DESIGN BY CONTRACT

114

Helping Client Programmers:
External Comments

Client programmer: someone who writes code
that uses yours.

Clients don’t need to see how your classes are
implemented. This is the only way program-
mers can deal with the complexity of huge pro-
grams. But it won't work unless you've writ-
ten complete, clear, and precise external com-
ments.

In fact, clients typically can't see your func-
tion bodies, local variables, and private vari-
ables, because they don’'t have the code and
are working from external documentation.

116

Why Comment?

For some very practical reasons:

e To help you write the program.
It is hard to write correct code until you
know what you want to do! Your com-
ments should serve as a guide.

e To help other programmers (clients of your
code) use the classes and functions you
write. They need to know only what your
code does, not how.

e To help you and your team maintain the
code you own. You and your team need to
know in detail how your code works.

e To convince yourself and others that your
code is correct. Certain comments specify
what “correct” means, and others, called
“assertions,” help establish that the code
is correct.

115

Clients need to know:

e The purpose of the class:
What does your class represent?
(e.g., student, network connection, queue.)
A fairly brief summary comment at the top
of the class is enough.

¢ What the functions do (not how):
See “function specifications” below.

¢ Important facts about performance:
How fast is your code, and how much mem-
ory does it use? (More on this later.)

Rule: Do not mention private members, algo-
rithms, or implementation details in external
class and function comments.

Describe everything in terms of the abstract
contents of the class, and the parameters to
the functions.

117



External: Function Specifications

Function specs state precisely what the func-
tion does under all circumstances. Always in-
clude:

Function Summary: A brief summary of the
function's purpose.

Precondition: A boolean statement that must
be true when the function is called in order for
it to work correctly, otherwise the behaviour is
unspecified.

Preconditions may, for example:

e restrict a parameter’s value
Example: p must not be null.

e restrict how parameters relate to each other
Example: 0 <= size < a.length.

e require that a condition be checked before
calling the function
Example: isFull() must be false.

118

Exercises

Identify flaws in the following function specifi-
cation comments:

From a template for a queue class:
// Return the first object in array ‘contents’.
Type head();

From a template for a queue class:
// Append o to me, wrapping tail around to the
// front of the array if necessary.
void enqueue(Type o) ;

From a stringBuffer’s replace function:
// Replace part of me with a new string.
void replace(int start, int end, string str);

120

Postcondition: A boolean statement that is
guaranteed to be true when the function re-
turns, as long as the precondition was met.

Often written informally, as a part of the func-
tion summary.
The postcondition must specify:

e the purpose of every parameter
Example: size is the number of array
elements in use.

e what the function returns (unless it is void)

Example: Returns the position of the maximum
value in a[0..size-1], or -1 if size is zero.

e how exactly the function affects the object
Example: Removes the front element of the
queue.

Ideally, a function has weak preconditions (some
even have none) and strong postconditions.

119

Design by Contract

External comments are like a contract between
you and the client: provided that the client
meets the precondition, your code will behave
as stated.

Design by Contract is a very important concept
in software engineering.

Rule: When you design a class, write a con-
tract for it before you write all the code.

121



Example: A Queue contract

Here are two function specifications from a
template for a Queue class:

// Append o to me.
void enqueue(Type o);

// Remove and return my front object.
// Precondition: I am not empty.
Type dequeue() ;

Note the precondition on dequeue. Here is how
to read the specification as a contract:
“Provided that the queue is not empty, a call
to dequeue() will remove and return the front
object in the queue.”

There is no precondition on enqueue(). This
means the programmer is claiming there are
conditions that cause it not fulfill its con-
tract.

122

Internal Comments: Assertions

Assertions are boolean statements describing
what had better be true at a point in a pro-
gram's execution (otherwise the code must be
incorrect).

Assertions can be expressed simply as com-
ments. Some programming languages, includ-
ing C and C+4++4 have assertions that can be
executed to check whether code fulfills its con-
tract.

You can use assertions to help you write code.
Example (pseudo-code):

a print function for CircularQueue:
loop i from head to tail (wrapping around) {
Assertion: 0 <= i < A.length
print contents[i]

Writing down the assertion reminds me to check

that my funky loop arithmetic with wraparound

doesn’'t cause contents[i] to go out of bounds.
124

Helping Your Team:
Internal Comments

Your programming team will include other peo-
ple working on the same product as you. They
(and you) must quickly figure out your code,
in order to track down bugs and add features.

Internal comments should explain how the code
works and why it was designed that way. They
should:

e explain design decisions, algorithm choices,
tricky bits of code, and the purpose of
member and local variables.

e state assertions and representation invari-
ants (see below).

e summarize major steps within each fcn.

Internal comments should appear on member
variables and inside function bodies.
123

Internal Comments:
Representation Invariants

Invariant: Something that never changes.
Here we mean something that is always true.

A representation invariant describes the prop-
erties that instance variables of a class must
meet at all times (except while one of its func-
tions is executing).

A representation invariant should express:

e How the instance variables represent the
abstract thing.

e Constraints on the values of the data mem-
bers.

e Relationships among the data members.

125



Why bother?

A representation invariant is very helpful be-
cause it tells the person writing the functions:

e exactly what they must maintain in order
for the instance variables to make sense,
and subsequent function calls to work.
This is called maintaining internal consis-
tency.

e to watch out for particular borderline cases
and so avoid errors.

Rule: Whenever you write a class, provide a
representation invariant.

126

3 Ways to do a Circular Queue

Tail is where to enqueue next

Need a size counter to distinguish an empty
queue from a full queue.

// Let c be the capacity of array ‘contents’.
// 0 <= size <= ¢, is the number of elements in me.

//

0 head < c.
// 0

<
<= tail < c.

// If size is 0, I am empty and head=tail.
// Otherwise:

// contents[head] is the head.

// contents[tail-1] is the tail.

// if head < tail,

// contents[head .. tail-1] contains my elements in
// the order they were inserted, and
// size=tail-head.
// if head >= tail,
// contents[head .. c-1, 0 .. tail-1] contains
// my elements in the order they were inserted, and
// size=tail-head+c.
128

Summary of Comment Types

External comments:
e Class summary
e function specifications

e performance facts

Internal comments:
e representation invariants
e assertions

e other comments explaining how the code
works and why it was designed that way.

127

Tail is where we last inserted
What is tail when the queue is empty?

When queue size is 2, tail is 1 past head. When
dueue size is 1, tail is at head. So when queue
size is 0, it makes sense to have tail be one
less than head (with wraparound).

Then we need a size counter to distinguish an
empty queue from a full queue.

The representation invariant is slightly differ-
ent.

Note: “slightly” here doesn’'t mean insignifi-

cant; it means subtle. And that means watch
out for bugs.

129



Keep an extra unused slot

Don’'t need a size counter.

Again, the RI is different.

// Let c be the capacity of array ‘contents’.
// We can store at most c-1 elements in the queue.

// 0 <
// 0 <

head < c.
tail < c.

// If (tail+1)%c = head, I am empty.
// Otherwise:

// contents[head] is the head.

// contents[tail-1] is the tail.
// if head < tail,

// contents[head .. tail-1] contains my elements in
// the order they were inserted, and

// size=tail-head.

// if head >= tail,

// contents[head .. c-1, O .. tail-1] contains

// my elements in the order they were inserted, and
// size=tail-head+c.

130



