
Are a Static Analysis Tool 

Study’s Findings Static? A 

Replication
David Liu, Jonathan Calver, Michelle Craig



David Liu

david@cs.toronto.edu

Jonathan Calver

calver@cs.toronto.edu

Michelle Craig

mcraig@cs.toronto.edu

Who we are



Background

 Static analysis is the analysis of code conducted without 

executing it

We’ve been using an educational static analysis tool in 

our CS1/CS2 since 2016

We present a conceptual replication of a 2017 study by 

Edwards et al.* that studied the errors reported by static 

analysis tools in an educational context

*Stephen H. Edwards, Nischel Kandru, and Mukund B.M. Rajagopal. 2017. Investigating Static Analysis Errors 

in Student Java Programs. In Proceedings of the 2017 ACM Conference on International Computing 

Education Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing Machinery, New 

York, NY, USA, 65–73. https://doi.org/10.1145/3105726.3106182



Research questions

 RQ1 What are the most frequent static analysis errors in a set 

of student Python program submissions?

 RQ2 Do the most frequent errors vary by student experience 

level?

 RQ3 Which errors persist in students’ final work?

 RQ4 Are static analysis errors related to program grades?



Methods



CS1 course context

 Taught in Python

 12-week semester

 11 weekly programming exercises and 3 large 

programming assignments

 Static analysis tool incorporated into web autograder

worth 10-20%

 Students could run tool before the deadline

 locally or through the web autograder



Offerings and Participants

 Study run in two CS1 offerings

 1270 participants, 49,689 submissions, 161,012 errors

Prior 

experience

Participants Interim 

submissions

Final 

submissions

All students 1270 34,629 15,060

No prior 

experience

662 17,677 7,588

A course 

before CS1

393 10,661 4790

Other prior 

experience

215 6291 2682



The PythonTA tool

 Free open-source Python package

Wraps two professional-grade tools and implements 

custom checks

 Runnable in the terminal or through a Python API

Customizable

 Enable/disable specific checks

 Set parameters (e.g., max line length)

Choose output format (text, HTML, JSON)

Override default error messages





Comparators to Edwards et al.

Dimension Edwards et al. Our study

Institution R1, North American R1, North American

Course CS1, CS2, data structures CS1

Programming 

language

Java Python

Static analysis tools pmd & checkstyle PythonTA

Final (graded) 

submissions 

analysed?

Yes Yes

Interim (ungraded) 

submissions 
analysed?

Yes some



PythonTA error classification

Error category Example error

Coding flaw Undefined variable

Documentation Missing function docstring

Excessive code Too deeply-nested blocks

Forbidden* Forbidden module imports

Formatting Missing whitespace around operators

Naming Naming convention violations

Style Simplifiable if conditions

Testing Formatting of doctest examples

Unfinished* Unused function parameter

*category not present in Edwards et al.



Results



Error category frequencies (RQ1, RQ3)

0 2 4 6 8 10 12 14 16 18 20

Forbidden

Naming

Excessive Code

Testing

Documentation

Style

Unfinished

Coding Flaws

Formatting

Frequency per thousand lines of code (KLOC)

All Submissions Final Submissions



Most frequent errors, frequencies per KLOC (RQ1, RQ3)

Category Error All subs. Final subs

Formatting Formatting linter error 14.15 5.56

Formatting Line too long 2.67 1.18

Unfinished Unused function parameter 1.66 1.17

Testing Missing space in doctest 1.25 < 1.0

Coding Flaws Undefined variable 1.20 < 1.0

Coding Flaws Missing return statements 1.09 < 1.0

Excessive Code Too many branches < 1.0 < 1.0

Coding Flaws Possibly undefined variable < 1.0 < 1.0

Documentation Missing docstring < 1.0 < 1.0

Documentation Missing type annotation < 1.0 < 1.0

Style Unnecessary indexing < 1.0 < 1.0



Category frequencies by prior experience group (RQ3)



Relationship to correctness grades (RQ4)

 The number of PythonTA errors was negatively correlated with 

the percentage of correctness test cases passed.

 Presence of Coding Flaws is associated with differences in 

correctness measure—even when they only appear in interim 

submissions!

Group Mean % tests passed

Never had a Coding Flaw 86.6

Final submission had no Coding Flaws, but an 

interim submission had a Coding Flaw
82.5

Final submission had a Coding Flaw 60.4



Takeaways and future work



Formatting errors dominate!

 Formatting errors were more frequent than all other 

errors combined

 Teaching how to use an autoformatter helped… 

somewhat



Other takeaways; limitations

Coding flaws were second-most common error 
category

 (Most) students fixed (most) PythonTA errors in final 
submissions

 83% final submissions with 0 errors

 95% final submissions with < 5 errors

 Novice programmers made more errors than 
programmers with prior experience

 Limitations:

 Did not have access to local runs of PythonTA

 Introduction of autoformatter was not a formal intervention



Conclusions and future work

 Static analysis tools can be used to detect a wide range 

of issues in student code, including code correctness.

 Formatting issues dominate!

Autoformatters can be useful—if students use them.

More work to be done investigating the “tail” of final 

submissions.



David Liu

david@cs.toronto.edu

Jonathan Calver

calver@cs.toronto.edu

Michelle Craig

mcraig@cs.toronto.edu

Thank you!


	Default Section
	Slide 1: Are a Static Analysis Tool Study’s Findings Static? A Replication
	Slide 2: Who we are
	Slide 3: Background
	Slide 4: Research questions

	Methods
	Slide 5: Methods
	Slide 6: CS1 course context
	Slide 7: Offerings and Participants
	Slide 8: The PythonTA tool
	Slide 9
	Slide 10: Comparators to Edwards et al.
	Slide 11: PythonTA error classification

	Results
	Slide 12: Results
	Slide 13: Error category frequencies (RQ1, RQ3)
	Slide 14: Most frequent errors, frequencies per KLOC (RQ1, RQ3)
	Slide 15: Category frequencies by prior experience group (RQ3)
	Slide 17: Relationship to correctness grades (RQ4)

	Takeaways and future work
	Slide 18: Takeaways and future work
	Slide 19: Formatting errors dominate!
	Slide 20: Other takeaways; limitations
	Slide 21: Conclusions and future work
	Slide 22: Thank you!


