TIME ANALYSIS OF
ALGORITHMS WITHOUT
RECURSION

69

Big differences

We have seen that, for a given problem, one
algorithm may be vastly more efficient than
others. Examples:

Searching a list of n elements:

e linear search takes time on the order of n.

e binary search takes time on the order of
logo n.

Finding the cheapest paving in a graph with n
nodes:

e brute force takes time on the order of 2"2.

e greedy algo takes time on the order of nZ.

[Is “on the order of” bothering you? Good —
we'll define things properly very soon.]

71

Time efficiency

We like to know the time efficiency of a pro-
gram for several reasons:

e To get an estimate of how long a program
will run. (Waiting for it to finish may not
be feasible!)

e To get an estimate of how large an input
the program can handle without taking too
long.

e To compare the efficiency of different pro-
grams for solving the same problem.

We could run timing tests on the program, but
we prefer to analyze the efficiency of the algo-
rithm — before we've written the program.
Why?

70

Small differences

We can sometimes fine tune a given algorithm
to make it a little faster.

Example: Linear search with a dummy record
is faster than ordinary linear search because
there is less work per iteration.

(But any kind of linear search takes takes time
on the order of n because there are roughly n
iterations in the worst case.)

72

Big differences are the first priority

When analyzing algorithms for a given prob-
lem, it makes sense to pay attention to the
big differences first.

e Example: We would choose the greedy strat-

egy for graph paving over the brute force
strategy.

Only then does it make sense worry about the
small differences.

e Example: There is no sense in fine tuning
the brute force algorithm. Any effort to-
wards fine tuning should be spent on the
greedy algorithm.

73

Ignoring constant factors

Consider two programs A and B for solving a
given problem, with running times of

Tx(n) =n3 and Tg(n) = 8n + 3.

125
100+
75

T(n)

254

Which program is faster?

For inputs of size less than 3: program A.
For inputs of size greater than 3: program B.

n = 3 is called the breakpoint.
75

What we need

We need a technique for analyzing algorithm
efficiency that:

e is precise about what we mean by ‘“on the
order of”

e can distinguish the big differences

o (ideally,) allows for quick and easy analysis

Solution: We will learn a technique for es-
timating time efficiency to within a constant
factor.

Because we ignore the constant factors, the
analysis is easy. But it still makes the big dis-
tinctions.

74

B is eventually superior
no matter what the constants

What if program A were a million times faster
and program B a million times slower, i.e., if:
T4(n) =n3/1,000,000 and
Te(n) = (8n+ 3) = 1,000, 000.
It would still be true that:
e B would eventually be faster than A, and

e B’'s superiority would grow as n increases.

(The breakpoint would change, however.)
This is true no matter what the constants are!

Conclusion: For large values of n, the form
of a mathematical function has more effect on
its growth rate than a constant multiple.

76

Growth rates of various functions

function Approximate Value of T'(n) for n =

T(n) 10 100 1,000 10,000 10°
logn 3 6 9 13 16
NG 3 10 31 100 316

n 10 100 1000 10,000 10°
nlogn 30 600 9000 13 x 10* 16 x 10°
n? 100 10,000 10° 108 1010

n3 1000 10° 109 101? 10

on 1024 1030 10300 103000 1030,000

There is a computational cliff when we reach “exponen-
tial” functions: ones in which the variable appears in the
exponent.
To get a sense of scale:

e there are 103 atoms in the universe

e there have been 107 seconds since the big bang

If we can perform 1 billion operations per second,
e 10'® operations take 1 year

e 1020 operations take 10,000 years!

Would it help if we could do 100 million billion per sec-

ond? How about 10507

7

Towards a Definition

Say we have an algorithm (or program) whose
running time on an input of size n is f(n).

We don't know what f(n) is, but we want to
estimate it to within a constant factor.
Let's call that estimate g(n).

We would be happy with our estimate g(n)
even if the relationship between g(n) and f(n)
holds only after some breakpoint B.

In other words, from B onwards, we want g(n)
to estimate an upper bound on f(n), to within
a constant factor.

That is, we want there to be some constant
factors ¢ and B such that f(n) < c¢-g(n) for
all n > B.

We don’'t care what these constants are; we
just need them to exist.
79

Constants Can Matter

Constant factors are insignificant relative to
the form of the mathematical function.

But they are important in these situations:

e When we've already picked the algorithm
to use, and we’'re ready to fine tune it.
We may be able to reduce the constants.

¢ When two algorithms have the same order.
Considering the constants may reveal that
one is faster than the other.

e \When the problem size is small.
We may be below the breakpoint.

Sometimes, we need to know the actual run-
ning time of a program, e.g., with real-time
systems.

We can determine running time by directly mea-
suring it (on the desired computer and for vari-
ous sizes of input with various characteristics).

78

O Notation, or “big-oh” notation

Consider any 2 functions f,g defined on the
nonnegative integers N = {0, 1, 2,...} such that
f(n),g(n) >0 for all n € N.

Definition: f(n) is O(g(n)) if there exist pos-
itive constants ¢ and B such that
‘f(n) <c-g(n) for all n > B.‘

This means that, to within a constant factor,
f(n) grows no faster than g(n).

We pronounce this:

f has order g, or
fis “oh”™ or “big-oh” of g

80

2 Key Properties of O Notation

Constant factors disappear

If d > 0 is a constant, then df(n) is O(f(n))
and f(n) is O(df(n)).

Examples:
6n and 7 are O(n).
n is 0O(29n) and O(642n).

Low-order terms disappear

If lim w = 0 then g(n) 4+ h(n) is O(g(n)).

n—oo g(n)
Examples:

n® 4 n3 4 6n2 is O(n2).
n2 4+ n(logn)3 is O(n?).

81

O Notation Defines Sets

6n is O(n) and O(3n) and O(2").
In fact, it is all of these:

o(2m)
o(n3)
O(6n —99)
0(3n)
O(n+8)
O(n)
But it is not any of these:
O(logn)
O(y/n)

How can this be?

If some constant times n is an upper bound
on our function (after some point B), then
certainly some constant times 3n will be.

83

Proving a Big-oh Bound

Example
Prove: 6n + 3 is O(n).

Proof:

e letec=7and B=3
—6n+3<7-nforalln>3, so
—6n+3<c¢-n forall n> B.

e SO there exist ¢ and B such that
6n+ 3 <c¢-n for all n > B.

e So 6n is O(n), by definition of big-oh.

Exercise: Prove that the following function is
O(n3-nlogn):

f(n) = (6n>+ nlogn + 56) - (73nlogn + 10°)

82

O(n), e.g., defines a set containing all mathe-
matical functions that are of that order.

6n

O(log n)

logon

3Iogsn +1

Note that we always look for the smallest (“tight-

est”) and simplest upper bound function that
will satisfy the big-oh criteria.

E.g., for 6n, O(n) is the smallest upper bound
instead of, say, O(n2),

and is also the simplest description of it
instead of, say, O(6n + 22).

84

Remember this Using O notation to Analyze the
Running Time of Programs

0O(1) c O(logn) C O(n) C O(nlogn) C O(n?) C

o(n3) c 0(2™) c 0(3™) Cc O(n!) C O(n™) Using very simple techniques, we can analyze
code and know that the time to execute it is,

We can use this to determine which term in a for example,

mathematical function is the most dominant, O(n2)

and which other terms can be “cancelled”.]) .
without having to know that the more detailed

answer is, for example,
Examples
n2 + 7logn

oO(5logn+n2+%na) 3
e O(12n + nlogn)
e O(12n + nlogn + 2™ 4 n?)

85 86

Example Example

static void silly (float num) { for (int i=100; i<=n; i++)
num = 0; sum++;
num = (float) Math.sqrt(567.2);
num = num / .000931f;
System.out.println("num is " + num);
System.out.println("Bye!");

if (n > 1000)

System.out.println("That’s big");
else

System.out.println("That’s not so big");
silly(n);

Analysis:
e This code involves no loops or recursion.

e Therefore it takes a constant amount of time, for
some unknown constant.

e We call this “constant time” or O(1).

87 88

Example
for (int i=1; i<=(n/2); i++)
for (int j=1; j<=n*n; j++)

sum++;

Analysis (working from the inside out):

e Each iteration of the inner loop takes O(1) time.

e On every iteration of the outer loop, O(n?) itera-

tions of the inner loop are performed.

e Thus each iteration of the outer loop takes O(n?)

time.

e The outer loop is performed |n/2]| times and |n/2]

is O(n).
e Therefore the loop takes O(n3) time.

e Therefore the program takes O(n3 + 1) time.
(1 is for the initialization.)

e Thus the entire program takes O(n3) time.

Write your analyses in this style. Annotating the

code is not sufficient.

89

Example

if (m% 2 ==0)
for (int j=1; j<=n*n; j++)

sum++;
else
for (int k=5; k<=(n+1); k++)
sum += k;

91

Example

sum = 0;

for (int i=1; i<=(n/2); i++)
sum++;

for (int j=1; j<=n*n; j++)
sum++;

Example

static boolean isSorted (int[] List) {
// Details omitted
}

int[] myList = new int[size];
sum = 0;
if (isSorted(myList))

for (int j=1; j<=n*n; j++)

sum++;
else
for (int k=5; k<=(n+1); k++)
sum += k;

90

92

Example

static void blah (int n) {
int sum = 0;
for (int i=1; i<=(n/2); i++)
for (int j=1; j<=n*n; j++)
sum++;
System.out.println (sum);

}

blah (p) blah (j*j)

Example

for (int k=1; k<=5000; k++)
if (A[k] % 2 ==0)
event++;
else
odd++;

93

95

Example

sum = 0;

while (num > 1) {
num = num / 2;
sum++;

Example

for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++)
sum++;

94

96

Example

sum = 0;
for (int i=1; i<=n; i++)
for (int j=1; j<=i; j++)
sum++;

Analysis:
e Each iteration of the inner loop takes O(1) time.

e On the ith iteration of the outer loop, i < n
iterations of the inner loop are performed.

e Thus each iteration of the outer loop takes O(n)
time.

e The outer loop is performed n times.

e Thus the entire program takes O(n2) time.

97
Summary of Rules
Type of code Technique
no loops or recursion: | O(1)
loop: multiply
sequence: add
selection: take the maximum
method call: apply method’s time
to size of arguments

99

Overestimating

0O(n?) seems to be an overestimate.

The first time we do the inner loop, it iterates
only once. On subsequent visits to the inner
loop, it iterates more and and more times, until

finally it does n iterations.

The total number of iterations of the inner
loopis1+2+---+n=n(n+1)/2.

However, n(n + 1)/2 is O(n?), so we get the
same final answer, in terms of big-oh.

In some cases, the extra precision in the answer
n(n + 1)/2 may be important.

98

