“Incremental” Hashing

Reading:

e None in your text.

e Optional reading: ch 12 of File Structures:
An Object-Oriented Approach with C+H+,
by Folk et al.

157

Incremental Hashing

General Approach

As records are inserted, if performance becomes
too low, grow the file.

e e, “split" one bucket and disperse its
records; some stay put and others go to
a new bucket.

e This reduces overflow (collisions to full buck-

ets) and hence reduces the # of file ac-
cesses during search.

As records are deleted, if space usage becomes
too poor, shrink the file.

e [e., merge two buckets into one.

e This reduces the total # of buckets, and
hence reduces waste.

159

A Problem

Performance degrades if the file becomes heav-

ily loaded,

ie. if actual—number—of—recs
E num-—bucketsxbucket—size

gets large.

To make things better, it may be worthwhile
to increase the number of buckets (and reor-
ganize the data).

This general idea is called incremental hash-
ing.

Guess what? There are many ways to do it.
158

File growth and shrinkage is incremental, i.e.:

e It happens on the fly.
We do it during insertions and deletions, if
needed.

e It happens in small amounts.
We split one bucket rather than rehashing
the whole file.

Possible measures of performance include:
e load factor

e average # of disk accesses per search.

160

Method I: Linear Hashing

Method

e When performance becomes too poor, split
bucket 0. (Yes, this is arbitrary.)

e Split it by doubling the mod factor and re-
hashing its contents. E.g.,
h(k) =k mod3 becomes
h(k) = k mod 6.

e Next time, split bucket 1, then 2, etc.

e Keep a counter to remember which buckets
have been split.
Unsplit ones use the old hash function.
Split ones use the new.

Merging is analogous but opposite.

161

So when we hash k£ with the new hash function
h(k) = k mod 2T, we get either:

e b, in which case the record stays put, or

e T 4+ b, in which case it goes to the new
bucket, T+ b.

163

old new

buckets | T:0...(T-1) |T+1:0...T

hash fcn h(k)y =kmod 3 | h(k) =kmod 6
h(k) = k mod T | h(k) = k mod 2T

Guarantee: Every element of bucket 0 will
either stay put, or land in the new bucket T.

More generally, if we split bucket b, every record
will either stay put, or land in the new bucket
T+ b.
Let k£ be the record’s key.
If it was in bucket b originally, we know

k mod T =b.

So k must have been one of these:

h T+b 2T+b 3T+b 4T +b 5T +0b

162

Questions

Will linear hashing work if we use open ad-
dressing to solve collisions?

Why split the “next” bucket? Why not the
culprit, i.e., the one we inserted to when we
passed the performance threshold?

Decision: What if the split fails, i.e., everything
happens to stay put? We could split again.

What happens when we’ve split all the original
buckets?

164

Method II: Extendible Hashing

Build a dynamic directory (in memory for speed)
that copes with the varying load factor.

Hash function takes you to a directory en-
try, rather than directly to a bucket.

Because buckets are pointed to, needn't
be consecutive in the file. So can add and
remove buckets as desired.

Directory must grow and shrink with num-
ber of buckets.

So # of places to hash to changes. Cope

by using only the first so many bits of h(key);
change this as necessary to change size of

directory.

If using d bits, directory size is 2¢9.

So have capacity for 2d pyckets, but can
start with fewer; even just one.

165

How to “grow” the file

When a bucket overflows:
e Split the one bucket in two.

e Half of the directory entries that pointed
to the old bucket will still do so, and half
will point to the new bucket.

Eventually, we may reach a point where we
can't split a bucket this way.

e This occurs when only one directory entry
points to the bucket we want to split.

e Then we double the directory size, and re-
organize.

166

