Paving Iqaluit

Problem: Iqaluit is a muddy place, and city
INTRODUCTION TO council would like do some repaving. Their

FORMAL REASONING goal is to make sure that citizens can get from

ABOUT PROGRAMS any intersection to any other intersection using
only paved segments of road. And they want

to do it as cheaply as possible.

On the next page is a diagram of Igaluit.

e Each circle represents an intersection.
They are labelled so we can conveniently
refer to them.

e Each line represents a segment of road.

e The number on each line represents how
expensive it would be to pave.

What is the cheapest solution?

52 53

Knowing you have the best answer
Best solution:
How many solutions did we consider?

How many possible solutions are there?

e There are 20 edges in this particular graph.

e Each edge can either be paved or not.
e So there are 220 = 1,048,576 possible pavings.

e (Some will not meet our requirement that
you can get from anywhere to anywhere,
but we won't know until we check.)

So how do we ever know we have the best
solution? Hm.

54 55



A General Strategy

Suppose we believe we have the best paving
for Iqualuit.

Can we come up with a strategy that will find
the best paving for any city?

56

Is the strategy correct?
The strategy certainly seems reasonable.

See if it works on this graph for Wainfleet:

7

Do you believe it works on every graph you
might give it?

58

A proposed general strategy:
e Start from some arbitrary node.

e Pave a cheapest edge going out of that
node. Now two nodes are ‘“connected”
(i.e., reachable on paved roads).

e Repeat until every node is connected:

— Pave the cheapest edge that links a con-
nected node to an unconnected node

57

Some Counter-evidence

This is an example of a ‘“greedy” strategy; it
always grabs the best choice among those re-
maining.

Another problem: Find the shortest route
that takes you to every intersection in the city
and back to where you started, without visiting
any intersection more than once.

(This is the “travelling salesperson problem',
which is famous in computer science.)

Greedy strategy: Pick the cheapest edge to
start. Then from wherever you are, always
pick the cheapest edge that takes you to some-
where you haven'’t been before.

59



Use this greedy strategy to solve the Travelling
Salesperson Problem for Wainfleet:

V4

60

Knowing your Strategy is Correct

In fact, our greedy paving strategy does work
for all graphs. It is known as Prim’s algorithm.

Here's an argument that it works:

1. There must be one paving that is the best
one (or more, if there is a tie).

2. Before we start choosing edges, we have
chosen an (empty) set of edges that is
(trivially) a subset of a best paving.

3. Every time we add another edge, we still
have a subset of a best paving.

4. So when done, we must still have a subset
of a best paving.

5. But everything is connected (or we wouldn’t

have stopped), so our “subset” of a best
paving must be a complete best paving.

Crunchy nugget: Item (3) is hard to believe.
But certainly if we believed it, we would know
our greedy strategy works.

62

We were backed into a corner, and wound up
with a terrible solution.

And note that this very same graph was not a
problem for the greedy paving strategy!

Conclusion: A greedy strategy isn't necessar-
ily guaranteed to always give the best solution.

So now we would be naive to trust that our
greedy strategy for paving gives the best solu-
tion for any graph.

On the other hand, maybe it is indeed correct.
What would it take to convince you?

61

Assertions

Statements (2) and (3) have this general form:

Whenever we reach this point in the
algorithm, such-and-such is true.

Recall that such statements are called asser-
tions.

Assertions form the basis of any argument that
an algorithm is correct.

63



Efficiency of the Greedy Strategy

How much work is required to solve the paving
problem using the greedy strategy?

The answer depends, of course, on how big the
graph is — how many nodes and edges it has.
Let n be the number of nodes in the graph and
e be the number of edges.

Recap of the strategy:
e Start from some arbitrary node.

e Pave the cheapest edge going out of that
node. Now two nodes are ‘“connected”
(i.e., reachable on paved roads).

e Repeat until every node is connected:

— Pave the cheapest edge that links a con-
nected node to an unconnected node

64

Eff. of the greedy strategy, in terms of n

We determined that it takes time that is gn the
order of n x e, and that (n — 1) <e< (”2—_”)

So in the worst case, the time taken is on the
order of n3 (making some crude mathematical
simplifications).

In fact, we can speed up the greedy strategy
using a simple trick, so that it takes time on
the order of .

Efficiency of a brute force strategy

How does this compare to a “brute force” strat-
egy — one that simply works through every
single possible paving and finds which is the
cheapest?

How many possible pavings are there to check
through:
66

Most of the work is done inside the loop. How
many times does the repeat loop iterate:

And how much work is done to pick the next
cheapest edge:

(This is an over-estimate; the work gets less
each time because we have fewer edges left to

consider.)

So in total, the work done is “on the order of"” :

How does e compare to n?

If the graph has no unconnected parts e is at

least equal to n — 1, and it can be a lot more:
2

if the graph is complete, e = *-5>".

65

So in the worst case, the time taken for the

brute force strategy is on the order of
(again making some crude mathematical sim-
plifications).

Comparing n2 to 2"

Approximate Value for n =
function | 10 100 1,000 10,000 10°
n? 100 10,000 10° 108 1010
on 1024 1030 10300 103000 1030,000
2m 1030 10300 humungous!

Note that n can be very large — much larger
than 10° — in many real-world applications of
the paving problem.

So the greedy approach is vastly more efficient
than a brute force approach.

(Too bad greedy approaches don't always work!)

67



Major Conclusions

Formal reasoning about correctness

There are some algorithms whose correctness
can only be established with careful reason-
ing. We need techniques for reasoning about
correctness so we can be confident that our
software works.

You will learn about this in ¢sc238.

Formal reasoning about efficiency

For a given problem, there may be some solu-
tions that are vastly more efficient than others.
We need techniques for analyzing efficiency so
that we can write software that runs quickly.

You will learn more about this now. ...
68



