University of Toronto

Department of Computer Science

Induction Exercises

Compiled by Tim Veatch

- 1. Prove that $0 + 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$, for all $n \ge 0$. This is solved in the "Understanding Induction" document in your course handbook.
- 2. Prove that $n! \ge 2^{n-1}$, for all n > 0.
- 3. Prove that $1 + 3 + 5 + \dots + (2n 1) = n^2$, for all n > 0.
- 4. Prove that $2^0 + 2^1 + 2^2 + \dots + 2^n = 2^{n+1} 1$, for all n > 0.
- 5. Prove that $n^3 + 2n$ is divisible by 3, for all n > 0. After proving this by induction, also try proving it *without* induction. Hint: consider the cases $n \mod 3 = 0$; $n \mod 3 = 1$; and $n \mod 3 = 2$.
- 6. Given stamps only in 3-cent and 5-cent denominations, prove that postage of exactly *n*-cents is possible, for all n > 7.
- 7. Find the error in the following proof: Prove that $\frac{n}{n+1} > 1$, for all n > 0. *Proof*:

Induction Hypothesis: Assume that $\frac{k}{k+1} > 1$.

Induction Step: Prove that $\frac{k+1}{k+2} > 1$.

If $\frac{k+1}{k+2} > \frac{k}{k+1}$, then by the induction hypothesis (i.e., $\frac{k}{k+1} > 1$) we would be done. To see if $\frac{k+1}{k+2} > \frac{k}{k+1}$, multiply both sides by (k+1)(k+2). So, is it true that $(k+1)^2 > k(k+2)$? Is $k^2 + 2k + 1 > k^2 + 2k$? Sure. Therefore, $\frac{k+1}{k+2} > 1$.

In fact, not only is the proof incorrect, the statement itself is wrong. Instead, $\frac{n}{n+1} < 1$, for all n > 0.

- 8. Prove $1 + r^1 + r^2 + \dots + r^n = \frac{r^{n+1}-1}{r-1}$, for all n > 0, r > 1.
- 9. Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, for all n > 0.
- 10. Prove that $1^2 + 2^2 + \dots + (n-1)^2 < \frac{n^3}{3} < 1^2 + 2^2 + \dots + n^2$, for all $n \ge 2$.
- 11. Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{(n^2)(n+1)^2}{4}$, for all n > 0.
- 12. Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$, for all n > 0.