
A Static Analysis Tool in CS1:

Student Usage and

Perceptions of PythonTA

David Liu, Jonathan Calver & Michelle Craig

PythonTA

● Free open-source Python package

● Wraps around pylint and pycodestyle

● Run in the terminal or use its Python API

● Customizable

Our CS1 Course

a large public research-oriented university

11 weekly programming exercises and 3 large programming

assignments (39%)

PythonTA part of grading for 10-20% per item

1% deduction per PythonTA error

Fully available to students during development

Research Questions

RQ1 Do students use PythonTA when working on their

programming assignments?

RQ2 Do students perceive PythonTA feedback to be useful

for their learning and their self-efficacy?

RQ3 Do the answers to RQ1 and RQ2 change for subgroups

of students based on prior programming experience or other

student characteristics?

Our Study

Surveys in week 5 and after week 12 (.5% each)

usage and perceptions of PythonTA

Student demographics: gender, prior experience,

ethnic background, aspirations in CS,

comfort reading English

Participants

1168 consented but only 896 completed both surveys

42.5% men 39.3% women 1% non-binary 17.2% declined

70% planned to take more CS

46% considering enrolling in CS program

For quantitative analysis removed another 78 leaving 818

Prior Experience

Self-reported on a number of statements

We combined to

NONE “I had no programming experience before…” 401

COURSE “took course in school or Uni before this one” 264

OTHER everyone else

153

PythonTA Usage

How have you used PythonTA up to this point?

❏ frequently “... frequently as I work on an assignment”

❏ before_final “... before making my final submission”

❏ fix_all “I fix all the errors PythonTA reports before I submit”

❏ check_grade “I check my PythonTA grade after marks are

released”

13 Perceptions Survey Questions

7-point Likert scale (-3 strongly disagree to +3 strongly agree)

● I find PythonTA error messages to be confusing and hard

to understand

● PythonTA helps me fix logical errors in my code

● Using PythonTA has supported my learning in this course

Factor Analysis

Exploratory Factor Analysis on random subset of 300

Two-factor model

Removed two items and assigned others to factors

Helpfulness: helpful to one’s learning

PyTA Self-efficacy: one’s ability to respond to PythonTA
messages

Confirmatory Factor Analysis on remaining 1336 surveys

Qualitative Analysis

“Is there anything else you would like us to
know about your experience using PythonTA
this term? If so, please explain in a couple of
sentences”

755 responses -> removed “no” -> 414

Qualitative Analysis

Results: PythonTA Usage

Usage Survey 1 Survey 2 p value

frequently 34.7 45.5 < .001

before_final 69.9 66.0 .073

fix_all 63.7 53.9 <.001

check_grade 22.2 32.3 <.001

Results: PythonTA Usage

before_final Survey 1 Survey 2 p value

All students 69.9 66.0 .073

NONE 67.3 63.8 .310

COURSE 73.1 73.5 1

OTHER 71.2 58.8 .018

Results: Student Perceptions

Survey 1 Survey 2

NONE helpfulness 1.24 1.21

PyTA self-efficacy 0.17 0.355 p < .01*

COURSE helpfulness 1.15 1.17

PyTA self-efficacy 0.93 0.92 .

OTHER helpfulness 1.16 1.17

PyTA self-efficacy 0.78 0.95 p < .1

Results: Student Perceptions

Survey 1 Survey 2

NONE helpfulness 1.24 1.21

PyTA self-efficacy 0.17 0.355 p < .01*

COURSE helpfulness 1.15 1.17

PyTA self-efficacy 0.93 0.92 .

OTHER helpfulness 1.16 1.17

PyTA self-efficacy 0.78 0.95 p< .1

Results: Student Perceptions

Survey 1 Survey 2

NONE helpfulness 1.24 1.21

PyTA self-efficacy 0.17 0.355 p < .01*

COURSE helpfulness 1.15 1.17

PyTA self-efficacy 0.93 0.92 .

OTHER helpfulness 1.16 1.17

PyTA self-efficacy 0.78 0.95 p < .1

Results: Qualitative Analysis

Helped Improve Students’ Code Style

Earlier I would write programming

as if I were writing an essay, but

after PyTA it looks like

programming

PythonTA has allowed me to reorganize

and rewrite my codes in a more

appropriate and brief manner

Tedious & Time-Consuming but Helpful & Habit Changing

Fixing PythonTA errors takes a lot

of time, but if I successfully fixed,

my code looks much better.

PythonTa has been tremendously helpful …

as I now find myself, almost subconsciously

avoiding those common errors that are raised

on PythonTA.

Not everyone was convinced of the importance of style

Need lots of time to fix style errors,

which do not necessarily improve

my skills in python programming.

Some of the style conventions are

incredibly stupid and often make code

more difficult to understand.

A Common Complaint

it is a very irritating feeling to have all your code work

then plug it into pythonTA only to have it return 50

instances of “trailing whitespace”

Increase Confidence by Helping Find Errors

As a novice coder, PythonTA has been a

tremendous help in allowing me to submit

assignments more confidently and avoid

common errors when writing code

Increased Anxiety Levels for Some

Python TA hurts my feelings and scares

me because it is so daunting

it does give me anxiety because

there are so many errors and not

enough explanations

Fixing the Errors Can Be a Challenge

I like how it pointed out every style

issue I had, but figuring out how to

fix the style issue was difficult.

Sometimes it gets too overwhelming and I don’t

understand what exactly [I’m] doing wrong

PythonTA Helpful “By The End”

PythonTA was intimidating at first,

but once I got used to read- ing

the different kinds of errors, it was

extremely helpful.

Improving Error Messages

it could be improved by being more clear

on what & where is the error, why does

the error matters and maybe hint to fix

them.

The code which report the error was too

complicated, I need to read the full

sentences to find the error that I make, I

think it can be more convenience to read.

Variations across Subgroups

VS

Variations across Subgroups

VS

Variations across Subgroups

Asked “I am comfortable reading English” (-3 to +3)

Only weak correlations:

PyTA Self-efficacy (𝞺=0.20, 𝒑<.001)

Helpfulness (𝞺=0.09, 𝒑<.014)

Variations across Subgroups

Asked “I am comfortable reading English” (-3 to +3)

Only weak correlations:

PyTA Self-efficacy (𝞺=0.20, 𝒑<.001)

Helpfulness (𝞺=0.09, 𝒑<.014)

Variations across Subgroups

Prior Experience: Novices vs all others

Novices less likely to fix all errors before final sub

Equally likely to run PythonTA frequently

Helpfulness: No differences

PyTA Self-efficacy: Novices lower than others

Self-efficacy gap decreases on second survey

Recommendations for Instructors

1. Enable auto-formatting in IDE

2. Provide examples of fixing common errors

3. Customize the tool’s error messages

4. Allow students to run the tool themselves

repeatedly

5. Explain the importance of good style rules enforced

by tool

Conclusions

Static analysis tools can work in an educational

context

Even for beginners

Even for students with low language proficiency

With some care

Thank you

david@cs.toronto.edu calver@cs.toronto.edu mcraig@cs.toronto.edu

	Slide 1: A Static Analysis Tool in CS1: Student Usage and Perceptions of PythonTA
	Slide 3: PythonTA
	Slide 4
	Slide 5
	Slide 6: Our CS1 Course
	Slide 7: Research Questions
	Slide 8: Our Study
	Slide 9: Participants
	Slide 10: Prior Experience
	Slide 11: PythonTA Usage
	Slide 12: 13 Perceptions Survey Questions
	Slide 13: Factor Analysis
	Slide 14: Qualitative Analysis
	Slide 15
	Slide 16: Results: PythonTA Usage
	Slide 17: Results: PythonTA Usage
	Slide 18: Results: Student Perceptions
	Slide 19: Results: Student Perceptions
	Slide 20: Results: Student Perceptions
	Slide 21: Results: Qualitative Analysis
	Slide 22: Helped Improve Students’ Code Style
	Slide 23: Tedious & Time-Consuming but Helpful & Habit Changing
	Slide 24: Not everyone was convinced of the importance of style
	Slide 25: A Common Complaint
	Slide 26: Increase Confidence by Helping Find Errors
	Slide 27: Increased Anxiety Levels for Some
	Slide 28: Fixing the Errors Can Be a Challenge
	Slide 29: PythonTA Helpful “By The End”
	Slide 30: Improving Error Messages
	Slide 31: Variations across Subgroups
	Slide 32: Variations across Subgroups
	Slide 33: Variations across Subgroups
	Slide 34: Variations across Subgroups
	Slide 35: Variations across Subgroups
	Slide 37: Recommendations for Instructors
	Slide 38: Conclusions
	Slide 39: Thank you

