RECURSION

Reference:
e Shaffer, section 2.4

e You should read chapters 1 and 2 in full

Reference:

e Roberts, Eric S., “Thinking Recursively",
John Wiley and Sons, 1986.
An excellent, intuitive book.

39

In each case, we

e Repeatedly break down a problem into sub-
problem(s) that

— are somewhat smaller or simpler to solve,
and

— have identical structure to the original
problem.

e Eventually, the subproblem(s) are so sim-
ple that they can be solved without further
division.

e The solution to the original problem con-

sists of either:

— the solution to the simplest subproblem,
or

— a combination of the solutions to the
solved subproblems.

41

Thinking Recursively

Imagine that you have to solve one of the prob-
lems below, but you are very lazy. You can ask
one or more friends for help.

(But you can’t ask someone to solve the whole
problem — you have to do some work!)

Problem: Calculate the value of 13!

Problem: You have a two-pan balance and
a pile of 32 quarters. One is counterfeit and
weighs slightly less than the others. Find it.
How many weighings will it take?

Problem: Given a set of characters, determine
all possible permutations of that set.

40

The Definition of Recursion

Because a recursive solution to a problem re-
quires that a “smaller” instance of the same
problem be solved, methods that are recursive
call themselves.

Definition: a recursive method is one that is
called from within its own body, directly or in-
directly.

(E.g., method A may call method B which calls
method A).

Examples:

int fact(int n) {
if (n == 0)
return 1;
else
return n * fact(n-1);

}

void BST::print(IntNode* root)q{
if (root != 0) {
print (root->left);
cout << root->data << " ";
print(root->right);

42



Suspicious?

You may feel " suspicious” about recursion, but
don’'t be: Think of the recursive call as no
different from any other method call.

We often examine non-recursive methods, as-
suming that any other methods they call will
“do the right thing”.

Similarly, for a recursion method, we can con-
sider what it will do assuming that the recur-
sive call will do the right thing.

For instance, given a non-empty tree,
BST::print prints out the root’s value in be-

tween printing out the left and right subtrees.

This is correct, assuming that the two recur-
sive calls do the right thing.

43

Writing a Recursive Method

Problem: Compute the height of a given tree.

Get the basic strategy
1. How can you reduce the problem to one or
more simpler sub-problems of the same form?

45

Tracing a recursive method

Trace a call to BST::print with a reference to
the root of the following tree. Keep careful
track of the call stack.

(=)
/\
()

GRC

void BST::print(IntNode* root){
if (root != 0) {
print (root->left);
cout << root->data << " ";
print(root->right);

(When you are comfortable with recursion, you
will be able to write, understand, and debug
recursive code without tracing the recursive
calls.)

44

Flow of information
2. What information is needed as input and
output for the recursion?

3. Write the method header.

4. Write a method specification that explains
exactly what it will do, in terms of the param-
eters. Include any necessary preconditions.

46



Base cases

5. When is the answer so simple that we know
it without recursing? What is the answer in
the base case(s) (also called “degenerate”)?

6. Write code for the base case(s).

47

Conclusion
10. Put it all together.

49

Recursive steps
7. Describe the answer in the other case(s) in
terms of the answer on smaller inputs.

8. Simplify if possible.

9. Write code for the recursive case(s).

48

Recursion vs Iteration

Any problem that can be solved iteratively can
be solved recursively, and vice versa. So why
use recursion?

e Some problems have only a complicated it-
erative solution, but a simple, elegant re-
cursive solution.

(Example: tree traversal.)

e In such cases, the recursive program is eas-
ier to write, understand, debug, and ana-
lyze.

With recursion, the compiler / run-time system
keeps track of the method calls, thereby hiding
bookkeeping details from the programmer.

Although there may be many method calls, a
good compiler can handle recursion efficiently.
50



Hints for Writing Recursive Code

e Start by thinking about how a friend can
help by solving a simpler sub-problem.

e Use the 10 questions above to guide you
when writing a recursive method.

e Be careful about combining loops and re-
cursion in the same portion of code.
It can be legitimate, but is often a sign of
not believing recursion works.

e Design your recursive methods so that all
communication is via parameters — don’t
use globals.

This is often a sign of trying to work around
the recursion, rather than with it.

e Remember to think of the parameters as
specifying smaller and smaller problems as
the method recurses.

e Watch out for “infinite regress”.
In order to stop, a recursive method must
eventually execute a degenerate (non-recursive)
case.

51



