Hashing

Reading:
e Chapter 9 on searching, including hashing

138

Hashing Performance

If everything is well designed, retrieval can be
very fast — just a few file accesses.

One operation is really slow:

140

Hashing Issues

Must devise an appropriate hash function.
Because the hash function maps a large space
to a small space, we will have “collisions’ .

We can make each location a “bucket” that
can store lots of records.

e But buckets must have fixed size,
thus they can still overflow.

We will need a scheme to handle this.
Must decide on the # and size of buckets.

When file gets very full, collisions can be too
numerous. May be worthwhile re-organizing
the file layout to have more buckets

139

Hash functions

A hash function is a mathematical function
that maps from
keys = locations.

There are some standard types of hash func-
tion, including

e mid-square: square the number and then
take some digits from the middle.

e folding: Divide the number in half and
combine the two halves, e.g., add them
together.

¢ modular division: Mod by some number,
preferably a prime.

See the text for more about hash functions.
Note that there is a lot of interesting theory
about hash functions and their properties. (csc
378 covers this.)

141



Examples of hash functions

Say our key is a string. Before we hash it, we
need to turn it into an integer.

One solution: Concatenate together the al-
phabetic position of the 1st and the second

character. E.g. “{TJolyota” = [20]15].

Now we need a hash function to hash up the
integer. Examples of the three general types:

e Mid-square, taking the middle 2 digits. E.g.

20152 = 406 02]25.

e Folding: adding the two halves.
E.g. 2015 = 20 + 15 = 35.

e Mod by 97.
E.g. 2015 mod 97 = 75.

142

Couldn't we use the 2015 as the hashed value?

This would be a bad idea. With 4 digits, there
are 10,000 possible values (0...9999), vet only
a few will be used.

e Some are unlikely to crop up
E.g. "“aa” = 0101.

e Some cannot crop up
E.g. 77 = 2701; 27 is out of range.

Yet we need our hash table to be continuous,
and therefore to have all 10,000 slots.
So our hash table will be largely empty.

With each of the 3 hash functions we looked
at, the range of h(key) is 0...99 (or less with
mod 97).

So our hash table only needs 100 slots.

Of course we might overflow it, but we have
to deal with this anyway.
144

key h(key)

as string converted | mid-square folding mod 97
Toyota 2015 406/0225 35 75
Chev 0308 94/86 4 11 17
Ford 0615 37/82[25 21 33
Chrysler 0308 9486 4 11 17
Volkswagen 2215 49016225 37 81
Nissan 1409 1985281 23 51
Plymouth 1612 25985 44 28 60
Dodge 0415 17|22 5 19 27
Renault 1805 32525 23 59
Saab 1901 361/38 |01 20 58

Isuzu 0919 8445 61 28 46
Pontiac 1615 2608225 31 63
Fiat 0609 37[08]81 15 27

Two kinds of collisions:

e collisions that occur because we begin with
the same 2 integers. Are collisions for ev-
ery hash function we might choose.

e collisions that occur even though we begin
with 2 different integers. Not necessarily
collisions with a different hash function.

143

Avoiding collisions?

Upon doing a new insertion, how likely is a
collision?

It's certainly more likely when many items have
already been inserted.

i . _ Frecords currently in the file
Loading factor: = #£records that the file can hold

In our cars example, the loading factor is only
{25 = 0.13, yet we already have collisions!

We could reduce collisions by making the ca-
pacity of the file bigger (and hence the loading
factor smaller). But ...

145



Exactly how likely are collisions?

For a given file capacity, how likely are colli-
sions as file gets more loaded?

Example: A file of 365 buckets. Let Q(n) be
the probability that NO collisions occur during
n insertions.

Q(1) =
Q(2) =
QR(3) =
In general,
Q(n) =

Q(1) =

146

Buckets

The hash function h(k) tells us where to store
(or retrieve) a record with key k.

This could be a slot in an array in memory, or
a slot in a file. (For this course, a file.) Either
way, we often use the term “hash table”.

The slots are called “buckets”, because they
have capacity for > 1 record. We choose the
capacity based on the number of records that
can be read or written in one file access.

Analogy: your address book.
key:

hash function:

bucket:

148

Solution to the recurrence relation:

Q(n) = 365”?265é—n)!

The probability that collisions DO occur is
1-Q(n).

n 1-Q(n)
10 0.1169
20 0.4114
23 0.5073
30 0.7063
40 0.8912
50 0.9704
60 0.9941

If the loading factor is only 2%, 50% chance.

If the loading factor is only s, > 95% chance!

So yes, collisions are a problem!
147

Handling collisions
What do we do when a collision occurs?
Easy case: the bucket has room for the record.

Hard case: the bucket doesn’t have room for
the record. We call this “overflow" .
We need to figure out two things:

e A place to put the record that won't fit it
its home bucket.

e A way to find that record later!

How do you handle overflow in your address
book?

149



Handling overflow Open Addressing

Two kinds of approach: either compute or Compute where to look, based on the key.
store where to try next. (Gee, where have we
heard that before?) General method for insertion:

(search is analogous; why?)

Open addressing
Let A; be where to look on the ith try.

Compute another bucket to try, based on some e Use the hash function (k) to find the first
rule. bucket where the record might go, Ag.

Ao = h(key)
Closed addressing (or chaining) e If that bucket is full

use a new function (f) to find the next
Store the location of another bucket to try, bucket to try. Repeat as necessary.
using some sort of pointer. A; = f(i, key)

e Stop when we hit a bucket with room, or
the sequence of A;'s starts to repeat (i.e.,
there is no room anywhere).

The “overflow” records may be kept in a sep-
arate overflow area, perhaps in a separate file.

Many ways to design the function f ...

150 151
I. Linear Probing Linear probing example
n (# buckets) = 13 h(key) = (sum 1st 3) mod 13
Step through a sequence of buckets always us- bucket size =1
. . step size =2 So A; = (A;_1 +2) mod 13
Ing the same step size.
key h(key) probe sequence
Use mod to wrap around when we hit the end Chevrolet 16 mod 13 = 3
of the hash table. Chrysler 29 mod 13 =3
Jaguar 18 mod 13 =5
Nissan 42 mod 13 =3

‘Ai = (A;_1 + stepSize) mod n‘

Karman Ghia | 30 mod 13

I
»

(We can also express A; in terms of Ag.)

Bucket # | Bucket Contents
0
Example: ;
A; = (A1 +2)modn 3
= (Ag + 2i) mod n g
6
The sequence of buckets considered is called ’
the “probe sequence”. S
10
11
12

152 153



II. Non-linear Probing

Problem: Primary clustering.
If several records hash to the same spot, or
even any spot along the probe sequence, they
will all follow that same probe sequence.
Example: n = 100; step size = 2.

hash to: 5 probe seq:

hash to: 9 probe seq:
Solution: Make the step size depend on the
step number, 3.
This is called non-linear probing.
E.g., A, = (4;,_1+2i®) mod n
Example: n = 100; step size = 2i2.

hash to: 5 probe seq:
hash to: 9 probe seq:

154

Closed Addressing

Instead of computing where to look next, store
it, using a “pointer”.

Each full bucket has a pointer to an overflow
area,

¢ in the same file (for example at the end)
e oOr in another file

There are many ways to organize this, since
pointers are so flexible.

Cost vs open addressing:
Savings:

Do deletions introduce problems?

156

III. Double Hashing
Problem: Secondary clustering.

All records that hash to the same spot still
have the same probe sequence.

Example: n = 100; step size = 2i2.

key 1; hash to: 5 probe seq:
key 2; hash to: 5 probe seq:

Solution: Make step size depend on the key
(but differently than in original hash function).
This is called double hashing.

E.g., A; = (A;_1 + ho(key)) mod n

155



