings of the International

Symposium on Code Generation and Optimization
(CGO), 2007.

